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S1 Split discipline and leakage prevention

We follow strict evaluation hygiene to prevent train—test contamination. (i) We use
stratified train/validation/test splits for ISIC 2019, and we apply data augmentation
only to training images. (ii) For Fitzpatrickl7k, we use the author-provided parti-
tions: train/validation may contribute to training, while the test split is held out
strictly for subgroup evaluation and is never used for optimization, early stopping,
threshold selection, or model selection. (iii) Decision thresholds, calibration (temper-
ature scaling), and operating points are determined on validation data only and then
frozen for all test and external evaluations. (iv) External validation on SIIM-ISIC 2020
is performed with no retuning. We note that patient identifiers are not available in
these public datasets, so patient-level splitting cannot be enforced; this limitation is
explicitly acknowledged.

S2 System Design

SkinGuardian is designed for fully on-device operation, minimizing privacy risks and
ensuring compatibility with Snapdragon-powered Windows devices. We describe the
main design choices and data flow from image capture to explainable output.



S2.1 Overall Architecture
S2.1.1 Frontend (UI)

A lightweight Flask interface with Tailwind CSS serves as the user interface. This
design provides:

e Ease of use: packaged as a standalone desktop app with no external dependencies.

® Responsive layout: adjusts to various screen sizes for consistent display.

¢ Extensibility: modular templates for future features (e.g., patient info, feedback
collection).

S2.1.2 Backend (Inference Engine)
Inference uses ONNX Runtime for efficiency and portability:

e ONNX conversion: the PyTorch-trained model is exported to ONNX for cross-
platform deployment.

e Minimal inference dependencies: inference requires only ONNX Runtime,
NumPy, and Pillow; optional explanation generation (e.g., Grad-CAM) uses the
PyTorch checkpoint locally.

e Offline deployment: the model runs locally without server calls, eliminating data
upload risks.

S2.2 Model Implementation and Deployment
S2.2.1 BEiT Fine-tuning

Starting from the pretrained beit-base-patch16-224 model, we replace the classi-
fication head with a binary output layer, enable gradient checkpointing for memory
efficiency, and fine-tune on ISIC 2019 plus the Fitzpatrickl7k train/validation parti-
tions (the Fitzpatrickl7k test split is held out strictly for evaluation). For DP-SGD
variants, privacy accounting uses the ISIC 2019 training split size (N = 20,000) with
0 = 1/N; DP results are reported on ISIC 2019. To enhance trustworthiness, we
apply DP-SGD (for DP variants) and adversarial training (FGSM/PGD-10) during
fine-tuning.

S2.2.2 ONNX Runtime Deployment

The best model checkpoint is exported to ONNX for efficient edge inference. ONNX
Runtime was selected for its cross-platform support, small footprint, and built-in graph
optimizations. We leverage features like dynamic quantization (converting weights
to INTR) to accelerate inference. The final ONNX model is packaged with the app,
allowing it to run on devices with CPU-only capabilities or ARM processors with no
code changes.



S2.3 Inference Workflow

1. Image Capture & Preprocessing: The user uploads or captures a skin lesion
image, which is resized to 224 x 224, normalized to ImageNet pixel statistics, and
converted into a tensor.

2. ONNX Model Inference: The preprocessed tensor is passed through the ONNX
model, producing a malignancy probability score and a binary prediction (benign
vs. malignant).

3. Optional sensitivity analysis (occlusion): An occlusion sensitivity analysis
optionally runs in the background, highlighting image regions most critical to the
model’s decision by sliding an occluding patch and observing output changes.

4. Explainability Generation: Grad-CAM heatmaps (computed locally via the
PyTorch checkpoint) and LIME superpixel explanations are generated to illustrate
the model’s reasoning (regions influencing the benign/malignant prediction).

5. UI Rendering: The prediction, confidence score, and visual explanation over-
lays are displayed to the user. All computations occur on-device, and no data is
transmitted externally.

This design emphasizes privacy (no data leaves the device), portability (few
dependencies and hardware-agnostic model), and explainability (multi-faceted model
interpretation) while maintaining competitive performance for real-time use.

