Supplementary Material
1. Model Assumptions
In this study, our objective was to estimate clone-specific selection pressure that quantify the association between mitochondrial clonal identity and cellular disease state at single-cell resolution. Suppose that there are 𝑆 ≥1 samples, indexed by 𝑠 = 1,...,𝑆, and let 𝑐 denote the tumor clones. Within each sample, there are 𝐶𝑠 tumor clones indexed by 𝑐= 1,...,𝐶𝑠, and each clone contains 𝐾𝑠𝑐 mutations indexed by 𝑘= 1,...,𝐾𝑠𝑐.
For each mutation, 𝑛𝑠𝑐𝑘 denotes the observed cellular disease score for mutation 𝑘 in the clone 𝑐 of the sample 𝑠. The associated variant allele frequency (VAF) of that mutation 𝑘 is represented by 𝑣𝑠𝑐𝑘. Each mutation is associated with a latent variable 𝑧𝑠𝑐𝑘, indicating whether the mutation contributes to cellular disease. In other words, if 𝑧𝑠𝑐𝑘 = 0, 𝑛𝑠𝑐𝑘=0. If 𝑧𝑠𝑐𝑘 = 1, 𝑛𝑠𝑐𝑘 follows the Gaussian distribution. Formally, the conditional distribution of 𝑛𝑠𝑐𝑘 is:


	(1)
In particular, we assume
𝜇𝑠𝑐𝑘 = 𝑎𝑠𝑐𝑣𝑠𝑐𝑘 + 𝑏𝑠𝑐
(2)
Here, the parameter 𝜋𝑠𝑐 represents the probability of zero inflation, reflecting the probability that a mutation has no effect. The parameter 𝑎𝑠𝑐 represents the clone-specific selection pressure. The parameter 𝑏𝑠𝑐 captures the clone-specific baseline effect. Lastly, 𝜎2 denotes the residual variance of the Gaussian component, capturing unexplained variability in cellular disease score. For notational convenience, let
𝑛 = {𝑛𝑠𝑐𝑘 }𝑠=1,...,𝑆; 𝑐=1,...,𝐶𝑠; 𝑘=1,...,𝐾𝑠𝑐 ,	𝑣 = {𝑣𝑠𝑐𝑘 }𝑠,𝑐,𝑘 ,	𝑧 = {𝑧𝑠𝑐𝑘 }𝑠,𝑐,𝑘 ,
denote the full collections of observed cellular disease scores, variant allele frequencies, and latent indicators, respectively.
The joint likelihood function over all samples, clones, and mutations is:

(3)
Taking the natural logarithm of the likelihood function in equation (3) yields the log likelihood:

(4)

2. Priors and Posterior Distribution
We impose hierarchical priors on the parameters. The zero-inflation probability for clone 𝑐 in sample 𝑠, 𝜋𝑠𝑐, is assigned a Beta distribution:
𝜋𝑠𝑐 ∼ Beta(𝛼, 𝛽).
(5)
The clone-specific selection pressure 𝑎𝑠𝑐 follows a Beta distribution with hyperparameters 𝛼𝑎 and 𝛽𝑎:
𝑎𝑠𝑐 ∼ Beta(𝛼𝑎, 𝛽𝑎).
(6)
The baseline parameter 𝑏𝑠𝑐 is modeled with a Gaussian prior centered at zero with variance  :

(7)
The residual variance 𝜎2 is assumed to follow an Inverse-Gamma distribution:
𝜎2 ∼ Inv-Gamma(𝜅, 𝜃).
(8)
From Bayes’ Theorem, the posterior distribution is proportional to the likelihood in equation (3) multiplied by the priors in equations (5)–(8). Formally,
𝑃(𝜋𝑠𝑐, 𝑎𝑠𝑐, 𝑏𝑠𝑐, 𝜎2, 𝑧 | 𝑛, 𝑣) ∝ 𝐿(𝜋𝑠𝑐, 𝑎𝑠𝑐, 𝑏𝑠𝑐, 𝜎2 | 𝑛, 𝑣, 𝑧) 𝑃(𝑧 | 𝜋𝑠𝑐)
× 𝑃(𝜋𝑠𝑐) 𝑃(𝑎𝑠𝑐) 𝑃(𝑏𝑠𝑐) 𝑃(𝜎2).
(9)
Here, the likelihood 𝐿(·) is defined in equation (3):

