

Localized negative core-mantle boundary heat flux

1 Methods and Supplementary material

2

3 Frédéric Deschamps^{1*}, Joshua Martin Guerrero¹, Hagay Amit², Filipe Terra-Nova³,
4 and Wen-Pin Hsieh¹

5 ¹ Institute of Earth Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nangang, Taipei
6 11529, Taiwan

7 ² Laboratoire de Planétologie et Géosciences, Université de Nantes, 2, rue de la Houssinière, BP
8 92208, 44322 Nantes cedex 3, France

9 ³ Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 1 Rue Jussieu, 75005
10 Paris, France

11

12 * Correspondance: Frédéric Deschamps, frederic@earth.sinica.edu.tw

13

14 This file contains the Methods section with details on the numerical simulations, supplementary
15 tables S1 to S3, supplementary figures S1 to S20 and a brief description of supplementary movies
16 M1-M4.

17

18 **Methods**

19

20 **Numerical setup**

21 We perform numerical simulations of thermo-chemical convection with StagYY²⁷, solving
22 conservation of mass, energy, momentum and composition for a compressible, infinite Prandtl
23 number fluid. The numerical setup is very close to that used in ref. 28, with some differences,
24 mainly the grid resolution. All simulations are run in non-dimensional units and rescaled during
25 post-processing. Supplementary Table S1 lists the input parameters values.

26

27 **Geometry and general physical properties.** Conservation equations are solved on a spherical
28 annulus⁴⁸ sampled by 256 vertical and 2048 longitudinal nodes. In addition, we prescribed grid
29 refinement at the top and at the bottom of the annulus to describe more precisely the thermal
30 boundary layers in these regions. The ratio between the radius of the core and the total radius is
31 set to its Earth value, *i.e.*, $f = 0.55$. The bottom and surface boundaries are free slip and isothermal,
32 with surface and bottom temperature fixed to 300 K and 3750 K, respectively.

33 A phase transition is added at a depth of 660 km, modeling the transformation of ringwoodite
34 into bridgmanite and ferro-periclase at 660 km. For this, we define a point on the phase boundary
35 and a Clapeyron slope, Γ_{660} . Here, we imposed $d = 660$ km and $T = 1900$ K as anchor point, and
36 $\Gamma_{660} = -2.5$ MPa/K. Except for one case, we didn't include the phase transition to post-perovskite
37 (pPv). In that one case, the pPv phase transition is modelled with a reference temperature of 2650
38 K at a depth of 2700 km depth, and lateral deviations in the transition depth are determined using
39 the phase function approach in ref. 49. The Clapeyron slope and the density contrast are

40 respectively set to $\Gamma_{\text{ppv}} = 13 \text{ MPa/K}^{50}$ and $\Delta\rho_{\text{ppv}} = 62 \text{ kg/m}^3$, corresponding to a relative contrast
 41 of $\sim 1.0\%$.

42 Viscosity is allowed to vary with depth, temperature, and composition. An additional
 43 viscosity ratio $\Delta\eta_{660} = 30$ is added at the 660-km phase transition. Furthermore, to avoid the
 44 formation of stagnant lid at the top of the system, we impose a yield stress. The viscosity η is then
 45 fully described by

$$46 \quad \eta = \frac{1}{\frac{1}{\eta_b} + \frac{1}{\eta_Y}}, \quad (\text{A1})$$

$$47 \quad \text{where} \quad \eta_Y = \frac{\sigma_0 + \dot{\sigma}_z P}{2\dot{\epsilon}} \quad (\text{A2})$$

48 is the yield viscosity, and

$$49 \quad \eta_b(d, T, C_{\text{prim}}) = \eta_0 [1 + 29H(d - 660)] \exp \left[V_a \frac{d}{D} + E_a \frac{\Delta T_S}{(T + T_{\text{off}})} + K_a C_{\text{prim}} \right] \quad (\text{A3})$$

50 The yield viscosity (Eq. A2) is defined from the yield stress, $\sigma_Y = \sigma_0 + \dot{\sigma}_P P$, and the second
 51 invariant of the stress tensor, $\dot{\epsilon}$. The yield stress is set to σ_0 at the surface, here equivalent to 290
 52 MPa, and increases with pressure following a gradient (with respect to pressure) of $\dot{\sigma}_P$, here equal
 53 to 0.01. In Eq. (A3) η_0 is a reference viscosity, H the Heaviside step function, d the depth, D the
 54 mantle thickness, C_{prim} the concentration in dense material (see below), ΔT_S the super-adiabatic
 55 temperature difference across the system and T_{off} a temperature offset, which is added to the
 56 temperature to reduce the viscosity jump across the top thermal boundary layer and which we fixed
 57 to $T_{\text{off}} = 0.88\Delta T_S$, and. The reference viscosity η_0 is defined for the surface value of the reference
 58 adiabat (*i.e.*, $T_{\text{as}} = 0.64\Delta T_S$), and at regular composition ($C_{\text{prim}} = 0$). The viscosity variations with
 59 temperature are controlled by E_a , modeling the activation energy. To quantify the thermally-
 60 induced increase of viscosity, we define a potential thermal viscosity ratio as $\Delta\eta_T = \exp(E_a)$.
 61 However, due to the adiabatic increase of temperature and to the temperature offset, the effective

62 top-to-bottom thermal viscosity contrast is smaller than $\Delta\eta_T$ by about two orders of magnitude.
63 Here, we fixed E_a to 16.118, corresponding to $\Delta\eta_T = 10^7$, and equivalent to an activation energy
64 of ~ 335 kJ/mol. The viscosity variations with depth are controlled by V_a , modeling the activation
65 volume, and which we fixed to 2.303. Combined with the viscosity jump at 660 km, but excluding
66 the decrease due to adiabatic increase of temperature and the thermally-induced increase in thermal
67 boundary layers, this leads to a total top-to-bottom increase in viscosity by a factor 300. The
68 viscosity variations with composition are controlled by the parameter K_a , and the viscosity ratio
69 between primordial and regular material (or chemical viscosity ratio) is given by $\Delta\eta_C = \exp(K_a)$.
70 In this study, we impose primordial material to be more viscous than regular material with $\Delta\eta_C =$
71 30, accounting for the fact that if dense material is enriched in bridgmanite^{21,51}, it may be more
72 viscous than surrounding mantle⁵². Finally, for our additional case that include the pPv phase, we
73 assumed that pPv and bridgmanite have the same viscosity.

74 Because the fluid properties (density, viscosity, thermal diffusivity, and thermal expansion)
75 are allowed to vary throughout the system, the definition of the Rayleigh number is non-unique.
76 In our simulations, we prescribed a reference Rayleigh number Ra_0 , defined at surface values of
77 the thermodynamic parameters and reference viscosity η_0 . Here, we set Ra_0 to 3.0×10^8 , leading to
78 an effective Rayleigh number (*i.e.*, the Rayleigh number at the volume average viscosity) from
79 about 10^6 to 2.0×10^6 , depending on the case. In particular, because cases we higher excess heating
80 in piles of dense material are colder, they are slightly more viscous and have a lower Rayleigh
81 number than other cases.

82

83 **Thermochemical field.** Our simulations include two types of material, modeling the regular
84 mantle and a chemically distinct (or primordial) material, respectively. The latter accounts for

85 chemical heterogeneities that may be present at the bottom of the mantle as a result of early
 86 differentiation, resulting in the large low shear-wave velocity provinces (LLSVPs) observed by
 87 seismic tomography maps. The compositional field is modelled with a collection of about 21
 88 million tracers, equivalent to an average number of tracers per cell of 40, which is enough to
 89 properly model entrainment⁵³. Tracers are of two types, modeling the regular mantle and
 90 primordial material, respectively, and are advected following a 4th order Runge-Kutta method. At
 91 each time step, the compositional field is inferred from the concentration C_{prim} of particles of
 92 primordial material in each cell, and varies between 0 for a cell filled with regular material only,
 93 and 1 for a cell filled with primordial material only. The primordial material is initially distributed
 94 in a basal layer. The thickness of this layer is controlled by the volume fraction of dense material,
 95 X_{prim} , which we fixed to 4 %. The primordial material is assumed to be denser than the regular
 96 (pyrolytic) mantle, and the density contrast between the two materials is controlled by the buoyancy
 97 ratio, here defined with respect to a reference density that increases with depth following a
 98 thermodynamical model of Earth's mantle,

$$99 \quad B = \frac{\Delta\rho_c(d)}{\alpha_S\rho(d)\Delta T_S}, \quad (\text{A4})$$

100 where $\Delta\rho_c(d)$ is the density contrast between dense and regular material, α_S the surface thermal
 101 expansion, $\rho(d)$ the reference density at depth z , and ΔT_S the super-adiabatic temperature jump.
 102 The buoyancy ratio is fixed to $B = 0.23$, which, taking $\alpha_S = 5.0 \times 10^{-5} \text{ K}^{-1}$, $\rho_{\text{bot}} = 4950 \text{ kg m}^{-3}$, and
 103 $\Delta T_S = 2500 \text{ K}$, leads to a density contrast between dense and regular material, $\Delta\rho_c$, of 142 kg m^{-3}
 104 at the bottom of the system. For comparison, we also run a simulation with $B = 0.15$, leading to
 105 $\Delta\rho_c = 93 \text{ kg m}^{-3}$.

107 **Heat sources.** The system is heated both from the bottom and from within. Compressibility
108 generates additional sinks and sources of heat that are controlled by the dissipation number, Di ,
109 which varies with depth. We fixed the surface value of this number to $Di_S = 1.2$. The rates of
110 internal heating in the regular mantle and in the primordial material are different, with primordial
111 material assumed to have excess heating, controlled with the excess heating ratio, R_H . This
112 difference accounts for the fact that if primordial is related to the last stages of the crystallization
113 of magma ocean²⁵, it may have been enriched in heat producing elements (HPE). Estimates of
114 excess heating ratio³⁷ may range between 20 and 100, depending on the assumed mantle in
115 HPE^{54,55}. The input internal heating rate, H , is then given by

$$116 \quad H = \frac{H_{tot}}{[1 + x_{prim}(R_H - 1)]} \quad (A5)$$

117 and is chosen such that the total heating rate, H_{tot} , is equal to 11 TW, which is the median estimate
118 of the heat generated in the mantle³⁶ and correspond to a surface heat flux of 21.6 mW/m². Here,
119 we performed simulations for values of R_H in the range 1 (no excess heating in primordial material)
120 to 50. To explore the upper excess heating bound for the formation of patches of negative heat
121 flux, we further run two additional cases with $R_H = 100$. Note that because H_{tot} is fixed to the same
122 value for all simulations, an increase in the excess heating ratio in piles of primordial material
123 implies a decrease of the rate of heating in the regular mantle (Supplementary Figure S1).

124

125 **Thermal conductivity.** A key aspect of our simulations is that they account for variations of
126 thermal conductivity with depth (pressure), temperature and composition. Supplementary Figure
127 S2 illustrates these variations for initial profiles of temperature and composition.

128 Thermal conductivity of mantle mineral increase with pressure. Here, we modelled the
129 depth-dependence with a parameterization based on experimental data for olivine³¹, bridgmanite²⁹,

130 and ferro-periclase³⁰. In the lower mantle, this parameterization is defined assuming a mix of 80
 131 % iron-aluminum bridgmanite and 20 % ferro-periclase along an adiabat of 300 K. Depth-
 132 dependence for each end-member is following the pressure-dependent parameterizations built in
 133 ref. 32, and by translating pressure to depth following PREM⁵⁶. Conductivity is then obtained from
 134 geometric average of Hashin-Shtrikman upper and lower bounds⁵⁷ for such a mix. In the upper
 135 mantle, the non-dimensional conductivity is then given as a function of the non-dimensional depth
 136 by

$$137 \quad \tilde{k}_d = 5.33(1 + 4.98\tilde{d} - 0.81\tilde{d}^2)/k_S, \quad (A6)$$

138 where k_S is the surface conductivity, which we here fix to 3.0 W/m/K. For the upper mantle, we
 139 build a polynomial assuming that the surface conductivity is equal, again, to 3.0 W/m/K, and that
 140 the conductivity and its derivative at a depth of 660 km-depth (corresponding to a non-dimensional
 141 depth of 0.228) are continuous with those defined for the lower mantle (Eq. A6). The resulting
 142 polynomial is given by

$$143 \quad \tilde{k}_d = 3.0(1 + 15.66\tilde{d} - 16.38\tilde{d}^2)/k_S. \quad (A7)$$

144 With these parameterizations, the intrinsic (*i.e.*, excluding thermal and compositional effects)
 145 bottom to top ratio in thermal conductivity is therefore about 9.

146 Temperature dependence is assumed to follow a $1/T^a$ law. The reference temperature is
 147 taken at the surface, such that the non-dimensional conductivity variations with temperature is
 148 given by

$$149 \quad \tilde{k}_T = \left(\frac{T_{\text{surf}}}{\Delta T \tilde{T}} \right)^a, \quad (A8)$$

150 where T_{surf} is the surface temperature, fixed to 300 K, ΔT_S the super-adiabatic jump, fixed to 2500
 151 K, and \tilde{T} the local non-dimensional temperature. For iron-bearing mantle material, the exponent a
 152 is expected to be around 0.5²³⁻²⁴. Slightly lower values, down to 0.2, have also been reported for

153 various aggregate or specific minerals³³⁻³⁵. Here, we tested values of a from 0 to 1. While they
154 may not be realistic for mantle materials, values of a lower than 0.2 or larger than 0.5 help to
155 understand the impact of temperature-dependent thermal conductivity on the evolution of the
156 system and on the heat flux at the CMB.

157 Compositional-dependence is assumed to be linear between two end-member
158 compositions:

$$159 \quad \tilde{k}_C = 1 + (R_C - 1)C_{\text{prim}} \quad (\text{A9})$$

160 where R_C is the ratio between conductivities of enriched and regular material and C_{prim} is the local
161 fraction of dense material. The conductivity compositional-dependence is set to 1 for regular
162 material ($C_{\text{prim}} = 0$). For instance, a decrease by 20 %, which may correspond to dense material
163 enrichments of in iron by 3.0 % and in bridgmanite by 10 %²⁹, implies $R_C = 0.8$. Here, we fixed
164 the value of R_C to 0.8 in all simulations.

165 For our one additional case that include the pPv phase, we assumed that the thermal
166 conductivity of pPv is similar to that of pyrolite. Experimental results for pPv conductivity are
167 sparse, Except for one study that report a 50 %⁵⁸ increase in pPv conductivity compared to
168 bridgmanite, there is no experimental estimates of pPv conductivity. Importantly, in our
169 simulations pPv is present in the form of lenses, *i.e.*, pPv does not directly sit on the CMB.
170 Therefore, while pPv conductivity may alter the evolution of pPv lenses, it likely has a limited
171 impact on CMB heat flux.

172 Finally, the non-dimensional conductivity corrected for thermal, pressure, and compositional
173 effects is given by $\tilde{k} = \tilde{k}_d \cdot \tilde{k}_T \cdot \tilde{k}_C$, and rescaled with the surface conductivity k_s , which, again,
174 we fixed to 3.0 W/m/K.

175

176 **Simulations, post-processing and derived quantities**

177 We performed more than 80 simulations using the setup described in the previous section. All
178 simulations start with a transient phase during which the system is heating up. After, this phase,
179 the flow organizes following a set of downwellings (slabs) and upwellings (plumes), and the heat
180 transfer reach a quasi-stationary state, meaning that the top and bottom heat flux oscillates in time
181 around nearly constant values (Supplementary Figure S3). Supplementary Tables S2 and S3 list
182 selected output parameters (including temperature, composition and CMB heat flux statistics)
183 averaged out in the non-dimensional time window 0.0367-0.0424, corresponding to a duration of
184 2 Gyr. Figures S4-S6 show snapshots of the residual temperature, composition and thermal
185 conductivity taken at the end of simulations and representative of the thermo-chemical structures
186 observed during the quasi-stationary phase.

187 Temperature, thermal conductivity and other properties are rescaled during the post-
188 processing using the characteristic values indicated in Supplementary Table S1. Adiabatic effects
189 on temperature are taken into account when solving the energy and momentum conservation
190 equations, but for practical reasons, output temperature fields do not include these effects. When
191 rescaling temperature, we and therefore corrected it for the adiabatic increase of temperature with
192 pressure. The dimensional ‘real’ temperature at a given altitude z and longitude φ , $T(z, \varphi)$, is then
193 obtained from the non-dimensional, uncompressed temperature, $\tilde{T}(z, \varphi)$, following

194
$$T(z, \varphi) = [\tilde{T}(z, \varphi) + \tilde{T}_{\text{top}}]a_c(z)\Delta T_S \quad (\text{A10})$$

195 where \tilde{T}_{top} is the surface non-dimensional temperature, here fixed to 0.12 (and which is equivalent
196 to a dimensional surface temperature of $T_{\text{surf}} = 300$ K), $\Delta T_S = 2500$ K is the superadiabatic
197 temperature jump, and $a_c(z)$ the adiabatic correction at altitude z given by

198
$$a_c(z) = \exp \left[\int_0^z D i_S \frac{\alpha(r)}{C_P(r)} dr \right] \quad (\text{A11})$$

199 where Dis is the surface dissipation number, $d = D - z$ is the depth (with $D = 2890$ km being the
 200 mantle thickness), and $\alpha(z)$ and $C_P(z)$ are the thermal expansion and heat capacity as a function of
 201 altitude. These two functions are defined as part of a reference thermodynamical model involved
 202 in the compressible form of conservation equations⁵⁹. Practically, α decreases by a factor 5 from
 203 the surface to the core-mantle boundary (CMB), while C_P is constant with depth. The adiabatic
 204 correction defined in Eq. (A10) then varies from 1.0 at the surface to about 1.55 at the CMB.