S3 Training, Privacy, Fairness, and Robustness
Details

S3.1 Training Configuration and Fine-Tuning

We fine-tune the BEiT-Base-Patch16-224 model (pretrained on ImageNet-22k) for
50 epochs using the AdamW optimizer (initial learning rate 3 x 10>, weight decay
1 x 10~%). Training is done in mixed precision (FP16) to speed up computation. We
employ early stopping on the validation loss to mitigate overfitting.

S3.2 Adversarial and Fairness-aware Training

To improve robustness, we perform adversarial training on 50% of mini-batches.
Epochs 1-5 use FGSM with € linearly ramped over {0.01, 0.02, 0.03}; epochs 6-50 use
Lo, PGD-10 (10 steps, step size «=0.007, ¢e=0.03) with random initialization U[—e¢, €].
When combined with DP-SGD, the adversarial example is generated using current
(noisy) gradients but DP noise is not backpropagated through the attack generation
(standard practice). For fairness, we compare reweighting and adversarial debiasing;
the latter (gradient reversal with a skin-tone discriminator [2]) performed best and is
used in the final model.

S3.3 Differentially Private Training

For privacy preservation, we train variants of the model with DP-SGD [1]. We set
a per-sample gradient norm clip C' = 1.0 and add Gaussian noise to gradients with
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Fig. S1 Evolution of the privacy budget € per epoch for DP-SGD (¢o=1.1, C=1.0, N=20,000,
0=1/N). Privacy loss accumulates sublinearly over 50 epochs.

Table S1 Differential privacy hyperparameters for
DP-SGD. N: training set size; ¢: sampling rate; B: batch
size; C: gradient clipping norm; o: noise multiplier; E:
epochs; Accountant: privacy accounting method.

N q B C o E  Accountant

20,000 0.0016 32 1.0 1.1 50 Rényi DP

multiplier o such that the target (e, d) is achieved after all training epochs (using a
Rényi differential privacy accountant). In practice, for a training set of size N ~ 20,000
(sampling rate ¢ = 0.0016, batch size B = 32) over E = 50 epochs, o = 1.1 yields
e~ 1.0 at § = 1/N. For a stronger privacy level e = 0.1, we increase o to & 4.0. We
track € as training progresses; it grows sublinearly with epochs (e.g., € = 0.5 after 25
epochs for o = 1.1). Figure S1 illustrates the growth of the privacy loss per epoch for
a representative run. We found that modest noise levels (yielding ¢ > 1) have minimal
impact on accuracy, while very small e (high noise) significantly degrades performance.
We implement DP-SGD using Opacus with the Rényi DP (RDP) accountant. We set
§=1/N =5.0x 10~° (with N = 20,000). The per-epoch privacy curve ¢(e) is tracked
by the RDP accountant; an example run is shown in Fig. S1.

S3.3.1 Why differential privacy is included.

Although our benchmarks use public datasets, we include DP-SGD to demonstrate
that the same training pipeline can be applied to institutional or patient-derived clin-
ical images while providing a formal privacy guarantee against membership inference
and related leakage from model parameters. This is complementary to on-device infer-
ence: keeping inference local reduces exposure during use, while DP-SGD reduces risk
during model development when training data may be sensitive.



Privacy-Utility Trade-off (DP-SGD)
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Fig. S2 Privacy—utility trade-off: test accuracy vs. privacy budget e. Accuracy remains > 85% for
€ > 1 and only declines substantially at the strictest privacy level (¢ = 0.1), indicating that strong
privacy can be attained with moderate cost to utility.

Table S2 Ablation of differential privacy (DP) and adversarial training (AT).
Robust accuracy is against PGD-10 (e = 8/255).

Setting DP ¢ Clean Acc Robust Acc
SkinGuardian-Clean (no DP, no AT) - 88.5% 66.7%
SkinGuardian-DP (DP only) 1.0 86.1% 64.0%
SkinGuardian-Robust (AT only) - 87.1% 74.8%
SkinGuardian-DP+Robust (DP + AT) 1.0 84.5% 72.0%