Taking the natural logarithm of the posterior in equation (9) and expanding the likelihood (3) gives:



(10)

3. Parameter Estimation
This section outlines the parameter estimation using Gibbs Sampling and Metropolis-Hasting (MH) algorithms.

3.1 Scenario 1: Single Clone (C = 1)
In this scenario only one clone is detected across all samples. The clone-specific parameters simplify to global parameters such that 𝑎𝑠𝑐 →𝑎𝑠 and 𝑏𝑠𝑐 →𝑏𝑠.
Starting from Bayes’ Theorem (equation (9)), the posterior is proportional to the likelihood multiplied by the prior distributions:

For a single mutation 𝑘, the conditional probability contribution of equation (1) can be expressed using indicator functions:

Here,  (𝑛𝑘 = 0) is the indicator function that equals 1 if 𝑛𝑘 = 0 and 0 otherwise. Multiplying
over all mutations 𝑘= 1,...,𝐾 yields the joint likelihood:

Combining this likelihood with the priors gives the joint posterior distribution:



(11)
Updating  (Zero-Inflation Probability)
From equation (11), the terms involving  in the posterior distribution are


Let
 


denote the number of zero and nonzero disease scores, respectively. The likelihood contribution simplifies to


Assuming a Beta prior 𝜋∼Beta(𝛼,𝛽) with density 𝑃(𝜋) ∝ 𝜋𝛼−1(1−𝜋)𝛽−1, the posterior distribution of 𝜋 is proportional to

(12)
This expression is recognized as the kernel of a Beta distribution, yielding the closed-form update

(13)
Accordingly, the Gibbs sampling step for 𝜋 is straightforward: count the number of observed zeros 𝑍, update the Beta hyperparameters to (𝛼+𝑍, 𝛽+𝐾−𝑍), and draw a new sample of 𝜋 from the corresponding Beta distribution.

Updating 𝑎𝑠 as (Selection Pressure)
From equation (11), the terms involving the selection parameter 𝑎𝑠 arise only from the Gaussian component of the likelihood, corresponding to mutations with 𝑧𝑘 = 1. For such observations, the cellular disease score is distributed as


The conditional posterior is therefore proportional to

where 

Taking logarithms, the 𝑎𝑠-dependent part of the likelihood (11) becomes


Assuming a Beta prior 𝑎𝑠 ∼ Beta(𝛼𝑎,𝛽𝑎) with density

the conditional log-posterior is


(14)
Because this conditional posterior does not correspond to a standard distribution, Gibbs sampling is not feasible. Therefore, 𝑎𝑠 is updated using a Metropolis–Hastings step: a candidate 𝑎′𝑠 is proposed (e.g., from a Beta distribution), the log-posterior in equation(14) is evaluated at both 𝑎𝑠 and 𝑎′𝑠, and the proposal is accepted with probability

If the proposal is accepted, the parameter is updated by setting 𝑎𝑠 ←𝑎′𝑠; otherwise, the current value of 𝑎𝑠 is retained. Repeating this accept–reject procedure produces a sequence 

, where each new state depends only on the previous one. This sequence forms a Markov chain whose stationary distribution coincides with the posterior distribution of 𝑎𝑠 given in equation (14). Consequently, after a sufficient number of iterations, the sampled values of 𝑎𝑠 can be regarded as approximate draws from its true posterior distribution.