205 We calculate the local CMB heat flux from the temperature distributions of our simulations
 206 using the temperature on two lowermost grid points, T_1 and T_2 , plus the CMB temperature, T_{CMB} ,
 207 here fixed to 3750 K. More precisely, we first estimate the temperature gradient by writing T_1 and
 208 T_2 as Taylor expansions of altitude z to the second order, and by combining these equations to
 209 cancel the second derivative of temperature. The heat flux at longitude is then given by

$$210 \quad \Phi_{\text{CMB}}(\varphi) = k_{\text{CMB}} \frac{(r_z^2 - 1)T_{\text{CMB}} + T_1(\varphi) - r_z^2 T_2(\varphi)}{z_1(1 - r_z)} \quad (\text{A12})$$

211 where z_1 and z_2 are the altitudes of the two lowermost grid points, and $r_z = z_1/z_2$. Since T_{CMB} is
 212 fixed, the thermal conductivity on the CMB, k_{CMB} , is also constant throughout the CMB, but its
 213 value decreases with increasing temperature dependence (increasing exponent a , see previous
 214 section). Using this scheme allows, in particular, to better capture the curvature of the temperature
 215 profile in the thermal boundary layer. While our calculations are performed in a spherical annulus,
 216 we rescale the CMB power with the surface of the Earth core. In particular, the total power in the
 217 patches of negative heat flux, P_{neg} , is deduced by integrating the heat flux over the whole surface
 218 fraction S_{neg} where this flux is negative, and multiply by the core surface. Alternatively, and more
 219 straightforwardly, one may simply calculate P_{neg} from the negative patches average heat flux,
 220 $\langle \Phi_{\text{neg}} \rangle$, following

$$221 \quad P_{\text{neg}} = 4\pi r_{\text{CMB}}^2 P_{\text{neg}} \langle \Phi_{\text{neg}} \rangle \quad (\text{A13})$$

222 We further defined the lateral CMB heat heterogeneity with the ratio

223
$$\delta\Phi = \frac{(\Phi_{\max} - \Phi_{\min})}{2\langle\Phi_{\text{CMB}}\rangle}, \quad (\text{A14})$$

224 where Φ_{\max} , Φ_{\min} and $\langle\Phi_{\text{CMB}}\rangle$ are the maximum, minimum and average heat flux, respectively.

225 This definition is similar to that q^* , which is often used to measure heterogeneity of the CMB heat

226 flux imposed in simulations of core dynamics, except that we set the core adiabatic heat flux,

227 $\Phi_{\text{adia}}^{\text{core}}$, to zero. Here, we preferred to use $\delta\Phi$ first because it gives a more direct measure of CMB

228 heat flux heterogeneity on the mantle side, and second because in our simulations the values of

229 $\langle\Phi_{\text{CMB}}\rangle$, which are close to or within the current estimated range of 25-110 mW/m² (ref. 29), are

230 close to the estimates of $\Phi_{\text{adia}}^{\text{core}}$, leading to very high (and in some case negative) q^* . It should also

231 be noted that a high $\Phi_{\text{adia}}^{\text{core}}$ (~ 100 mW/m² or more, corresponding to a power of 15 TW) would

232 prevent the core to cool down and the geodynamo to operate.

233 Calculations of mean specific properties (*e.g.*, thermal conductivity or temperature) within

234 slabs and plumes or of the altitude of piles of dense material requires to define the boundaries of

235 these regions. Piles of dense material have very sharp boundary, meaning that the fraction of dense

236 material at a given location, C_{prim} , decreases nearly instantaneously from 1 to 0 as the border is

237 crossed. Here we defined the piles border with the isosurface $C_{\text{prim}} = 0.9$. For the reason we just

238 mentioned, choosing smaller values does significantly modify our results. To define the boundaries

239 of plumes and slabs, we use a classical method based on the difference between the minimum,

240 maximum and mean values of the temperature at a given depth⁶⁰. Plumes and slabs are then defined

241 as region with temperature larger (respectively, smaller) than

242
$$T_{\text{plume}}(z) = T_{\text{m}}(z) + c_{\text{plume}}[T_{\max}(z) - T_{\text{m}}(z)] \quad (\text{A15})$$

243 and
$$T_{\text{slab}}(z) = T_{\text{m}}(z) - c_{\text{slab}}[T_{\text{m}}(z) - T_{\min}(z)] \quad (\text{A16})$$

244 with c_{plume} and c_{slab} being two constants, which we here fixed to 0.5 and 0.6, respectively.

245

246

247 **References**

248 48. Hernlund, J. & Tackley, P.J. Modeling mantle convection in the spherical annulus, *Phys. Earth Planet. Inter.* **171**, 48-54 (2008).

249 49. Christensen, U. R. & Yuen D.A. Layered convection induced by phase transitions, *J. Geophys. Res.* **90**, 10,291–10,300 (1985).

250 50. Tateno, S., Hirose, K., Sata, N. & Ohishi Y. Determination of post-perovskite phase transition

251 boundary up to 4400 K and implications for thermal structure in D" layer, *Earth Planet. Sci. Lett.* **277**, 130-136 (2009).

252 51. Mosca, I., Cobden, L., Deuss, A., Ritsema, J. & Trampert, J. Seismic and mineralogical

253 structures of the lower mantle from probabilistic tomography, *J. Geophys. Res.*, **117**, B06304

254 (2012).

255 52. Yamazaki, D. & S.-I. Karato, S.-I. Some mineral physics constraints on the rheology and

256 geothermal structure of Earth's lower mantle, *Amer. Mineralogist* **86**, 385-391 (2001).

257 53. Tackley, P.J. & King, S.D. Testing the tracer ratio method for modeling active compositional

258 fields in mantle convection simulations, *Geochem. Geophys. Geosys.* **4**, 8302 (2003).

259 54. Arevalo, R. & McDonough, W.F. Chemical variations and regional diversity observed in

260 MORB, *Chem. Geol.* **271**, 70–85 (2010).

261 55. Workman, R.K. & Hart, S.R. Major and trace element composition of the depleted MORB

262 mantle (DMM), *Earth planet. Sci. Lett.* **231**, 53–72 (2005).

263 56. Dziewonski, A.M. & Anderson, D.L. Preliminary Reference Earth Model, *Phys. Earth Planet. Inter.* **25**, 297-356 (1981).

268 57. Hashin, Z. & Shtrikman, S. A variational approach to the theory of the effective magnetic
269 permeability of multiphase materials, *J. Appl. Phys.*, **33**, 3125-3131 (1962).

270 58. Okuda, Y., Ohta, K., Hasegawa, A., Yagi, T., Hirose, K., Kawaguchi, S.I. & Ohishi, Y.
271 Thermal conductivity of Fe-bearing post-perovskite in the Earth's lowermost mantle, *Earth*
272 *Planet. Sci. Lett.*, **547**, 116466 (2020).

273 59. Tackley, P.J. Three-dimensional simulations of mantle convection with a thermo-chemical
274 CMB boundary layer: D”?, in M. Gurnis et al. (eds.), The Core-Mantle Boundary Region,
275 *Geodynamical Ser.* **28**, 231-253 (1998).

276 60. Labrosse, S. Hotspots, mantle plumes and core heat loss, *Earth Planet. Sci. Lett.* **199**, 147-156
277 (2002).

278

279 **Supplementary Tables and Figures**

280

281

Parameter	Symbol	Value	Units	Non-dimensional
<i>Non-dimensional parameters</i>				
Reference Rayleigh number	R_{aS}			3.0×10^8
Surface dissipation number	D_{IS}			1.2
Total internal heating	H_{tot}	21.6	mW m^{-2}	13.454
Compositional heating ratio	R_{H}	1-100		
<i>Compositional parameters</i>				
Buoyancy ratio	B_z	142	kg m^{-3}	0.23
Volume fraction of dense material (%)	X_{prim}			4.0
<i>Physical & thermo-dynamical parameters</i>				
Acceleration of gravity	g	9.81	m s^{-2}	1.0
Mantle thickness	D	2891	km	1.0
Reference adiabat	T_{as}	1600	K	0.64
Super-adiabatic temperature difference	ΔT_{S}	2500	K	1.0
Surface density	ρ_s	3300	kg m^{-3}	1.0
Surface thermal expansion	α_s	5.0×10^{-5}	K^{-1}	1.0
Surface thermal diffusivity	κ_s	7.5×10^{-7}	$\text{m}^2 \text{s}^{-1}$	1.0
Heat capacity	C_p	1200	$\text{J kg}^{-1} \text{K}^{-1}$	1.0
Surface thermal conductivity	k_s	3.0	$\text{W m}^{-1} \text{K}^{-1}$	1.0
Surface Grüneisen parameter	γ_s	1.091		
Density jump at $z = 660$ km	$\Delta \rho_{660}$	400	kg m^{-3}	0.1212
Clapeyron slope at $z = 660$ km	Γ_{660}	-2.5	MPa K^{-1}	-0.0668
CMB temperature	T_{CMB}	3750	K	1.5
Density jump at CMB	$\Delta \rho_{\text{CMB}}$	5280	kg m^{-3}	1.6
<i>Viscosity law</i>				
Reference viscosity	η_0	1.6×10^{21}	Pa s	1.0
Viscosity ratio at $z = 660$ km	$\Delta \eta_{660}$	30		
Logarithmic thermal viscosity ratio	E_a	16.118		
Logarithmic vertical viscosity ratio	V_a	2.303		
Compositional viscosity ratio	$\Delta \eta_c$	32		
Surface yield stress	σ_0	290	MPa	7.5×10^6
Yield stress gradient	$\dot{\sigma}_z$	0.01	Pa/Pa	0.01

282 **Table S1.** Parameters and scalings of numerical simulations

283

284

285

α	R_H	$\langle T \rangle$ (K)	dT_{neg} (K)	dT_{pos} (K)	$k_{200\text{km}}$ ($\text{Wm}^{-1}\text{K}^{-1}$)	$\langle T_{\text{slab}} \rangle$ (K)	V_{slab}	$\langle T_{\text{piles}} \rangle$ (K)	k_{piles} ($\text{Wm}^{-1}\text{K}^{-1}$)	h_{piles} (km)
0.00	1	2055.2	519.3	285.0	23.93	2537.6	0.137	3354.5	21.01	553.9
0.00	10	1955.0	458.7	347.8	24.34	2577.4	0.135	3386.6	20.82	704.2
0.00	15	1926.0	388.4	308.4	23.86	2700.9	0.134	3371.1	20.93	704.8
0.00	30	1859.3	502.3	384.4	24.38	2498.2	0.150	3378.9	20.73	785.5
0.00	50	1799.1	478.9	289.5	23.62	2518.3	0.114	3334.9	21.07	616.8
0.10	1	2038.2	501.5	298.4	18.86	2547.9	0.146	3335.7	16.52	568.8
0.10	10	1921.3	581.7	387.5	19.13	2405.8	0.148	3409.6	16.39	640.4
0.10	15	1885.4	592.2	411.6	19.05	2423.7	0.181	3429.8	16.39	656.5
0.10	20	1897.4	563.0	357.9	18.95	2466.9	0.151	3393.4	16.45	608.5
0.10	30	1806.0	520.8	364.9	18.93	2493.2	0.153	3390.4	16.43	675.0
0.10	50	1765.0	521.0	355.7	18.82	2403.1	0.125	3345.8	16.47	728.1
0.15	10	1925.3	538.0	409.5	17.04	2447.3	0.160	3409.9	14.47	693.3
0.15	15	1906.7	561.3	364.7	16.90	2481.9	0.166	3400.2	14.54	651.9
0.15	20	1813.8	564.6	428.8	17.06	2453.9	0.185	3436.8	14.45	702.2
0.15	30	1802.5	546.1	399.6	16.96	2482.3	0.187	3365.9	14.53	698.6
0.15	40	1793.0	583.4	403.1	16.99	2390.6	0.161	3371.7	14.53	677.6
0.15	50	1749.5	511.6	380.9	16.80	2474.4	0.170	3320.2	14.62	685.7
0.20	1	2078.2	534.7	326.6	15.06	2435.0	0.140	3315.8	12.94	630.7
0.20	5	1932.7	486.7	308.8	14.72	2568.3	0.144	3359.5	13.00	571.8
0.20	10	1931.8	580.3	403.9	15.06	2413.9	0.161	3415.8	12.86	629.5
0.20	15	1852.5	553.4	422.7	15.14	2382.4	0.146	3407.5	12.82	729.7
0.20	20	1853.4	639.8	435.7	15.13	2381.5	0.192	3439.0	12.84	632.4
0.20	30	1821.5	646.8	454.0	15.20	2350.1	0.195	3424.8	12.82	629.1
0.20	40	1789.1	571.1	423.9	15.13	2395.8	0.179	3365.6	12.87	701.6
0.20	50	1777.4	556.4	355.4	14.85	2450.6	0.167	3349.9	12.97	637.8
0.30	1	2025.1	446.2	278.3	11.58	2512.3	0.112	3317.1	10.26	578.2
0.30	5	1956.3	631.7	396.3	11.91	2391.6	0.189	3396.2	10.12	572.9
0.30	10	1926.2	656.0	440.2	11.97	2297.5	0.166	3447.4	10.06	602.4
0.30	15	1874.0	616.9	481.3	12.07	2333.1	0.171	3470.4	10.00	663.1
0.30	20	1804.0	588.5	437.5	11.87	2326.8	0.143	3441.1	10.08	672.0
0.30	30	1735.2	569.3	426.1	11.89	2375.4	0.165	3379.1	10.13	687.8
0.30	40	1772.2	664.6	497.4	12.11	2302.4	0.205	3433.5	10.04	638.2
0.30	50	1759.0	631.1	502.0	12.19	2318.5	0.207	3417.7	10.00	727.4
0.30	80	1752.4	557.8	512.3	12.36	2279.6	0.161	3365.2	9.96	774.7
0.30	100	1713.0	581.0	452.2	12.17	2291.4	0.160	3296.8	10.13	685.8

287 **Table S2.** Thermal and compositional output parameters averaged out over the last 2 Gyr of the
288 simulations. Listed parameters are the average temperature, $\langle T \rangle$, *rms* positive and negative temperature
289 anomalies in the bottom 200 km, dT_{neg} and dT_{pos} , average thermal conductivity in the bottom 200 km,
290 $k_{200\text{km}}$, slabs average temperature and volume fraction in the bottom 200 km, $\langle T_{\text{slab}} \rangle$ and V_{slab} , and the
291 thermo-chemical piles average temperature, $\langle T_{\text{piles}} \rangle$, thermal conductivity, k_{piles} , and maximum altitude,
292 h_{piles} .