S3.3.2 Privacy—utility trade-off and DP—AT ablation

Many applications will benefit from simultaneously robust and private models. We
conduct an ablation study to quantify the effects of adversarial training (AT) and
DP-SGD in isolation and in combination. Table S2 presents results for four variants:
Baseline (no DP, no AT), DP-only, AT-only, and DP+AT. For DP, we use a moderate
€ = 1.0 as representative. We report clean accuracy and robust accuracy under a PGD
attack (¢ = 8/255). The Baseline achieves 88.5% clean but only 66.7% robust accuracy.
DP-only (with e = 1) yields a slight drop in clean accuracy to 86.1%, and a small drop
in robust accuracy to 64.0%—DP by itself does not confer robustness and can slightly
reduce robustness due to training noise. AT-only (no DP) improves robust accuracy
substantially (74.8%) for a minor clean accuracy hit (87.1%). Combining DP+AT
(with € = 1) results in 84.5% clean accuracy and 72.0% robust accuracy. DP noise
somewhat hampers the full gains of AT (74.8—72.0) and reduces clean accuracy further
(87.1—+84.5). Nonetheless, DP+AT still far outperforms the baseline in robustness
and maintains respectable clean performance, showing that a single model can be
simultaneously privacy-preserving and adversarially robust with an expected accuracy
trade-off.



S4 Deployment and Benchmarking Details
S4.1 Deployment and On-Device Testing

To validate on-device performance, we deploy the ONNX model on two representa-
tive edge devices: (1) a Windows laptop with a Qualcomm Snapdragon 8cx Gen 2
ARM processor (Microsoft SQ2) without a discrete GPU, and (2) an Ultrabook with
an Intel Core i7-8565U CPU (integrated GPU used only for display). We use ONNX
Runtime dynamic quantization (weights in INT8, activations in FP32) unless stated
otherwise. We measure inference latency, memory usage, and energy consumption
on these devices. Latency is measured as the end-to-end time to process one image
(excluding UI overhead), using 100 runs to compute median (p50) and 95th per-
centile (p95). Peak RAM usage is recorded via system monitors while processing a
batch of images. Energy per inference is measured using hardware monitoring (Intel
RAPL interface on the Intel device, and Windows Performance Counters on the ARM
device). Each energy value is reported as mean+SD per image over 50 inferences. We
also measure the cold-start performance (time from model load to first prediction)
as a separate indicator of user-perceived delay when launching the app. We test the
model in two modes: full precision (FP32) and 8-bit quantized (INT8) using ONNX
Runtime’s dynamic quantization. The quantized model uses int8 arithmetic for faster
inference at slight accuracy cost (we report any drop in accuracy or robustness after
quantization). We also evaluate throughput (images processed per second) under each
setting by running the model in a loop.

S4.2 Benchmarking Protocol

All latencies were measured with time.perf_counter() in Python, excluding image
I/O and UI rendering. For each device and precision, we performed 20 warm-
up inferences before recording 100 timed runs; we report median (p50) and p95
over these 100 runs. ONNX Runtime v1.12 used the CPUExecutionProvider with
intra_op_num threads=4 and inter_op.num threads=1 on both devices (thread
affinity left to the OS). INTS8 results use ONNX Runtime dynamic (weights-only)
quantization; activations remain FP32 (no PTQ/QAT calibration). Energy on Intel
was measured via RAPL (package energy) over the inference window; on Snap-
dragon/Windows we used Windows Performance Recorder (WPR) and Windows
Performance Analyzer (WPA) SoC energy for the app process. Cold-start latency is
measured from InferenceSession construction to completion of the first inference.

S5 Metrics, Statistical Testing, and Extended
Analyses

S5.1 Metrics and Statistical Testing

We evaluate using Accuracy, AUROC, PR-AUC, and F1. F1 is the harmonic mean of
precision and recall; macro-F1 is the average of the positive-class and negative-class
F1 scores. For fairness, we report Demographic Parity Difference (DPD) and Equalized
Odds Difference (EOD) between light and dark groups, plus subgroup AUROC and



TPR at fixed FPR. Calibration uses 15-bin Expected Calibration Error (ECE) with
reliability diagrams. Robustness is measured as robust accuracy (fraction correct under
attack). All metrics include 95% confidence intervals from 1,000 bootstrap resamples
of test predictions. We use McNemar’s test (with continuity correction) for paired
accuracy differences (reporting 95% CI) and DeLong’s test for AAUROC (reporting
95% CI). Unless noted, tests use the ISIC test set (N=2,533).

S5.2 Calibration and Uncertainty

In a medical application, the confidence of a model’s predictions is nearly as important
as the predictions themselves. An over-confident model can be dangerous if its proba-
bilities are miscalibrated. We evaluate SkinGuardian’s calibration and its uncertainty
quantification via Monte Carlo (MC) dropout.