Updating 𝑏𝑠 (Baseline Effect)

Assume a Gaussian prior, 

From equation (11), the terms involving 𝑏𝑠 arise only from the Gaussian component of the likelihood, corresponding to mutations with 𝑧𝑘 = 1. For such observations,

The conditional posterior is therefore proportional to

where the likelihood can be expressed as

Taking logarithms and isolating the 𝑏𝑠-dependent terms yields

Combining this with the Gaussian prior on 𝑏𝑠 gives a Gaussian conditional posterior:

(15)
with posterior mean and variance;


Thus, 𝑏𝑠 can be updated directly by a Gibbs draw from this Gaussian distribution. Alternatively, one may implement a MH step: propose a candidate 𝑏′𝑠 from a Gaussian proposal distribution and accept it with probability


If the proposal is accepted, update 𝑏𝑠 ←𝑏′𝑠; otherwise, retain the current value. Iterating this procedure produces a Markov chain whose stationary distribution coincides with the posterior in equation (15), ensuring that the draws approximate the true posterior distribution of 𝑏𝑠 after convergence.

3.2 Scenario 2: Multiple Clones (C > 1)
In this scenario, multiple clones (𝐶 >1) are present across samples. Each clone 𝑐 in sample 𝑠 is characterized by its own selection pressure (𝑎𝑠𝑐) and baseline effect (𝑏𝑠𝑐), while the residual variance (𝜎2) is assumed to be shared globally across all clones and samples. This structure balances clone-specific flexibility with global regularization of variance.
Starting from the general posterior in equation (9), the joint posterior distribution in the multiple-clone setting can be written as

As in Scenario 1, Gibbs sampling and Metropolis–Hastings (MH) algorithms are employed to iteratively update the parameters 𝜋𝑠𝑐, 𝑎𝑠𝑐, 𝑏𝑠𝑐, and 𝜎2 while conditioning on the others. We begin with the update for the clone-specific zero-inflation probability 𝜋𝑠𝑐.

Updating 𝜋𝑠𝑐 (Clone-Specific Zero-Inflation Probability)
From the expanded log-posterior in equation (10), the terms involving the clone-specific
zero-inflation parameter 𝜋𝑠𝑐 for clone 𝑐 in sample 𝑠 are

Recalling the per-mutation likelihood from equation (3), the contribution of a single muta-
tion 𝑘 in clone 𝑐 is

Likelihood factorization. Multiplying over all mutations 𝑘= 1,...,𝐾𝑠𝑐 within clone (𝑠,𝑐) yields



where

is the number of zero observations in clone 𝑐 of sample 𝑠. Importantly, the Gaussian terms
do not depend on 𝜋𝑠𝑐 and therefore drop out when we form the conditional for 𝜋𝑠𝑐.

Combine with the prior. With a Beta prior 𝜋𝑠𝑐∼Beta(𝛼,𝛽), whose density is proportional to 

the 𝜋𝑠𝑐-conditional posterior (up to proportionality) becomes

Recognizing the kernel of a Beta distribution, we obtain the closed-form update

(16)
Gibbs sampling. Compute 


and draw

Larger 𝑍𝑠𝑐 shifts the posterior toward one (more zero inflation), whereas larger 𝐾𝑠𝑐−𝑍𝑠𝑐 shifts it toward zero (less zero inflation). Because clones are conditionally independent given their parameters, the updates {𝜋𝑠𝑐}can be computed independently for each (𝑠,𝑐) and parallelized across clones and samples.

Updating 𝑎𝑠𝑐 (Clone-Specific Selection Pressure)
Recall that 𝑠 indexes samples (𝑠 = 1,...,𝑆) and, within sample 𝑠, 𝑐 indexes clones (𝑐= 1, ... ,𝐶𝑠). The parameter 𝑎𝑠𝑐 represents the selection pressure specific to clone 𝑐 in sample 𝑠. From equation (10), the terms in the log-posterior that involve 𝑎𝑠𝑐 are

For observations where 𝑧𝑠𝑐𝑘 = 1 (i.e., mutation 𝑘 in clone 𝑐 arises from the Gaussian component), the likelihood contribution is


Log-Likelihood expansion. Multiplying across such mutations and taking logarithms yields

Prior. The prior for clone-specific selection pressure is 𝑎𝑠𝑐 ∼Beta(𝛼𝑎,𝛽𝑎), with density

Conditional posterior. Combining the likelihood with the prior, the conditional posterior is


(17)

Because this expression does not correspond to a standard distribution, Gibbs sampling is not feasible.