a	R_H	$\langle T \rangle$ (K)	dT_{neg} (K)	dT_{pos} (K)	$k_{200\text{km}}$ ($\text{Wm}^{-1}\text{K}^{-1}$)	$\langle T_{\text{slab}} \rangle$ (K)	V_{slab}	$\langle T_{\text{piles}} \rangle$ (K)	k_{piles} ($\text{Wm}^{-1}\text{K}^{-1}$)	h_{piles} (km)
0.35	3	2034.2	614.9	413.0	10.68	2367.5	0.189	3384.5	8.94	669.2
0.35	4	1986.4	590.2	408.9	10.62	2360.3	0.164	3403.4	8.94	652.9
0.35	5	1999.1	586.7	401.8	10.62	2387.0	0.159	3404.8	8.93	650.1
0.35	10	1927.7	688.2	453.3	10.64	2269.6	0.181	3449.9	8.92	618.3
0.40	1	2051.9	613.5	325.6	9.33	2401.0	0.164	3314.5	8.05	589.6
0.40	3	2031.7	652.8	381.4	9.41	2313.4	0.159	3372.0	7.98	591.0
0.40	4	2011.4	657.5	384.8	9.38	2338.4	0.174	3391.3	7.97	585.7
0.40	5	1990.6	638.3	394.9	9.39	2354.3	0.170	3410.5	7.94	618.1
0.40	10	1936.7	628.5	492.8	9.56	2270.1	0.160	3504.2	7.78	768.4
0.40	15	1868.3	606.7	554.7	9.68	2263.5	0.160	3498.7	7.77	725.6
0.40	20	1838.1	645.5	496.6	9.54	2284.8	0.176	3481.0	7.82	717.8
0.40	30	1795.9	603.9	506.1	9.59	2317.6	0.170	3462.1	7.81	711.5
0.40	50	1735.5	700.9	547.3	9.72	2207.5	0.214	3448.7	7.83	686.9
0.50	1	2094.9	631.3	334.6	7.40	2363.5	0.176	3319.4	6.33	559.1
0.50	2	2018.9	615.0	308.1	7.23	2334.0	0.131	3356.6	6.33	545.6
0.50	3	2020.4	669.9	371.8	7.40	2337.3	0.182	3372.5	6.28	555.6
0.50	4	2020.6	640.1	386.9	7.38	2335.8	0.160	3408.2	6.24	626.8
0.50	5	1990.8	710.6	459.0	7.52	2299.8	0.215	3459.6	6.17	647.4
0.50	10	1943.1	711.0	520.6	7.57	2242.9	0.190	3534.6	6.09	687.2
0.50	15	1866.1	684.2	566.6	7.63	2281.5	0.216	3550.4	6.06	702.3
0.50	20	1823.3	778.9	564.2	7.62	2223.0	0.236	3549.7	6.08	647.4
0.50	30	1734.9	637.1	579.5	7.66	2266.8	0.203	3516.8	6.07	816.8
0.50	50	1709.4	656.1	607.2	7.77	2207.7	0.201	3498.7	6.07	791.2
0.50	100	1684.0	650.4	499.0	7.66	2265.2	0.221	3348.8	6.26	680.8
0.60	1	2068.8	581.1	362.0	5.90	2356.7	0.168	3333.1	4.96	597.3
0.60	2	2051.1	659.5	407.0	5.96	2248.5	0.157	3381.1	4.90	628.6
0.60	3	2032.8	614.4	358.3	5.79	2356.4	0.148	3384.0	4.93	577.4
0.60	4	2031.7	720.4	464.8	5.98	2229.0	0.177	3453.0	4.84	632.8
0.60	5	2006.4	734.9	471.0	5.95	2233.8	0.188	3474.4	4.83	572.7
0.60	10	1912.9	726.7	592.9	6.09	2202.1	0.207	3584.4	4.71	705.2
0.60	15	1885.9	771.0	608.3	6.06	2186.3	0.213	3613.6	4.70	650.6
0.60	20	1829.3	775.2	627.7	6.12	2125.4	0.201	3600.6	4.70	683.1
0.60	30	1777.7	739.4	545.3	5.92	2242.9	0.205	3550.1	4.78	678.2
0.60	50	1741.6	736.4	609.7	6.14	2180.2	0.222	3540.4	4.74	669.2

294 Table S2, continued.

295

296

297

298

299

300

a	R_H	$\langle T \rangle$ (K)	dT_{neg} (K)	dT_{pos} (K)	$k_{200\text{km}}$ ($\text{Wm}^{-1}\text{K}^{-1}$)	$\langle T_{\text{slab}} \rangle$ (K)	V_{slab}	$\langle T_{\text{piles}} \rangle$ (K)	k_{piles} ($\text{Wm}^{-1}\text{K}^{-1}$)	h_{piles} (km)
0.80	1	2109.7	688.3	335.3	3.67	2261.0	0.155	3326.6	3.09	508.5
0.80	2	2080.0	670.1	394.7	3.69	2320.8	0.179	3409.0	3.01	601.2
0.80	3	2095.2	683.8	598.3	3.87	2242.3	0.218	3591.6	2.86	664.6
0.80	5	2049.5	778.8	608.5	3.83	2211.1	0.210	3668.6	2.83	690.2
0.80	10	1955.3	831.3	710.7	3.87	2179.5	0.256	3825.9	2.73	840.0
0.80	15	1906.4	830.1	747.2	3.84	2218.3	0.256	3859.1	2.71	735.5
0.80	20	1829.7	905.8	687.4	3.83	2179.7	0.263	3742.7	2.79	646.1
0.80	30	1786.8	859.5	735.2	3.94	2131.3	0.275	3774.7	2.76	877.0
0.80	50	1753.2	831.2	743.7	3.95	2094.1	0.238	3720.9	2.79	731.0
1.00	1	2158.9	748.6	344.1	2.31	2176.9	0.130	3351.4	1.90	481.4
1.00	2	2153.8	750.7	593.2	2.44	2199.4	0.196	3632.3	1.73	643.9
1.00	10	2032.4	761.7	874.1	2.57	2153.5	0.241	4122.7	1.52	1386.0
1.00	15	1956.0	815.6	793.4	2.51	2144.4	0.254	4004.9	1.57	1480.3
1.00	20	1913.7	764.5	956.9	2.68	2115.0	0.291	4082.6	1.50	1654.8
1.00	30	1885.8	788.2	897.0	2.69	2010.6	0.249	3826.9	1.66	1209.9
1.00	50	1820.4	672.5	1037.0	2.81	1949.8	0.204	4053.9	1.53	1284.9
<i>Purely thermal case</i>										
0.50	-	2269.6	299.4	317.3	8.71	2349.2	0.092	-	-	-
<i>B = 0.15</i>										
0.50	10	2021.7	453.5	670.0	8.17	2296.7	0.147	3529.7	5.94	1094.9
<i>Post-perovskite case</i>										
0.50	10	2073.7	299.0	289.9	7.36	3075.4	0.148	3689.9	5.88	817.9

302 Table S2, continued.

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

a	R_H	$\langle \Phi \rangle$ (mW m $^{-2}$)	Φ_{\min} (mW m $^{-2}$)	Φ_{\max} (mW m $^{-2}$)	$\delta\Phi$	S_{neg}	$\langle \Phi_{\text{neg}} \rangle$ (mW m $^{-2}$)	P_{neg} (TW)	S_{sub}	$\langle \Phi_{\text{sub}} \rangle$ (mW m $^{-2}$)
0.00	1	139.4	24.5	514.1	1.76	-	-	-	0.549	42.1
0.00	10	137.6	10.6	461.3	1.64	-	-	-	0.491	26.4
0.00	15	121.5	8.3	387.6	1.56	-	-	-	0.455	29.6
0.00	30	150.1	4.8	509.8	1.67	-	-	-	0.459	24.5
0.00	50	131.3	18.1	489.2	1.80	-	-	-	0.487	39.7
0.10	1	113.8	19.4	407.0	1.70	-	-	-	0.566	35.4
0.10	10	122.3	6.0	456.9	1.85	-	-	-	0.540	19.7
0.10	15	127.4	3.1	453.4	1.77	-	-	-	0.534	18.8
0.10	20	115.1	5.0	425.8	1.83	-	-	-	0.563	21.3
0.10	30	112.9	3.6	406.5	1.79	-	-	-	0.522	22.5
0.10	50	115.6	7.8	443.5	1.89	-	-	-	0.512	28.7
0.15	10	110.8	0.1	394.2	1.78	-	-	-	0.522	16.6
0.15	15	104.1	0.5	378.2	1.81	-	-	-	0.571	18.7
0.15	20	111.2	-4.0	382.0	1.74	0.093	-2.5	-0.038	0.526	15.5
0.15	30	112.7	-3.2	375.7	1.68	0.053	-2.2	-0.022	0.535	22.1
0.15	40	114.8	2.8	409.2	1.77	-	-	-	0.547	21.6
0.15	50	111.2	6.3	370.8	1.64	-	-	-	0.511	26.4
0.20	1	102.4	15.7	378.4	1.77	-	-	-	0.576	28.6
0.20	5	82.6	10.5	308.7	1.81	-	-	-	0.605	26.5
0.20	10	97.9	0.5	372.3	1.90	-	-	-	0.556	15.6
0.20	15	99.6	-6.5	375.0	1.92	0.093	-4.3	-0.062	0.534	14.9
0.20	20	104.6	-1.9	380.8	1.83	0.057	-1.1	-0.011	0.566	11.7
0.20	30	109.8	-1.0	390.7	1.79	0.030	-0.7	-0.006	0.553	12.3
0.20	40	103.4	-1.6	363.3	1.76	0.034	-1.1	-0.007	0.536	17.9
0.20	50	93.5	4.5	342.2	1.81	-	-	-	0.593	24.7
0.30	1	66.6	10.9	252.2	1.81	-	-	-	0.661	30.3
0.30	5	84.7	5.8	313.9	1.82	-	-	-	0.603	15.6
0.30	10	84.0	-2.8	339.5	2.04	0.13166	-1.5	-0.030	0.581	9.0
0.30	15	85.5	-11.6	320.6	1.94	0.21128	-5.6	-0.180	0.550	7.0
0.30	20	75.5	-7.8	314.8	2.14	0.18407	-3.9	-0.108	0.586	12.1
0.30	30	78.8	-5.8	294.3	1.91	0.14314	-3.2	-0.069	0.589	16.3
0.30	40	92.6	-3.4	324.4	1.77	0.16247	-1.8	-0.045	0.557	8.8
0.30	50	93.8	-5.6	315.1	1.71	0.12405	-3.4	-0.066	0.533	9.9
0.30	80	95.5	-2.4	320.5	1.62	0.10017	-1.5	-0.022	0.472	11.4
0.30	100	93.0	5.5	314.0	1.66	-	-	-	0.536	18.2

318 **Table S3.** CMB heat flux parameters over the last 2 Gyr of the simulations. Listed parameters are the
319 average, minimum and maximum heat flux CMB, $\langle \Phi \rangle$, Φ_{\min} and Φ_{\max} , the heat flux heterogeneity, $\delta\Phi$,
320 the fraction of CMB area with negative heat flux, S_{neg} (dash symbol indicate that patches of negative
321 heat flux are not observed), the average negative heat flux and total power in negative patches, $\langle \Phi_{\text{neg}} \rangle$
322 and P_{neg} , CMB area fraction with subadiabatic heat flux (assuming $\Phi_{\text{adia}}^{\text{core}} = 70$ mW/m 2), S_{sub} , and the
323 average heat flux in ‘subadiabtic’ regions, $\langle \Phi_{\text{sub}} \rangle$.

324

a	R_H	$\langle \Phi \rangle$ (mW m $^{-2}$)	Φ_{\min} (mW m $^{-2}$)	Φ_{\max} (mW m $^{-2}$)	$\delta\Phi$	S_{neg}	$\langle \Phi_{\text{neg}} \rangle$ (mW m $^{-2}$)	P_{neg} (TW)	S_{sub}	$\langle \Phi_{\text{sub}} \rangle$ (mW m $^{-2}$)
0.35	3	81.9	3.8	305.3	1.84	-	-	-	0.591	15.3
0.35	4	75.8	1.2	293.3	1.93	-	-	-	0.603	16.2
0.35	5	73.6	-1.7	285.1	1.95	0.061	-1.1	-0.011	0.591	13.1
0.35	10	77.2	-5.2	315.8	2.08	0.147	-2.6	-0.060	0.597	7.5
0.40	1	68.7	11.5	268.4	1.87	-	-	-	0.665	21.2
0.40	3	70.3	4.2	291.6	2.04	-	-	-	0.634	15.2
0.40	4	68.5	1.4	276.3	2.01	-	-	-	0.638	13.7
0.40	5	66.2	-1.5	269.3	2.05	0.050	-0.9	-0.008	0.641	13.2
0.40	10	69.3	-15.9	286.1	2.19	0.223	-9.0	-0.301	0.587	8.3
0.40	15	72.3	-15.5	278.4	2.03	0.324	-7.7	-0.380	0.542	5.3
0.40	20	68.0	-17.3	271.1	2.12	0.222	-9.2	-0.306	0.588	6.9
0.40	30	66.6	-13.3	248.3	1.97	0.275	-7.2	-0.300	0.561	6.3
0.40	50	80.1	-9.3	287.3	1.85	0.249	-4.8	-0.180	0.563	7.4
0.50	1	57.6	8.1	229.2	1.92	-	-	-	0.687	18.0
0.50	2	46.8	5.9	226.1	2.36	-	-	-	0.768	19.4
0.50	3	55.3	3.1	232.6	2.07	-	-	-	0.677	13.2
0.50	4	51.9	-2.7	226.7	2.21	0.091	-1.7	-0.024	0.696	13.6
0.50	5	59.5	-6.5	238.3	2.06	0.154	-3.9	-0.092	0.644	8.5
0.50	10	57.7	-16.0	248.4	2.29	0.313	-7.4	-0.352	0.621	4.6
0.50	15	58.1	-16.1	227.5	2.10	0.395	-8.2	-0.494	0.585	1.7
0.50	20	61.4	-14.1	241.7	2.08	0.416	-7.7	-0.485	0.612	1.1
0.50	30	57.0	-21.7	215.9	2.09	0.281	-9.8	-0.418	0.611	8.7
0.50	50	62.6	-15.9	227.7	1.95	0.286	-8.0	-0.349	0.561	5.9
0.50	100	62.5	-3.4	214.0	1.74	0.112	-2.2	-0.039	0.622	14.5
0.60	1	44.9	4.2	182.3	2.00	-	-	-	0.729	17.7
0.60	2	48.2	0.4	213.2	2.20	-	-	-	0.694	13.9
0.60	3	38.5	-2.2	180.1	2.38	0.095	-14	-0.023	0.765	14.8
0.60	4	49.7	-6.0	216.1	2.24	0.146	-3.9	-0.086	0.668	9.1
0.60	5	47.5	-5.7	213.6	2.31	0.245	-3.3	-0.124	0.674	7.6
0.60	10	49.2	-15.6	207.6	2.27	0.410	-7.5	-0.465	0.623	3.9
0.60	15	47.6	-19.4	207.0	2.38	0.449	-9.4	-0.642	0.634	1.6
0.60	20	49.5	-19.3	214.2	2.37	0.424	-9.2	-0.595	0.620	1.8
0.60	30	40.7	-21.6	189.7	2.60	0.380	-9.3	-0.537	0.704	5.6
0.60	50	49.4	-15.2	192.9	2.11	0.406	-7.5	-0.461	0.618	4.1