Figure S3 (left) shows reliability diagrams for SkinGuardian on the test set, plot-
ting predicted probability vs. true frequency of malignancy, both overall and stratified
by skin tone. After applying temperature scaling on the validation set for calibration,
the overall ECE is 2.8% and the curves closely align with the diagonal, indicating
well-calibrated outputs. Notably, the calibration is similarly good for both light and
dark subgroups (dashed lines in the figure almost overlap), meaning the model’s prob-
abilities are equally reliable across demographics. This is an important property for
equitable deployment. Without calibration, we observed the model was slightly over-
confident, especially for dark-skin cases (baseline ECEgark ~ 0.12 vs ECEjjgn ~ 0.08),
but our fairness training plus post-hoc calibration reduced both to = 0.05 or lower.

We also plot a risk—coverage curve (Figure S3, right) to explore a selective predic-
tion scenario: the model is allowed to abstain on a certain fraction of cases (deferring
them to a human expert), and we examine the error rate on the remaining cases. We
rank test samples by the model’s predictive confidence and progressively cover more
of the dataset. The curve shows that if the model only attempts to diagnose the 80%
most confident cases, it can achieve an error rate (e.g., false negative rate) close to zero
on those cases. Even at 90% coverage, the model’s effective accuracy on that subset
is above 95%, significantly higher than its accuracy at 100% coverage. This highlights
a practical operating mode: SkinGuardian could automatically flag the most uncer-
tain 10-20% of lesions for manual review, while confidently handling the rest, thereby
increasing overall safety.

In addition to deterministic calibration, we assess the model’s predictive uncer-
tainty using MC dropout. We perform 20 stochastic forward passes with dropout
enabled and compute the entropy of the mean prediction. Figure S4 shows the distri-
bution of prediction confidences for benign vs. malignant cases. Malignant cases (red)
tend to have lower confidence on average than benign cases (blue), which is desirable
in a screening tool (the model is appropriately hesitant when it comes to potentially
serious diagnoses). The predictive entropy and variance histograms (Figure S5) fur-
ther illustrate that when the model is wrong (especially on missed malignancies), it
often has high entropy/variance, signaling uncertainty. This aligns with the earlier
suggestion that an uncertainty-based referral mechanism could catch many errors.
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Fig. S8 Left: Reliability diagram for SkinGuardian after calibration, comparing predicted prob-
abilities with actual malignancy rates. Both the overall curve and subgroup curves (light vs. dark
skin) are close to the diagonal, indicating accurate calibration and no significant calibration bias
between groups. Right: Risk—coverage curve: as the model covers more cases (x-axis), the risk (error
rate, y-axis) increases. By only diagnosing, e.g., 80% of cases with highest confidence, SkinGuardian
can reduce its error rate dramatically, illustrating the benefit of deferring uncertain cases to human
experts.
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Fig. S4 Confidence histograms from Monte Carlo dropout (20 runs) for benign vs. malignant test
cases. Malignant cases tend to have lower confidence on average than benign cases, indicating the
model is more hesitant on potentially serious predictions—a useful property to avoid false reassurance.

S5.3 Qualitative Analysis and Case Studies

While aggregate metrics are important, examining individual cases provides insight
into failure modes and areas for improvement. We manually reviewed test images
where SkinGuardian erred or was uncertain. Figure S6 shows Grad-CAM, Occlusion,
and LIME overlays side by side for a representative malignant lesion.

Beyond single-image overlays, we also reviewed challenging errors qualitatively.
Missed melanomas tended to be visually subtle or affected by artifacts (e.g., hairs,
markers), where saliency became diffuse and failed to localize the lesion. False positives
often involved benign irregular textures or poor lighting that exaggerated borders on
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Fig. S5 Predictive entropy (left) and variance (right) distributions from MC dropout. Malignant
cases exhibit higher entropy and variance on average, reflecting greater uncertainty, whereas benign
cases more often yield low-uncertainty predictions. High uncertainty correlates with many errors,
supporting uncertainty-triggered human review.

