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Force Field

The force field proposed by Dubbeldam et al. [1] for IRMOF-1 (Fig. 1) represents
the Zn,O cluster using only Lennard-Jones and Coulombic potentials between the
individual atoms. In contrast, linker molecules are described using a combination of
general force field parameters, including DREIDING [2] and CVFF [3], for bond, bend,
and torsion constants:

Fig. 1 Definition of the different atom types present in IRMOF-1.

The bond stretching between two bonded atoms is represented by a harmonic
potential:

Vi(rij) = %kb(ﬁj —ro)” (1)

The bond-angle vibration between a triplet of atoms is also described by a harmonic
potential:

1
Va(Oijr) = Sko(Oijn — 0o)? (2)

Proper and improper dihedrals are represented by a periodic function:

Va(@ijer) = ky(1 + cos(me — ¢5)) (3)

where ¢ is the angle between the ijk and the jkl planes. The only difference here
compared to what Dubbeldam et al. [1] described is that in the definition of improper
dihedral angles of atoms i-j-k-, i is the central atom. Additionally, the Lennard-Jones
and Coulomb 1-4 interactions were included (with full values).



Table 1 Bond parameters [1]

i J kp (kJ mol=! nm—2) 7o (nm)
Ob Ca 452173.73 0.127
Ca Cb 294124.11 0.144
Cb Cc 401932.76 0.1365
Cc Cec 401932.76 0.1365
Cc H 304309.33 0.095

Table 2 Bend parameters [1]

i J k ke (kJmol™!rad=2) 6o (deg)

Ob Ca Ob 1130.43 132
Ob Ca Cb 456.31 114
Ca Cb Cc 290.399 120
Cec Cb Cc 753.62 120
Cc Cc Cb 753.62 120
Cb Cc H 309.82 120
Cc Cc H 309.82 120

Table 3 Torsion parameters [1]

i J k l ks (kJ mol=1) ¢ (deg)
Ob Ca Cb Cc 10.467 180
Ca Cb Cc H 12.560 180
Ca Cb Cc Cec 12.560 180
Cb Cc Cc H 12.560 180
Cb Cc Cc OCb 12.560 180
Cc Cb Cc Cc 12.560 180
H Cc Cb Cc 12.560 180
H Cec Cec H 12.560 180

[CESCECENCECE O CRCN

Table 4 Improper torsion parameters [1]

i J k l ks (kJmol=1) ¢s m
Ca Cb Ob Ob 41.872 180 2
Cb Cc Cc Ca 41.88 180 2
Cc Cb Cc H 1.549 180 2




Table 5 Non-bonded parameters for
IRMOF-1 [1]

Atom type €¢/kp (K) o (A) Charge

Zn 0.42 2.7 1.275
Oa 700 2.98 —-1.5
Ob 70.5 3.11 —-0.6
Ca 47 3.74 0.475
Cb 47.86 3.47 0.125
Cc 47.86 3.47 —-0.15
H 7.65 2.85 0.15

For wunlike LJ interactions, the standard
Lorentz-Bethelot combining rules are used.

Table 6 Non-bonded parameters for
CO2 [4] and Ar [5]

Atom type €/kp (K) o (A) Charge

Cco, 27.0 2.80 0.7
Oco, 70.0 3.05 —-0.35
Ar 119.8 3.40 —

For wunlike LJ interactions, the standard
Lorentz-Bethelot combining rules are used.



Additional results
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Fig. 2 Adsorption isotherms, strain isotherms, and heats of adsorption of COs on IRMOF-1 at 195
K for 1 x 1 x 1 cells and 12 A of cutoff radius.
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Fig. 3 Adsorption isotherms, strain isotherms, and heats of adsorption of CO2 on IRMOF-1 at 195
K for 2 x 2 x 2 cells and 12 A of cutoff radius.
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Fig. 4 Adsorption isotherms, strain isotherms, and heats of adsorption of CO2 on IRMOF-1 at 195
K for 2 x 2 x 2 cells and 14 A of cutoff radius.
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Fig. 5 Adsorption isotherms, strain isotherms, and heats of adsorption of Ar on IRMOF-1 at 78 K

for 2 x 2 x 2 cells and 14 A of cutoff radius.
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Fig. 6 Fluid-fluid and solid-fluid energy contributions for CO2 adsorption on IRMOF-1 at 195 K
(1 x1x1cellsand 12 A of cutoff radius).
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Fig. 7 Fluid-fluid and solid-fluid energy contributions for CO2 adsorption on IRMOF-1 at 195 K
(2 x 2 x 2 cells and 12 A of cutoff radius).

10



T —1000

—2000f

- - sf (rigid)
- & ff (rigid) g
4000i+ sf (flexible) “u
T e ff (flexible) LS .
b
0 10 20 30 40

Energy (K/molecule

—3000

Energy (K)

-@- of
-m- ff
—6 —— sf
—o— ff

rigid)
rigid)
flexible)
flexible)

~ o~~~

| | |
0 50 100 150 200
Adsorption (molecules/uc)

Fig. 8 Fluid-fluid and solid-fluid energy contributions for CO2 adsorption on IRMOF-1 at 195 K
(2 x 2 x 2 cells and 14 A of cutoff radius).
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Fig. 9 Fluid-fluid and solid-fluid energy contributions for Ar adsorption on IRMOF-1 at 78 K
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