325 **Table S3, continued.**

326

327

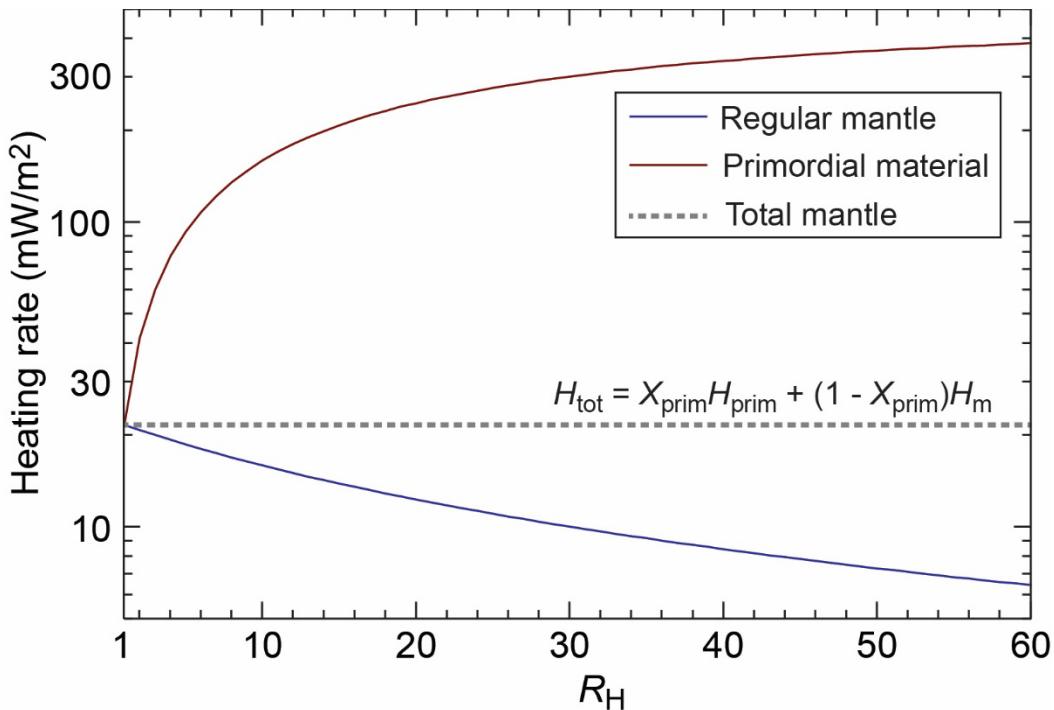
328

329

330

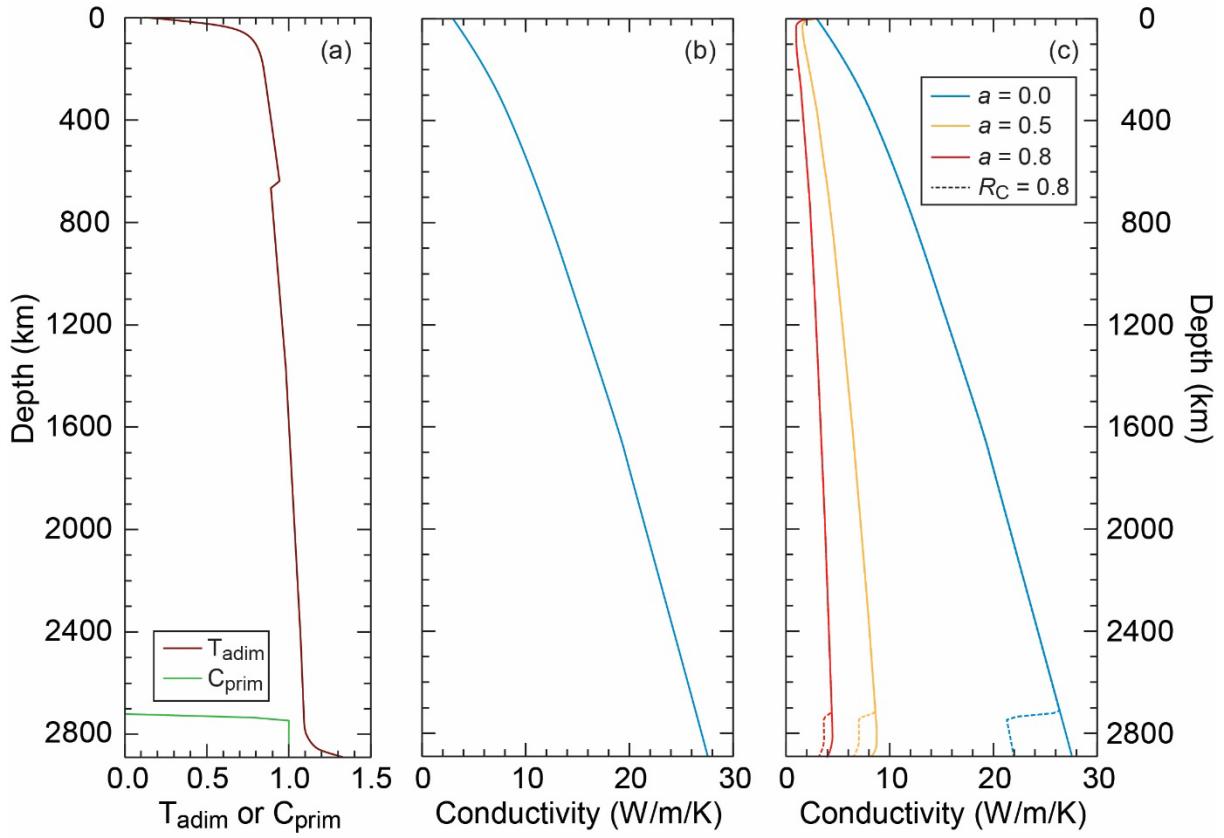
331

332


a	R_H	$\langle \Phi \rangle$ (mW m $^{-2}$)	Φ_{\min} (mW m $^{-2}$)	Φ_{\max} (mW m $^{-2}$)	$\delta\Phi$	S_{neg}	$\langle \Phi_{\text{neg}} \rangle$ (mW m $^{-2}$)	P_{neg} (TW)	S_{sub}	$\langle \Phi_{\text{sub}} \rangle$ (mW m $^{-2}$)
0.80	1	29.9	2.9	145.7	2.39	-	-	-	0.823	14.1
0.80	2	28.5	-2.1	133.8	2.38	0.146	-1.4	-0.032	0.826	13.8
0.80	3	35.4	-8.2	147.3	2.21	0.318	-5.2	-0.250	0.735	12.6
0.80	5	33.3	-13.3	154.1	2.52	0.393	-6.7	-0.399	0.742	8.5
0.80	10	33.4	-23.1	151.6	2.62	0.468	-10.0	-0.714	0.714	5.2
0.80	15	30.5	-24.6	139.1	2.70	0.465	-12.2	-0.865	0.733	5.1
0.80	20	30.7	-19.6	144.7	2.70	0.509	-10.9	-0.844	0.724	2.3
0.80	30	34.7	-20.4	148.0	2.44	0.439	-10.7	-0.715	0.695	3.8
0.80	50	33.5	-20.0	144.9	2.46	0.450	-10.1	-0.691	0.732	8.2
1.00	1	20.3	0.8	117.3	2.90	-	-	-	0.904	12.8
1.00	2	23.9	-5.8	114.8	2.53	0.352	-3.8	-0.203	0.891	16.0
1.00	10	26.0	-20.1	114.1	2.62	0.378	-9.8	-0.567	0.845	14.8
1.00	15	20.5	-17.8	106.4	3.05	0.439	-9.9	-0.664	0.885	12.1
1.00	20	27.7	-17.3	103.2	2.19	0.394	-10.6	-0.638	0.847	17.5
1.00	30	27.9	-18.6	122.5	2.55	0.412	-9.3	-0.583	0.835	15.8
1.00	50	30.5	-17.3	114.8	2.17	0.322	-9.9	-0.489	0.877	22.2
<i>Purely thermal case</i>										
0.50	-	100.0	4.8	258.3	1.27	-	-	-	0.276	44.0
<i>B = 0.15</i>										
0.50	10	77.2	-18.7	233.4	1.63	0.211	-11.5	-0.369	0.425	13.1
<i>Post-perovskite case</i>										
0.50	10	76.8	-23.0	284.85	2.01	0.394	-12.1	-0.722	0.478	-4.3

333 **Table S3, continued.**

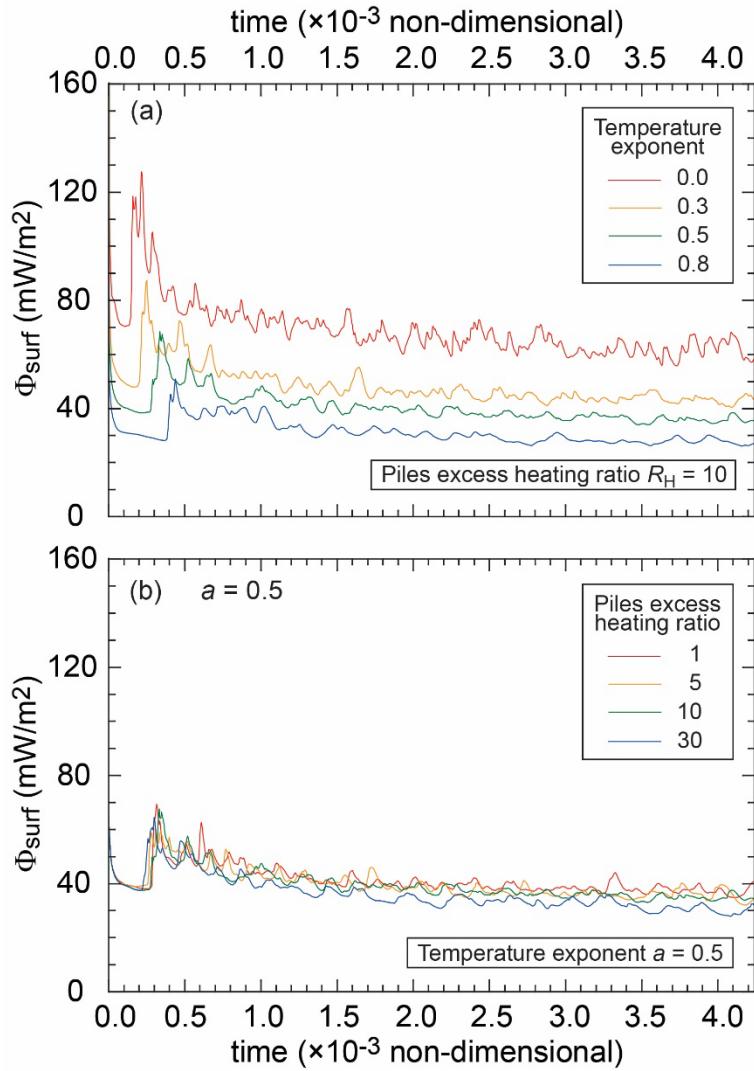
334


335

336
337
338

339
340 **Figure S1.** Internal heating rate in the regular mantle, H_m , and in the primordial material, H_{prim} , as
341 a function of the excess heating ratio in primordial material, R_H , and for a total heating rate H_{tot}
342 equivalent to surface heat flux of 21.6 mW/m² and a volume fraction of primordial material X_{prim}
343 equal to 4 %.

344
345

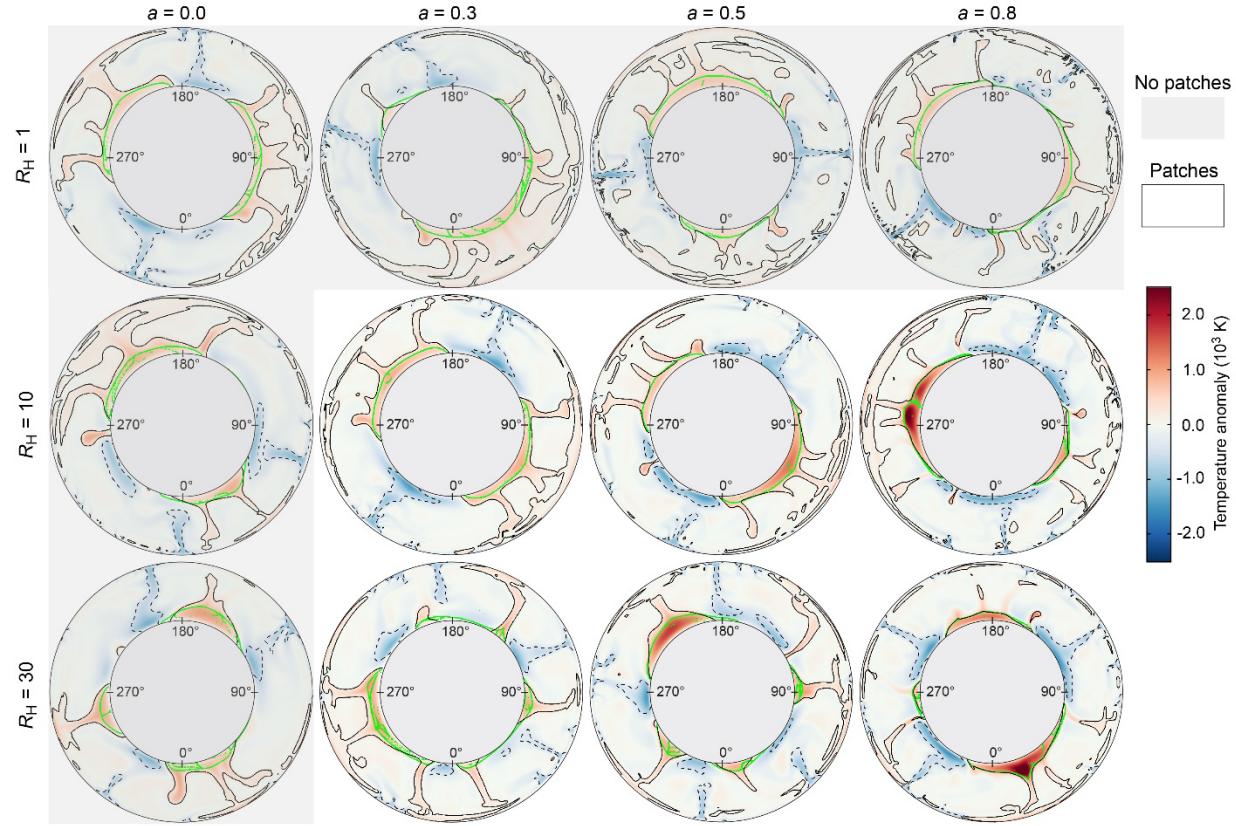


346

347 **Figure S2.** Depth, temperature and compositional dependence of thermal conductivity. Panel (b)
 348 shows the intrinsic depth dependence, based on the parameterization of Deschamps and Hsieh
 349 (2019). Panel (c) shows the temperature dependence (plain lines) and the combined thermal and
 350 compositional dependences (dashed lines) corresponding to the radial models of temperature and
 351 composition plotted in panel (a) and for 3 values of the temperature exponent a and (in the case of
 352 compositional dependence) $R_C = 0.8$ (equivalent to a 20 % reduction of conductivity with
 353 composition).