[ -—— —
@ Red = Most important @ Red = High impact (confidence drop) .
@ Blue = Least important @ Green = Moderate effect @ Red = Regions that supported the prediction

@ Blue = Minimal impact
(a) GradCam (b) Occlusion (¢) LIME

Fig. S6 Grad-CAM, Occlusion sensitivity, and LIME overlays shown side by side for a malignant
lesion.

dark skin, which saliency sometimes highlighted strongly. These patterns motivate
future improvements (artifact-aware augmentation, lesion-focused preprocessing, and
broader benign variants in training).

Overall, error analysis reveals that most mistakes occur when images are at the edge
of the training distribution—either very challenging lesions or poor image conditions.
We also note that SkinGuardian’s uncertainty was high for many of these cases (which
is encouraging, as it could signal for human review). By analyzing these errors, we
plan future improvements: e.g., incorporating a broader range of benign lesions in
training to reduce false alarms, or using techniques like segmentation to ensure the
model focuses on lesion pixels and not artifacts.

To verify that our defenses are genuine and not due to gradient masking, we per-
formed two checks: (i) we attacked SkinGuardian using a surrogate model (ResNet-50)
to generate transfer adversarial examples, which still significantly degraded the base-
line but not our model (indicating SkinGuardian’s robustness is not tied to its own
gradient), and (ii) we visualized loss landscapes around sample inputs, which appeared



Table S3 In-distribution vs. external test performance.
SkinGuardian generalizes well to a different dataset
(SIIM-ISIC 2020), with only a small performance drop.

Metric ISIC 2019 Test External (2020) Test

AUROC 0.956 £ 0.007 0.927 £+ 0.012
PR-AUC 0.932 + 0.009 0.901 £ 0.015
Accuracy 88.5% + 1.2% 85.4% + 1.6%

smooth and did not exhibit the characteristic signs of obfuscated gradients. Together,
these checks increase confidence that SkinGuardian’s robustness is real and not an
artifact of the training procedure.

S5.4 External Validation and Statistical Reporting

Statistical reporting: Versus ResNet-50, AAUROC = 0.026 [95% CI: 0.011, 0.041]
(DeLong p = 0.0012); versus Swin-T, AAUROC = 0.011 [0.002, 0.021] (p = 0.017).
For accuracy, McNemar’s test yields a difference of 2.7 percentage points (pp) [0.9,
4.6], p = 0.003.

To assess generalization, we evaluate the final SkinGuardian model on an external
dataset from a different source. We use the SIIM-ISIC 2020 Melanoma Classifi-
cation Challenge dataset (a dermoscopy image set containing 33,126 images with
584 confirmed melanomas, i.e., ~1.8% prevalence) as an independent test. No
model parameters or thresholds are adjusted (we apply the same decision threshold
determined on the ISIC 2019 validation set). Table S3 compares SkinGuardian’s per-
formance on the in-distribution vs. external data. The AUROC on the external set is
0.927, only slightly lower than the 0.956 achieved on ISIC 2019. A similar minor drop
is seen in PR-AUC (from 0.932 to 0.901, which is expected given the lower preva-
lence of positives in the external set). The accuracy drops to 85.4%, which can be
attributed in part to the different class balance and domain shift. For comparison, we
also evaluated ResNet-50 on the external data and found a larger performance drop
(AUROC 0.880 external vs. 0.930 in-distribution). SkinGuardian’s ability to main-
tain high accuracy on a distinct dataset suggests strong generalization and mitigates
concerns of overfitting to the ISIC 2019 data distribution.

Clinical operating point: At 95% specificity (set on ISIC 2019 validation),
SkinGuardian attains 82.1% sensitivity [79.3, 84.7] on ISIC 2019 and 78.6% [74.1,
82.7] on SIIM-ISIC 2020 without threshold retuning.

S5.5 Latency Distribution and INT8 Deltas

INT8 accuracy/robustness deltas: Test accuracy differs by 0.4pp (FP32 88.5% vs.
INT8 88.1%); robust accuracy under PGD(e=8/255) differs by 0.9pp (74.8% vs.
73.9%).
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Fig. S7 Latency cumulative distribution for processing one image. Solid lines: Snapdragon 8cx
(blue=INTS, orange=FP32). Dashed lines: Intel i7 CPU (green=INT8, red=FP32). Quantized (INT8)
models achieve low latencies (e.g., 95% of inferences < 160 ms on Snapdragon). This ensures respon-
sive performance for end-users.
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