Metropolis-Hastings update. We therefore update 𝑎𝑠𝑐 using a Metropolis–Hastings
Step: 1. Proposal. Draw a candidate 𝑎′𝑠𝑐 from a proposal distribution, for example

2. Evaluate log-posterior. Compute the log-posterior (equation (17)) at both 𝑎𝑠𝑐 and 𝑎′𝑠𝑐.
3. Acceptance probability. Compute

4. Update. Generate 𝑢∼𝑈(0,1). If 𝑢 ≤𝑅, accept the proposal and set 𝑎𝑠𝑐 ← 𝑎′𝑠𝑐; otherwise retain the current value.
Iterating this accept–reject procedure produces a Markov chain 

whose stationary distribution is the posterior of 𝑎𝑠𝑐. After a burn-in period, the draws can be treated as approximate samples from 𝑃(𝑎𝑠𝑐 |𝑛𝑠𝑐,𝑣𝑠𝑐,𝑏𝑠𝑐,𝜎2,𝑧).


Updating  𝑏𝑠𝑐 (Clone-Specific Baseline Effect)
From equation (10), the log-posterior terms involving 𝑏𝑠𝑐 are

Likelihood contribution. For observations with 𝑧𝑠𝑐𝑘 = 1 (i.e., data from the Gaussian component),


Multiplying over such mutations and taking logarithms yields

Prior. The baseline effect is assigned a Gaussian prior. 

which contributes a term 

to the log-posterior.

Conditional posterior. Combining likelihood and prior, the conditional posterior is

(18)

This is a quadratic form in 𝑏𝑠𝑐, leading to the posterior mean and variance


Metropolis-Hastings update. Although the conditional posterior has a Gaussian kernel, its normalization is influenced by both the likelihood and the prior. We therefore update 𝑏𝑠𝑐 via a Metropolis–Hastings step:
1. Proposal. Draw a candidate value

2. Acceptance probability. Compute

3. Update. Generate 𝑢∼𝑈(0,1). If 𝑢 ≤𝑅, accept the proposal and set 𝑏𝑠𝑐 ← 𝑏′𝑠𝑐; otherwise retain the current 𝑏𝑠𝑐.
As with 𝑎𝑠𝑐, iterating this accept–reject procedure generates a Markov chain 

whose stationary distribution is the posterior of 𝑏𝑠𝑐. After sufficient burn-in, the sampled values provide approximate draws from 𝑃(𝑏𝑠𝑐 |𝑛𝑠𝑐,𝑣𝑠𝑐,𝑎𝑠𝑐,𝜎2,𝑧).
Updating 𝜎2 (Global Variance Across Clones)
The variance parameter 𝜎2 is shared globally across all clones and samples, capturing the overall residual variability of the Gaussian component.
Log-posterior terms. From equation (10), the contributions involving 𝜎2 arise from the
Gaussian likelihood and the prior 𝑃(𝜎2). Specifically,

Likelihood expansion. The Gaussian log-likelihood expands as


where

is the total number of observed mutations across all samples and clones.

Prior. The prior for the variance is assumed to be inverse-gamma,

with density proportional to (𝜎2)−(𝜅+1)exp(−𝜃/𝜎2).

Conditional posterior. Combining likelihood and prior, the conditional posterior remains inverse-gamma:

(19)
Gibbs update. The update for 𝜎2 can be carried out directly in Gibbs sampling:
1. Compute the residuals

2. Update the shape and scale parameters:


3. Draw a new value

This conjugate update ensures that the variance parameter is efficiently sampled. Large residuals {𝑟𝑠𝑐𝑘}inflate the scale parameter 𝜃′, favoring larger 𝜎2, while smaller residuals shrink 𝜎2, reflecting tighter Gaussian fit.