354

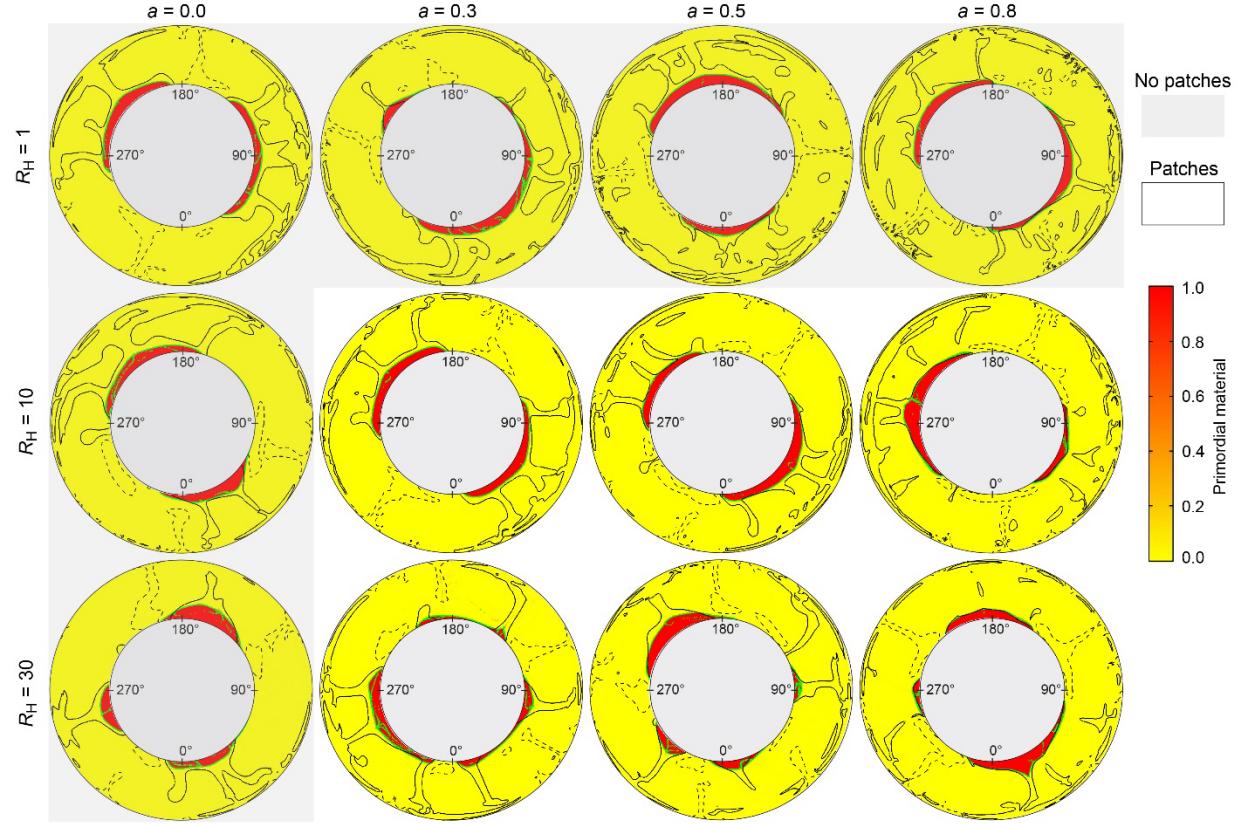
355



356

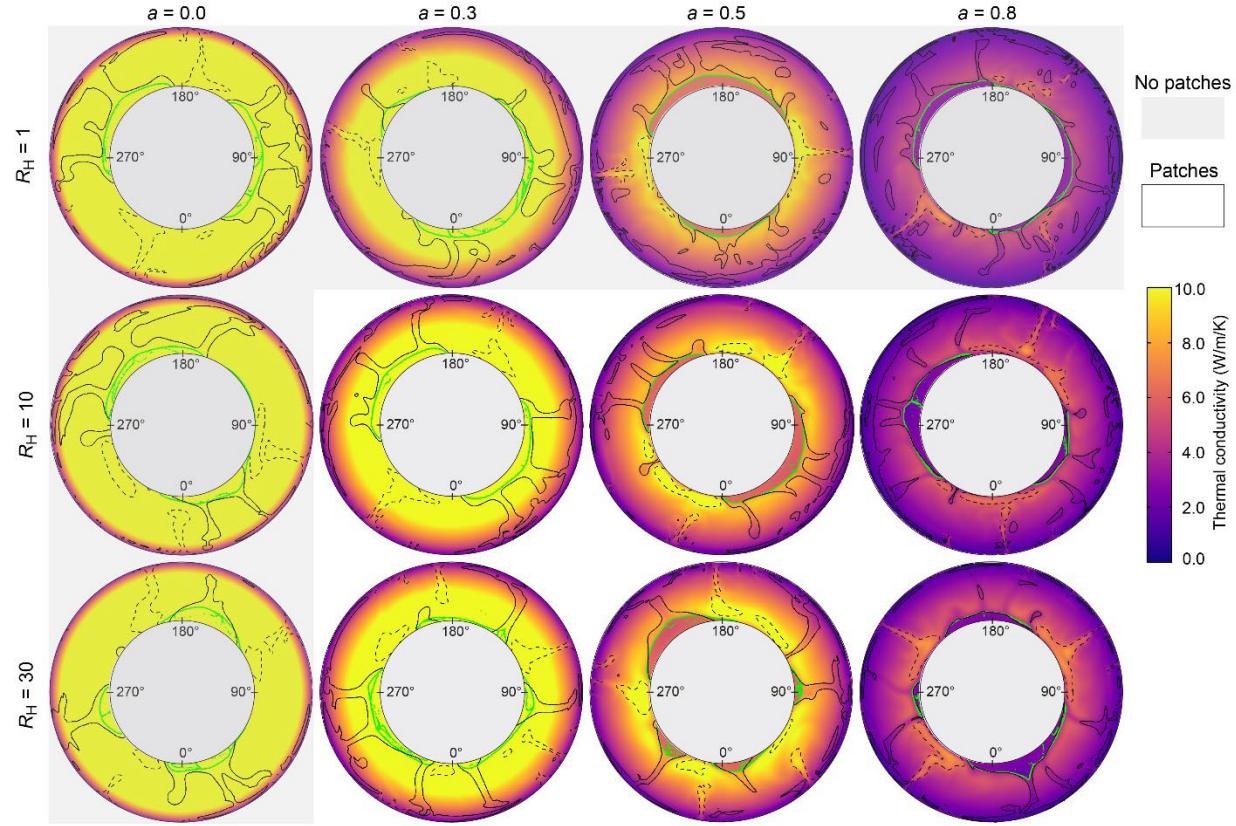
357 **Figure S3.** Evolution of the surface heat flux for selected simulations with different temperature-
 358 dependence of thermal conductivity, controlled with the temperature exponent a , and excess
 359 heating ratio in piles of dense material, R_H . In panel (A) R_H is fixed to 10 and 4 values of a are
 360 considered (see legend). In panel (B), a is fixed to 0.5 and 4 values of R_H are considered (see
 361 legend).

362


363

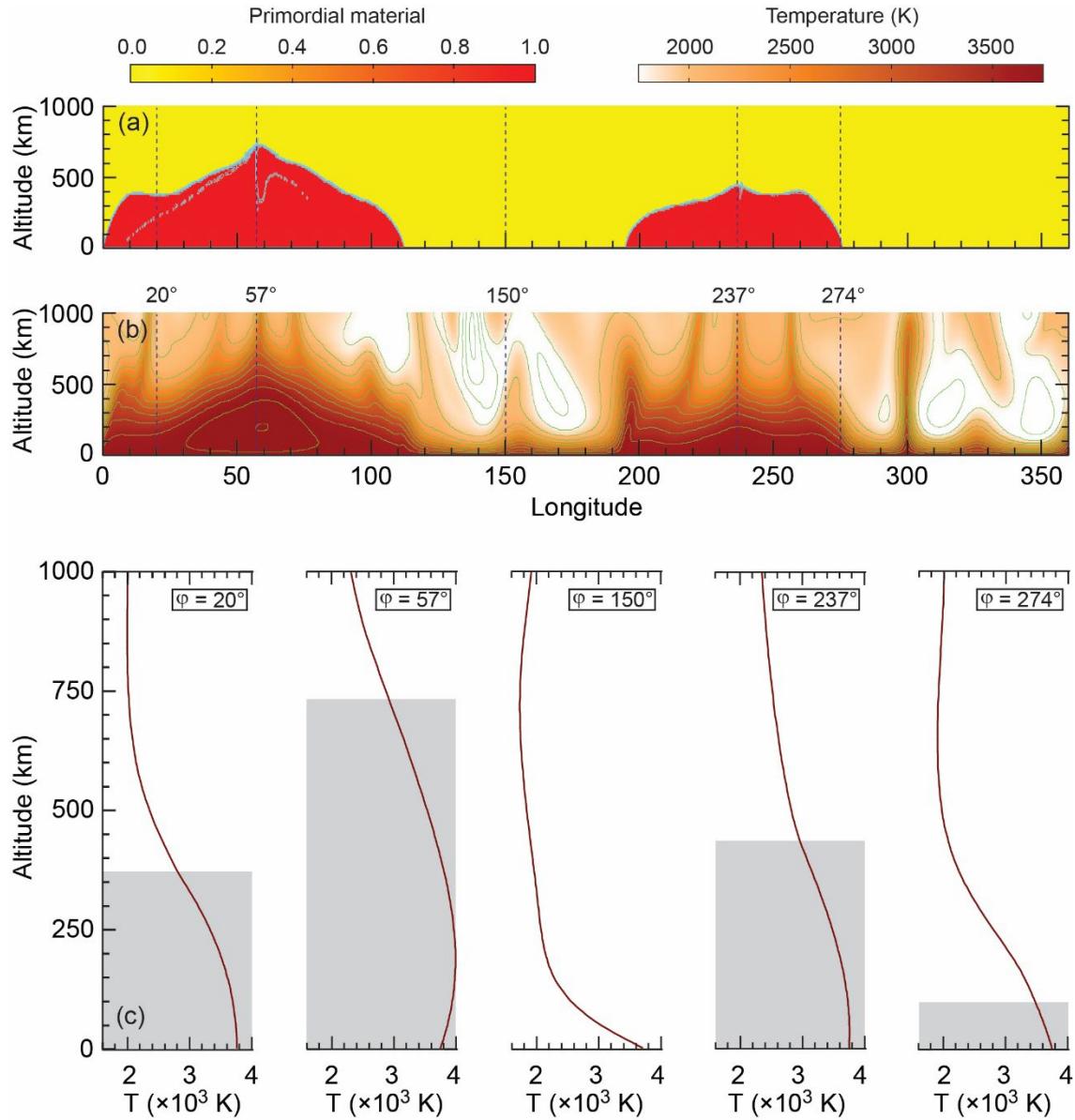
364

365 **Figure S4.** Snapshots of the residual temperature for selected simulations with different
 366 temperature-dependence of thermal conductivity, controlled with the temperature exponent a , and
 367 excess heating ratio in piles of dense material, R_H . The plain and dashed black contours represent
 368 the boundaries of the plumes and downwelling (as defined in the methods), respectively, and the
 369 green contours show the roof of the piles. The gray shaded bands indicate the cases for which we
 370 observe patches of negative heat flux at the CMB. Snapshots are taken at the end of each
 371 simulation.


372

373

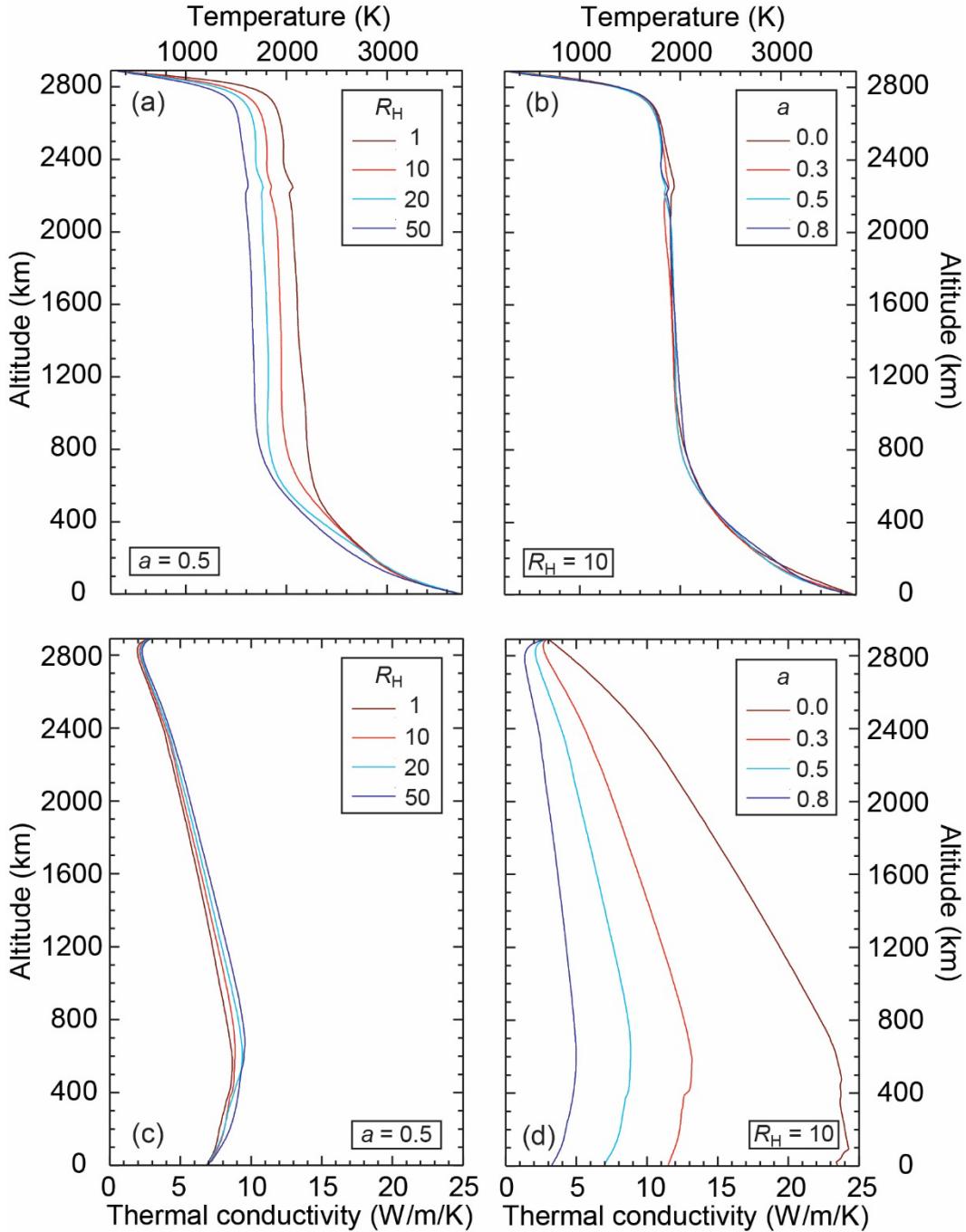
374 **Figure S5.** Snapshots of the composition (fraction of primordial material) for selected simulations
 375 with different temperature-dependence of thermal conductivity, controlled with the temperature
 376 exponent a , and excess heating ratio in piles of dense material, R_H . The plain and dashed black
 377 contours represent the boundaries of the plumes and downwelling (as defined methods),
 378 respectively, and the green contours show the roof of the piles. The gray shaded bands indicate the
 379 cases for which we observe patches of negative heat flux at the CMB. Snapshots are taken at the
 380 end of each simulation.


381

382

383 **Figure S6.** Snapshots of the residual temperature for selected simulations with different
 384 temperature-dependence of thermal conductivity, controlled with the temperature exponent a , and
 385 excess heating ratio in piles of dense material, R_H . The plain and dashed black contours represent
 386 the boundaries of the plumes and downwelling (as defined in methods), respectively, and the green
 387 contours show the roof of the piles. The gray shaded bands indicate the cases for which we observe
 388 patches of negative heat flux at the CMB. Snapshots are taken at the end of each simulation.

389

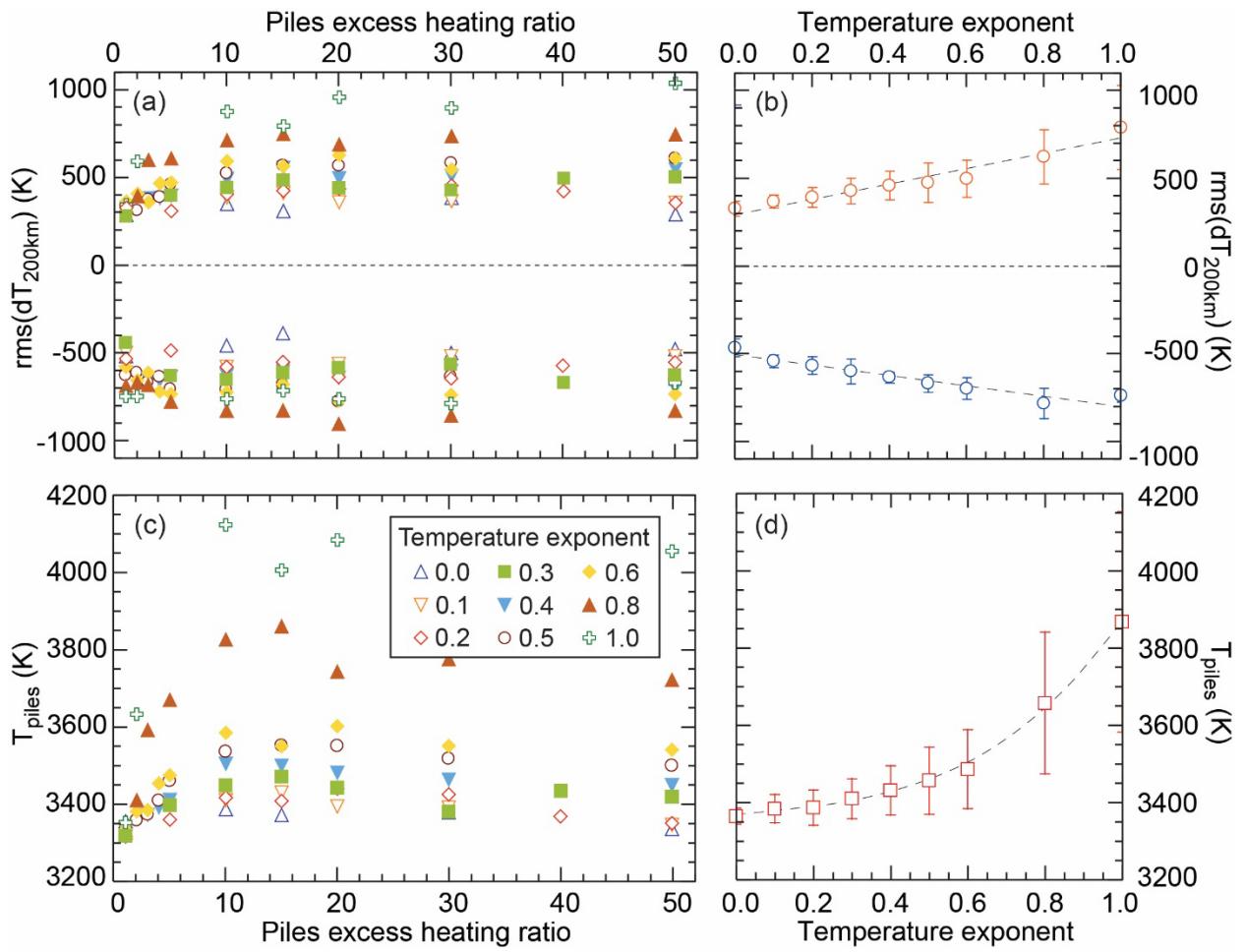

390

391 **Figure S7.** Local radial profiles of the temperature at the bottom of the system. (a) Fraction of
 392 primordial material and (b) temperature in the bottom 1000 km. Fields are projected on a 2D-
 393 Cartesian grid. In panel (b) the cyan contours indicate composition isolines with an interval of 0.1,
 394 and the result from long-term folding of ambient mantle material into piles by the lateral movement
 395 caused by downwellings. The (c) Temperature profiles at 5 different locations indicated on plots
 396 (a) and (b), including 4 locations sampling the piles of dense material, whose radial extension is
 397 here indicated by the grey areas. Note that the temperature profiles are conductive throughout the
 398 piles' thickness, implying that piles are not animated by self-convection.

399

400

401


402

403 **Figure S8.** Horizontally average profiles of temperature (a and b) and thermal conductivity (c and
 404 d) for selected cases with different thermal conductivity temperature-dependence, controlled with
 405 the temperature exponent a , and excess heating ratio in piles of dense material, R_H . In panels (a)
 406 and (c), a is fixed to 0.5 and 4 values of R_H are considered (legend). In panels (b) and (d), R_H is
 407 fixed to 10 and 4 values of a are considered (legend). All profiles correspond for snapshots taken
 408 at the end of each simulation.

409

410

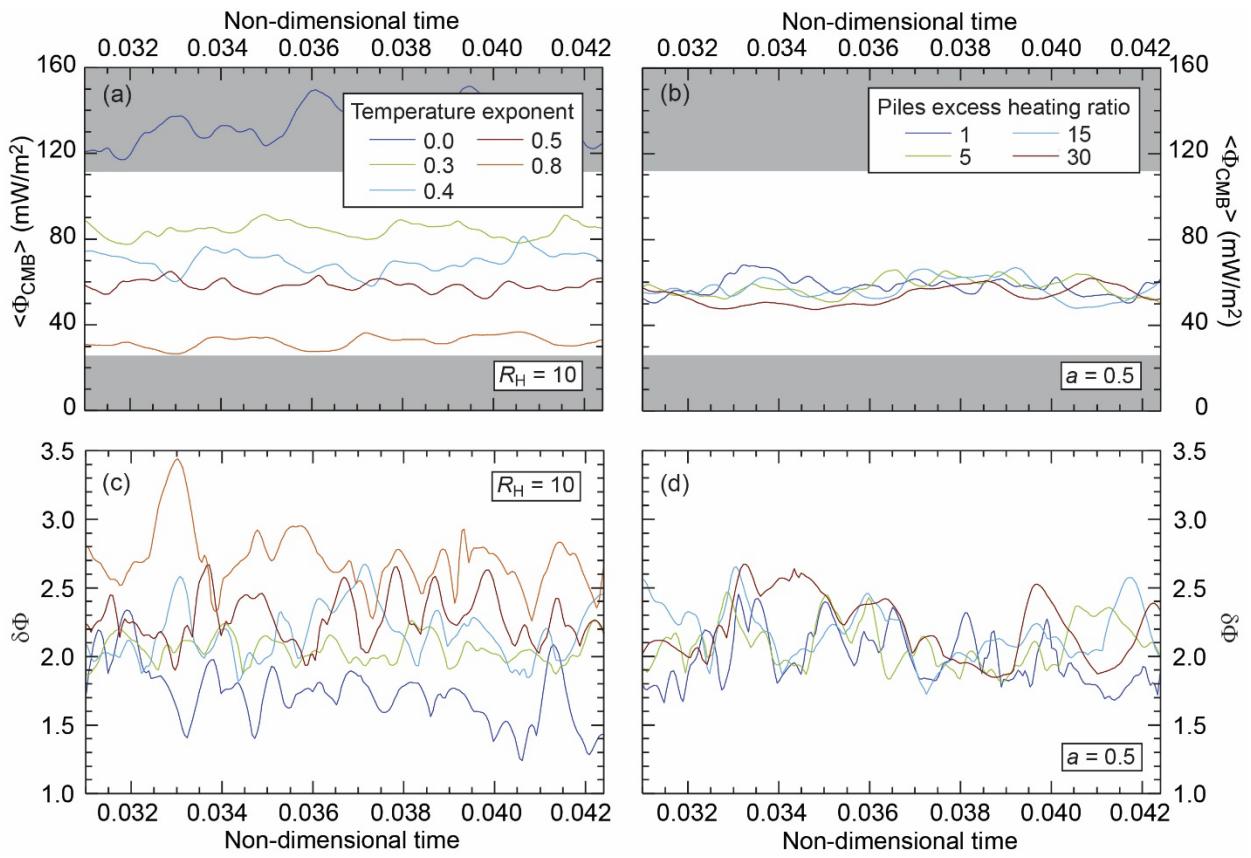
411

412

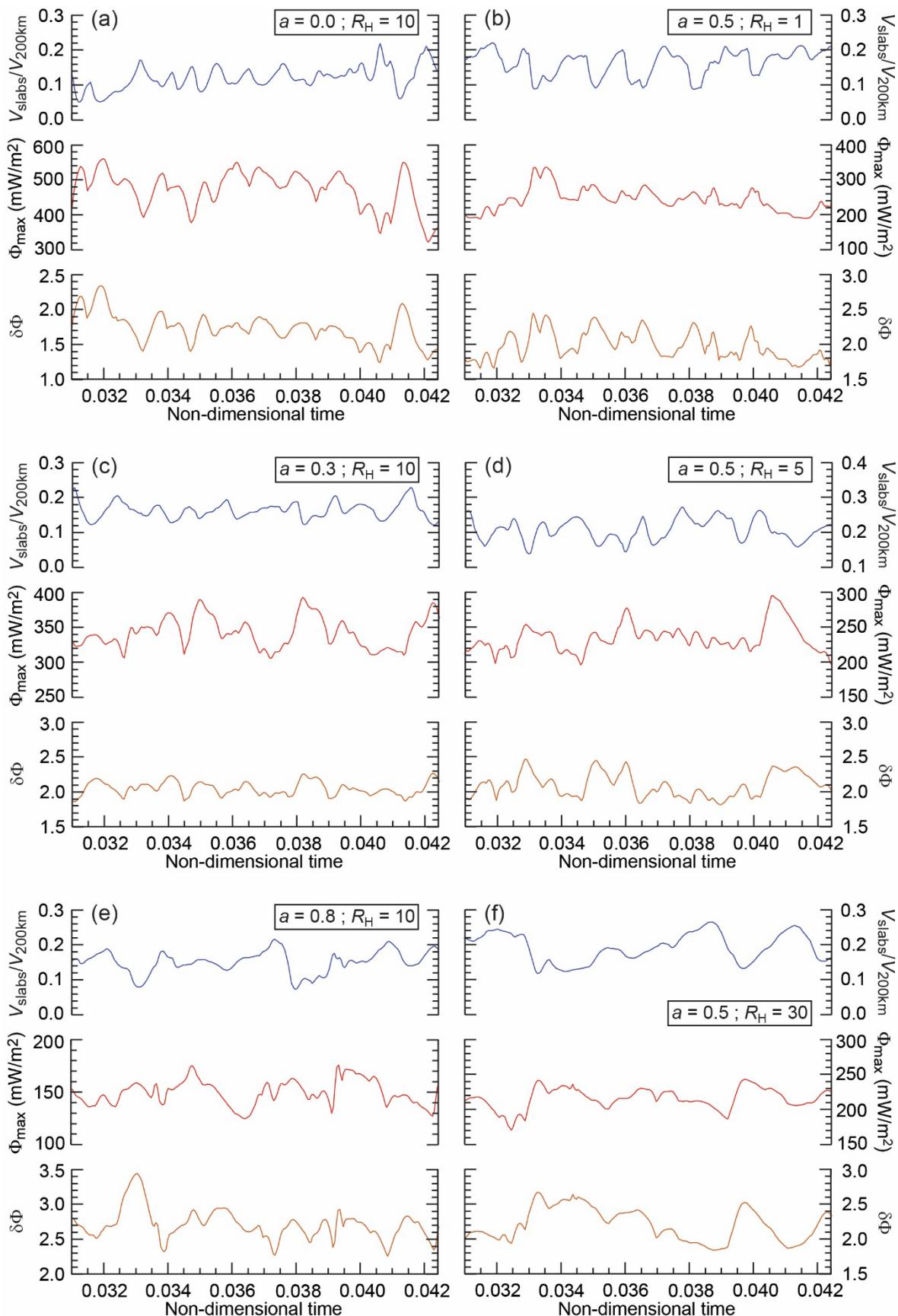
413 **Figure S9.** Core-mantle boundary (CMB) temperature statistics averaged over the last 2 Gyr of
 414 simulations. (a and b) Root mean square of the positive and negative temperature anomalies in the
 415 lowermost 200 km (for convenience, the rms of negative anomalies are multiplied by a minus
 416 sign). (c and d) Averages temperature of thermo-chemical piles. Panels (a) and (c) plot data as a
 417 function the piles excess heating ratio, R_H , and for several values of the temperature exponent of
 418 thermal conductivity, a , (color code). In panels (b) and (d), data are further averaged out over all
 419 the values of R_H , the error bars indicating one standard deviation, and represented as a function of
 420 the temperature exponent a .

421

422


423

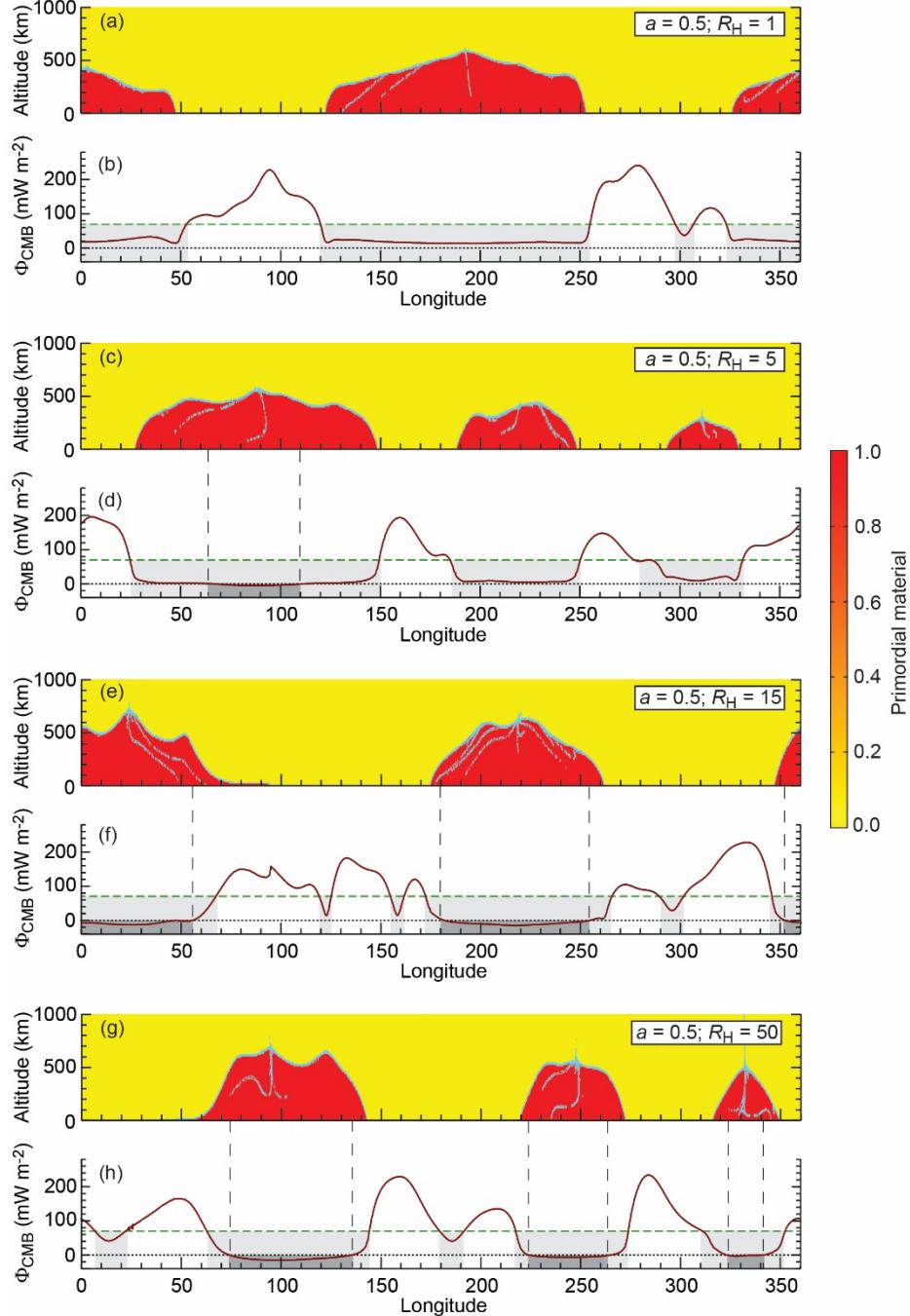
424


425

426

427

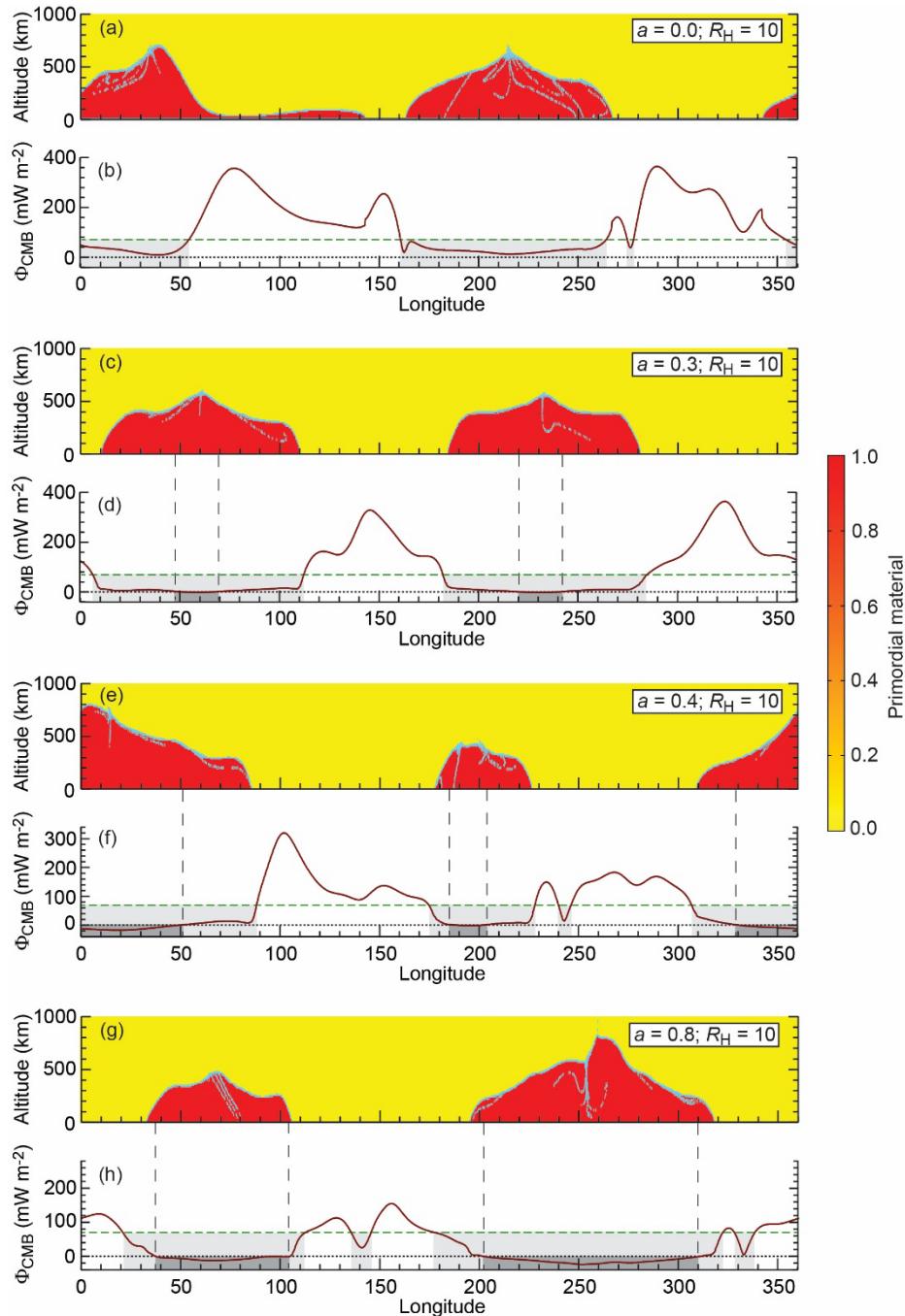
430 **Figure S10.** Time variations in (a and b) average CMB heat flux, $\langle \Phi_{CMB} \rangle$, and (c and d) heat flux
 431 heterogeneity $\delta\Phi$ (methods for definition). In panels (a) and (c) the piles excess heating ratio, R_H ,
 432 is equal to 10 and several values of the temperature exponents of thermal conductivity, a (color
 433 code), are shown, and in panels (b) and (d) a is equal to 0.5 and different values of R_H (color code)
 434 are shown. The grey shaded areas in panels (a) and (b) indicate the heat flux values outside the
 435 estimate of core power from ref. 36. The time axis is graduated in non-dimensional units, the whole
 436 duration being equivalent to 4 Gyr.


441 **Figure S11.** Time variations in slab volume fraction in the lowermost 200 km (top row of each
442 panel), maximum CMB heat flux (middle row of each panel), and heat flux heterogeneity (bottom
443 row of each panel) for different combinations of piles excess heating ratio, R_H , and temperature
444 exponents of thermal conductivity, α . The time axis is graduated in non-dimensional units, the
445 whole duration being equivalent to 4 Gyr.

446

447

448

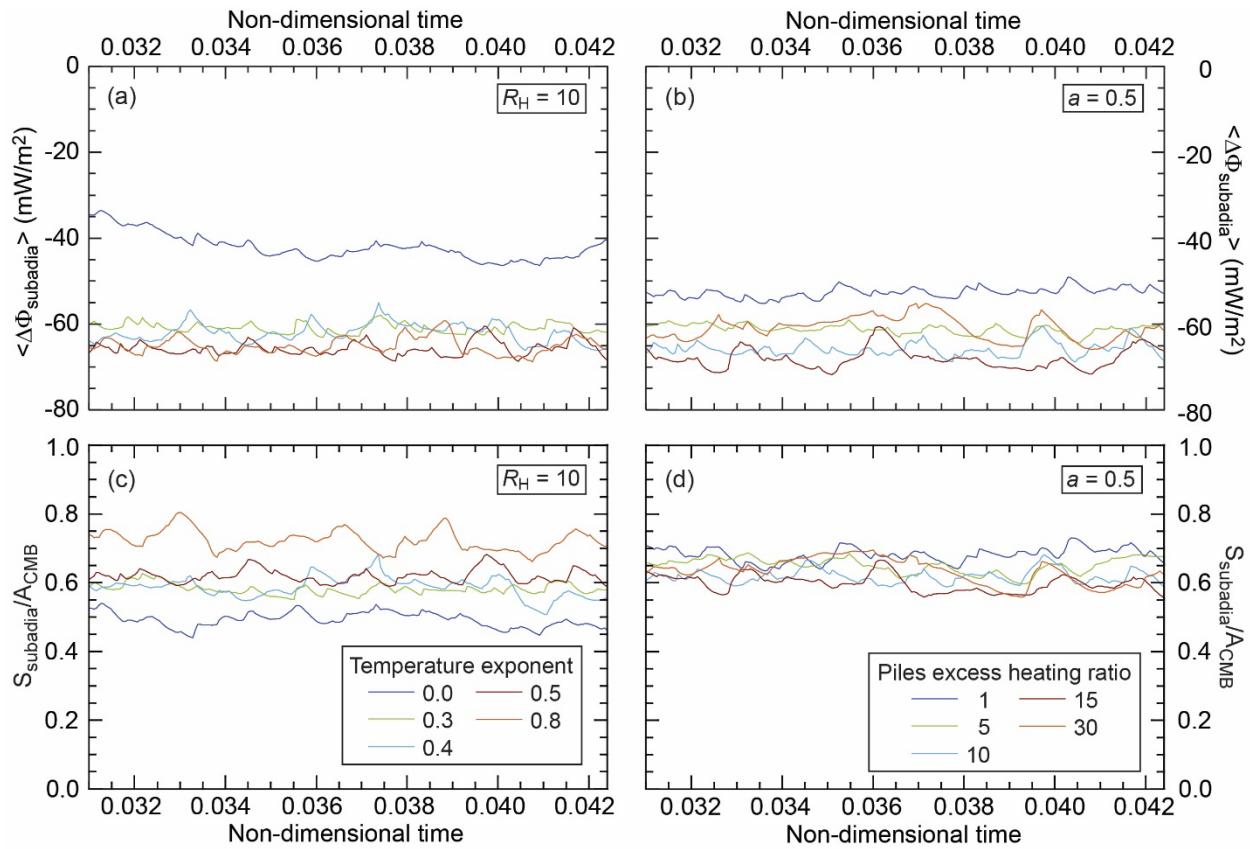

449

450

451 **Figure S12.** Fraction of dense primordial material, C_{prim} (color code), in the bottom 1000 km,
 452 showing piles of dense material, and core-mantle boundary heat flux as a function of longitude for
 453 temperature exponent $a = 0.5$ and several values of the excess piles heating ratio, R_H . Data were
 454 calculated on a spherical annulus and projected on a 2D-Cartesian grid. In panels showing C_{prim}
 455 the cyan contours indicate the composition isolines with an interval of 0.1. In panels showing the
 456 CMB heat flux, the green dashed line indicates the core adiabatic heat flux, $\Phi_{\text{adia}}^{\text{core}}$, assuming an
 457 adiabatic gradient of 1 K/km and a core conductivity of $70 \text{ W m}^{-1} \text{ K}^{-1}$, and the light and dark grey
 458 areas show the lateral extensions of regions with heat flux lower than $\Phi_{\text{adia}}^{\text{core}}$ and with negative heat
 459 flux, respectively.

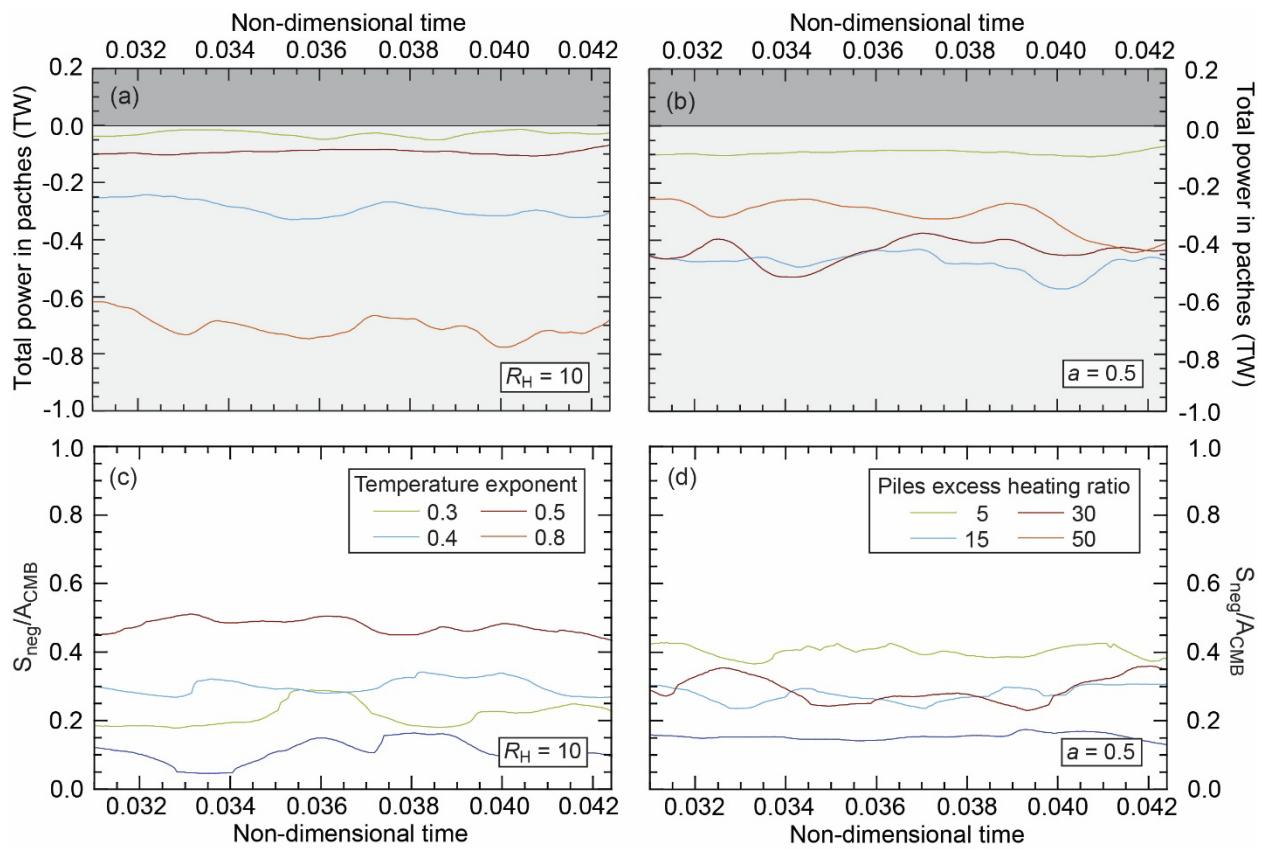
460

461

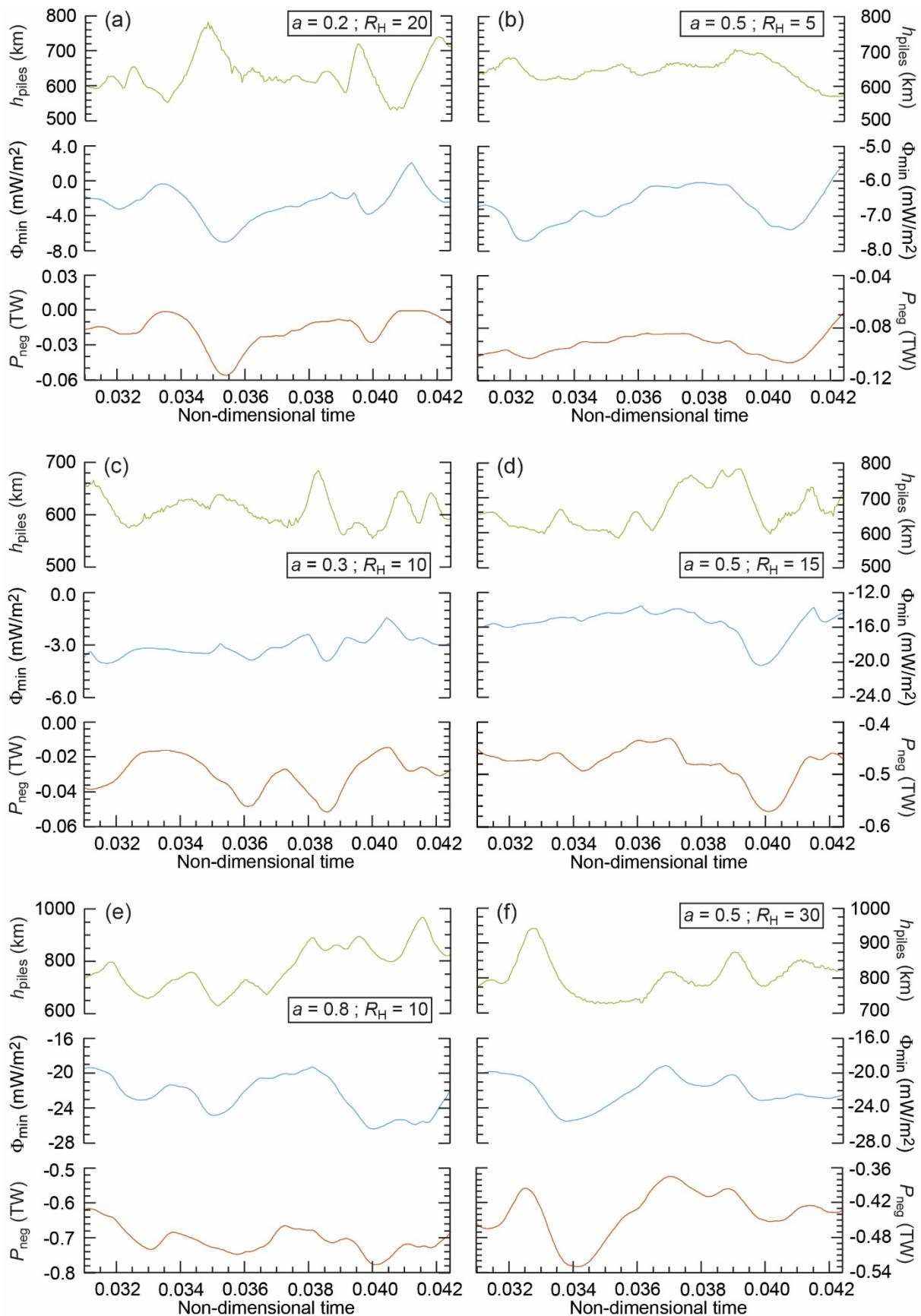

462 **Figure S13.** Same as Figure S12, but for an excess piles heating ratio $R_H = 10$ and several values
 463 of the temperature exponent, a . Note that in panels showing the CMB heat flux, the scale is
 464 different for each plot, as lower values of R_H lead to higher heat flux.

465

466


467

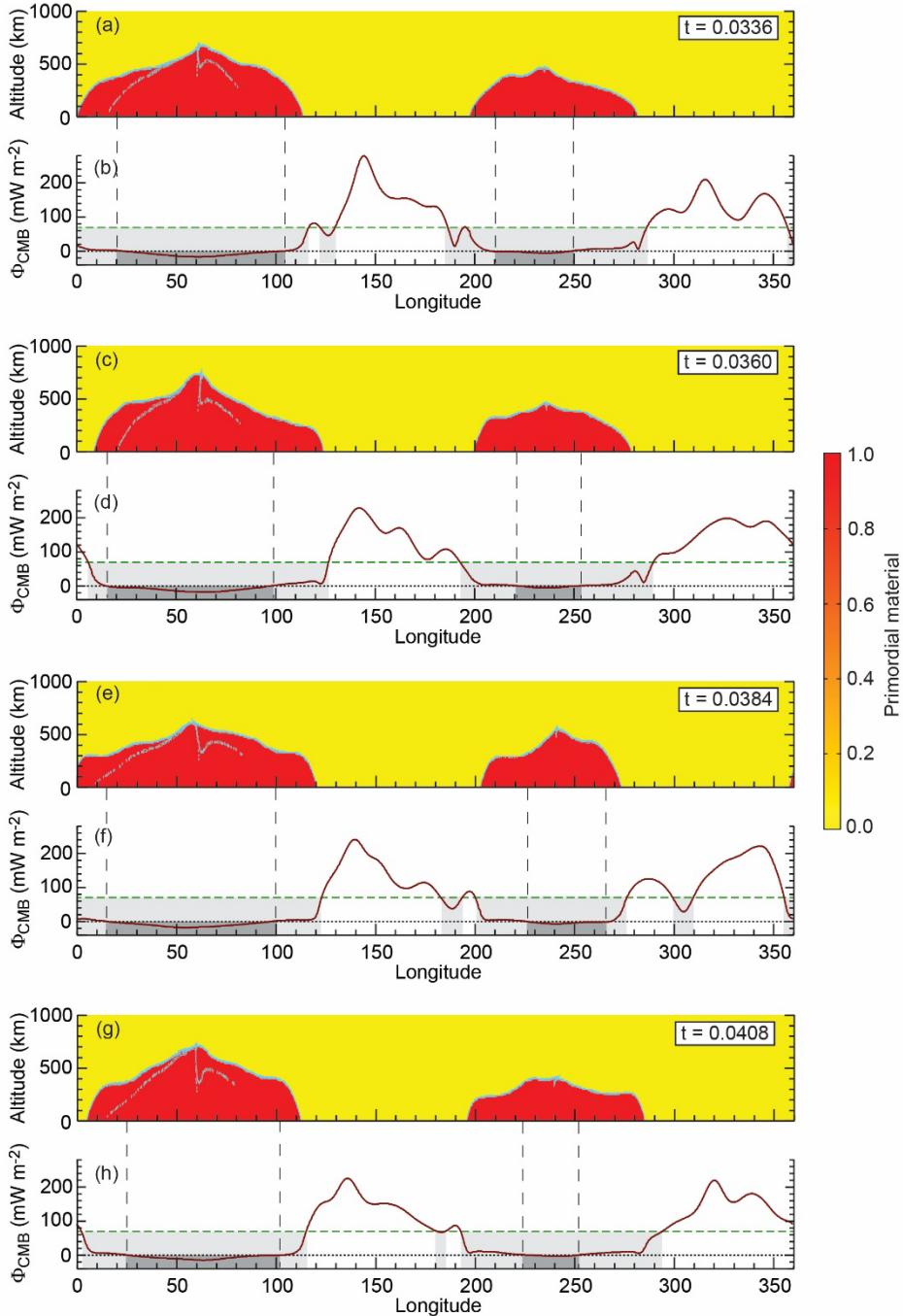
468
469



470

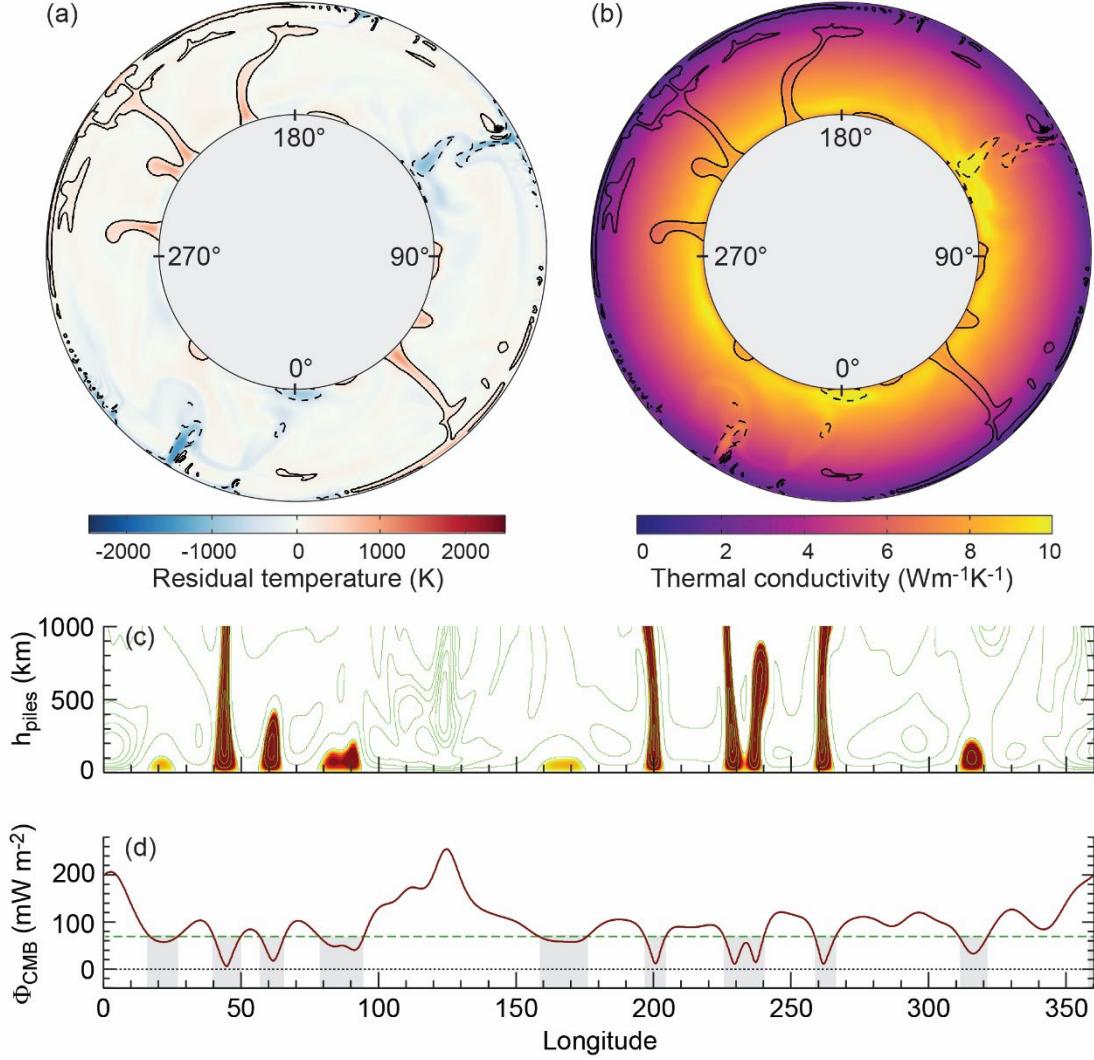
471 **Figure S14.** Time variations in (a and b) the average residual subadiabatic heat flux, $\langle \Delta\Phi_{\text{subadia}} \rangle$,
472 defined as the difference between the average heat flux in subadiabatic regions and the core
473 adiabatic heat flux, $\Phi_{\text{adia}}^{\text{core}}$ (here fixed to 70 mW/m^2), and (c and d) the surface fraction (with
474 respect to the CMB area) of the subadiabatic regions. In panels (a) and (c) the piles excess heating
475 ratio, R_H , is equal to 10 and several values of the temperature exponents of thermal conductivity,
476 a (color code), are shown, and in panels (b) and (d) a is equal to 0.5 and different values of R_H
477 (color code) are shown. The time axis is graduated in non-dimensional units, the whole duration
478 being equivalent to 4 Gyr.
479
480
481
482
483
484
485
486
487
488
489
490
491

494 **Figure S15.** Time variations in (a and b) the total power in patches of negative heat flux, P_{neg} , and
495 (c and d) the surface fraction (with respect to the CMB area) of the negative heat flux regions. In
496 panels (a) and (c) the piles excess heating ratio, R_H , is equal to 10 and several values of the
497 temperature exponents of thermal conductivity, α (color code), are shown, and in panels (b) and
498 (α is equal to 0.5 and different values of R_H (color code) are shown. The negative sign in panels
499 (a) and (b) is imposed by convention to indicate that heat flows from the mantle to the core. The
500 time axis is graduated in non-dimensional units, the whole duration being equivalent to 4 Gyr.
501
502



504 **Figure S16.** Time variations in piles culminating altitude (top row of each panel), minimum CMB
505 heat flux (middle row of each panel) and total power in patches of negative CMB heat flux (bottom
506 row of each panel) for different combinations of piles excess heating ratio, R_H , and temperature
507 exponents of thermal conductivity, a . The negative sign in the patches power plots is imposed by
508 convention to indicate that heat flows from the mantle to the core. The time axis is graduated in
509 non-dimensional units, the whole duration being equivalent to 4 Gyr.

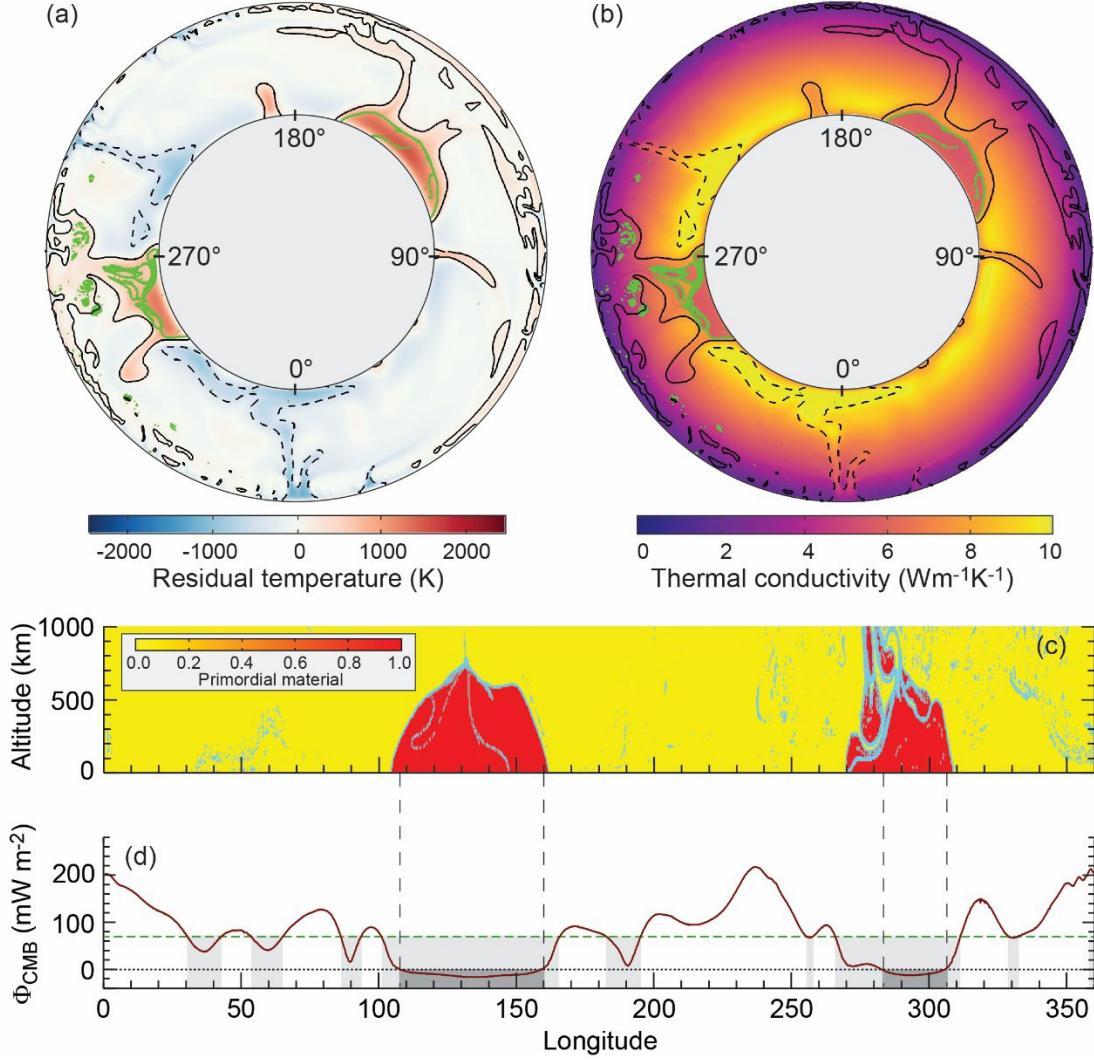
510


511

512

513

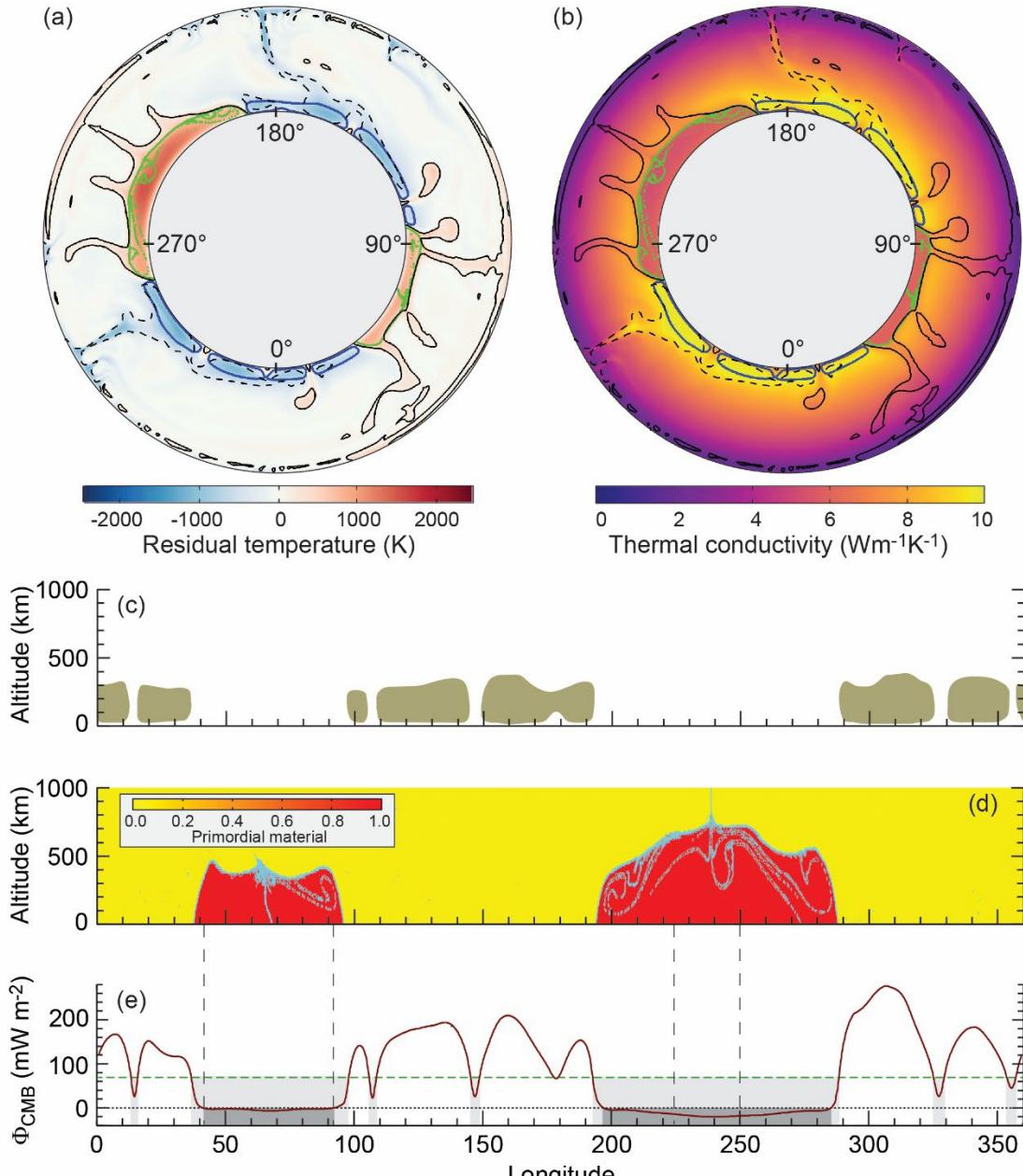
514 **Figure S17.** Time sequence of the fraction of dense primordial material, C_{prim} (color code), in the
 515 bottom 1000 km, and core-mantle boundary heat flux as a function of longitude for the case $a =$
 516 0.5 and $R_H = 10$. Data were calculated on a spherical annulus and projected on a 2D-Cartesian grid.
 517 In panels showing C_{prim} the cyan contours indicate the composition isolines with an interval of 0.1
 518 In panels showing the CMB heat flux, the green dashed line indicates the core adiabatic heat flux,
 519 $\Phi_{\text{adia}}^{\text{core}}$, assuming an adiabatic gradient of 1 K/km and a core conductivity of $70 \text{ W m}^{-1} \text{ K}^{-1}$, and the
 520 light and dark grey areas show the lateral extensions of regions with heat flux lower than $\Phi_{\text{adia}}^{\text{core}}$
 521 and with negative heat flux, respectively.
 522



523

524 **Figure S18.** Snapshot of a purely thermal simulation with thermal conductivity temperature
 525 exponent $a = 0.5$. (a) Residual temperature. (b) Thermal conductivity. (c) Residual temperature
 526 with respect to plumes temperature. (d) core-mantle boundary heat flux as a function of longitude.
 527 In panels (a) and (b) the plain and dashed black contours represent the boundaries of plumes and
 528 downwelling (as defined in supplementary material), respectively. In panel (c) the spherical
 529 annulus is projected on a 2D-Cartesian grid, and the green contours indicate temperature residuals
 530 isolines with an interval of 200 K. The color scale goes from white ($dT_{plume} = 0$ K) to dark red
 531 ($dT_{plume} = 100$ K), and is chosen such that plumes' exterior appear as white and plumes interior as
 532 dark red. In panel (d), the green dashed line indicates the core adiabatic heat flux, Φ_{adia}^{core} , assuming
 533 an adiabatic gradient of 1 K/km and a core conductivity of $70 \text{ W m}^{-1} \text{ K}^{-1}$, and the light and dark
 534 grey areas show the lateral extensions of regions with heat flux lower than Φ_{adia}^{core} and with negative
 535 heat flux, respectively.

536


537

538

539 **Figure S19.** Snapshot of a simulation similar to that shown in Figure 1 ($a = 0.5$ and $R_H = 10$) but
540 but with primordial material density excess of 90 kg/m^3 . (a) Residual temperature. (b) Thermal
541 conductivity. (c) Fraction of dense primordial material (color code) in the bottom 1000 km,
542 showing piles of dense material. (d) core-mantle boundary heat flux as a function of longitude. In
543 panels (a) and (b) the plain and dashed black contours represent the boundaries of plumes and
544 downwelling, respectively, and the green contours show the piles roof. In panel (c) the spherical
545 annulus is projected on a 2D-Cartesian grid, and the cyan contours indicate composition isolines
546 with an interval of 0.1. In panel (d), the green dashed line indicates the core adiabatic heat flux,
547 $\Phi_{\text{adia}}^{\text{core}}$, assuming a adiabatic gradient of 1 K/km and a core conductivity of $70 \text{ W m}^{-1} \text{ K}^{-1}$, and the
548 light and dark grey areas show the lateral extensions of regions with heat flux lower than $\Phi_{\text{adia}}^{\text{core}}$
549 and with negative heat flux, respectively.

550

551

552 **Figure S20.** Snapshot of a simulation similar to that in Figure 1 ($a = 0.5$ and $R_H = 10$) and including
 553 the post-perovskite (pPv) phase. (a) Residual temperature. (b) Thermal conductivity. (c) Post-
 554 perovskite stability field. (d) Fraction of dense primordial material (color code) in the bottom 1000
 555 km, showing piles of dense material. (e) Core-mantle boundary heat flux as a function of longitude.
 556 In panels (a) and (b) the plain and dashed black contours represent the boundaries of plumes and
 557 downwelling, respectively, the green contours show the piles' roof, and the blue contours the pPv
 558 lenses. In panel (c) and (d) the spherical annulus is projected on a 2D-Cartesian grid, and the cyan
 559 contours in panel (d) indicate composition isolines with an interval of 0.1. In panel (e), the green
 560 dashed line indicates the core adiabatic heat flux, $\Phi_{\text{adia}}^{\text{core}}$, assuming a adiabatic gradient of 1 K/km
 561 and a core conductivity of $70 \text{ W m}^{-1} \text{ K}^{-1}$, and the light and dark grey areas show the lateral
 562 extensions of regions with heat flux lower than $\Phi_{\text{adia}}^{\text{core}}$ and with negative heat flux, respectively.

563

564 **Supplementary movies.** Supplementary movies show the evolution of the
565 non-dimensional and adiabatic temperature field for 4 cases:

566 - M01: case HR001, with $a = 0.5$ and $R_H = 10$

567 - M02: case HR011, with $a = 0.0$ and $R_H = 1$

568 - M03: case HR009, with $a = 0.8$ and $R_H = 10$

569 - M04: case HR013, with $a = 0.5$ and $R_H = 30$

570