Supplementary Material for Geometry-Aware Super-Resolution Fusion Calibration for
Binocular Structured Light 3D Reconstruction

Hongyan Cao,"?3 Dayong Qiao," 2 * Mengya Han,* Wangke Yu,® Benquan Wang,? I and Yijie Shen®? ¥

! Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace,

Key Laboratory of Micro- and Nano-Electro-Mechanical Systems of Shaanzi Province,
School of Mechanical Engineering, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072, China.
?Ningbo Institute, Northwestern Polytechnical University, Ningbo, Zhejiang, 815103, China.
3 Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371, Republic of Singapore
4 National Engineering Research Center for Multimedia Software, School of Computer Science,
Wuhan University, and Hubei Luojia Laboratory, Wuhan, 430071, China.
°School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore 639798, Singapore
(Dated: December 30, 2025)

Supplementary Material Outline

e S1. Coordinate Systems and Notation

e S2. Implementation Details of Geometry-
Aware Checkerboard Super-Resolution

e S3. Supplementary Derivations for Saddle-
Point Corners and Unbiased Cell Centroids

e S4. Optimization Details for Centroid-
Assisted Two-Stage Binocular Calibration

e S5. Additional Implementation Details
e S6. Structured-Light 3D Reconstruction

e S7. Implementation Details of Experiments



S1. Coordinate Systems and Notation

We briefly summarize the coordinate systems and sym-
bols used in the main paper.

World coordinate system {W}. A 3D point in the
scene or on the checkerboard plane is denoted by Py =
[Xw,Yw,Zw|". When the checkerboard is placed on
the plane Zy = 0, all internal corners and cell centers
lie on a regular 2D grid in {W}.

Camera coordinate systems {CF} and {CT}. For
each camera s € {L, R}, we denote camera-centered co-
ordinates by P, = [X&, Y5, Z&]T. The rigid transfor-
mation from world to camera coordinates is

Pi = R°Pyy + t°, (1)

where R® € SO(3) and t* € R? are the extrinsic param-
eters of camera s.

Normalized image coordinate system {r*}. We use a
virtual imaging plane at Z¢, = 1 to represent undistorted
perspective projection. The normalized image coordi-
nates are defined as

- [7] - [z o)

T lyl T vz

Pizel coordinate system {v®}. The discrete pixel co-
ordinates on the sensor are denoted by P$ = [u®,v%]T.
After applying radial and tangential distortion D(-;k?)
to the normalized coordinates (z°,y®), the mapping to
pixel coordinates is

u® x5
v =K* ycsl ) (mfia ycsi) = D(msvys; ks)v (3)
1 1

where K* is the intrinsic matrix and k® denotes the dis-
tortion parameters.

Checkerboard corners. Let Q%}j ) denote the 3D co-
ordinates of the (i, 7)-th internal checkerboard corner on
the plane Zy = 0. In the n-th image of camera s, its
sub-pixel pixel coordinate is written as

qi)(n’i)j) = [us’(nvi’j)’ vs,(n7i,j)]—r. (4)

Checkerboard cell centroids. We treat each checker-
board cell as a geometric primitive with an unbiased cen-
troid. The world-space center of the k-th cell is denoted
by Cgf,) = [X‘(/‘lj), Yv([f), O]T. In the n-th image of camera s,
the geometric centroid computed from its four sub-pixel
corners is denoted by

ep (k) — [y (k) Uj(n»k)]T7 (5)
while the corresponding projected centroid predicted by
the calibration model is

&) = TI(KS, k*, Re, 8, CY), (©)

where II(-) denotes the full projection and distortion
mapping from {W} to {v°}.

For completeness, we also summarize the notation used
later for the reprojection and centroid errors in the two-
stage calibration, but omit them here for brevity in the
main paper.



S2. Implementation Details of Geometry-Aware
Checkerboard Super-Resolution

This section provides additional details including the
preprocessing pipeline, homography estimation, mask
generation, and the architecture and losses of the super-
resolution (SR) module.

S2.1 Harris-Based Corner Seeding and
Preprocessing

Given a raw calibration image, we first apply light-
weight preprocessing to improve robustness under vary-
ing illumination and noise. Specifically, we use a bilateral
filter for denoising, followed by contrast normalization in
the checkerboard region using CLAHE. The preprocessed
intensity image is denoted by I(x,y).

We then compute the Harris corner response’ . For
each pixel, the second-moment matrix over a local win-
dow w(x,y) is defined as

1. Cluster the Harris detections into a dominant lat-
tice using RANSAC-based line fitting and estimate
the main orientation of the checkerboard.

2. Project the detections onto two dominant direc-
tions to obtain approximate row and column in-
dices (7, j) via 1D peak detection and spacing anal-
ysis.

3. Establish tentative correspondences between de-
tected points and integer grid positions (4,5) by a
nearest-neighbor assignment in the 2D index space.

4. Use the resulting correspondences {(p "), P} to
estimate H with a DLT solver, refined by non-linear
least squares under a Sampson error, while reject-
ing outliers with RANSAC.

The estimated homography H is subsequently used to

(i) infer the full set of grid vertices, (ii) obtain a tight
global ROI, and (iii) generate per-cell polygon masks.

)
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where I, I, are image gradients and Q(x,y) denotes a
local neighborhood. The Harris response is

R(z,y) = det(M) — s trace?(M), (8)

with & typically set in [0.04,0.06]. We keep pixels with
R(z,y) above a fraction 75 of the global maximum and
apply non-maximum suppression in a Nyums X Nnuvs win-
dow to obtain a sparse set of robust corner hypotheses.

These Harris detections are not used directly for cali-
bration, but serve as geometric seeds to (i) estimate the
checkerboard homography and (ii) derive the global ROIT
and per-cell masks. All parameters (k, window sizes,
thresholds) are empirically chosen and fixed across all
experiments.

S2.2 Homography Estimation Between Ideal Grid
and Image

Let py = [i,5,1]" denote the homogeneous coordinate
of an ideal internal grid point at integer row—column in-
dex (i,7) on the checkerboard, with i € {0,..., W — 1}
and j € {0,...,H — 1}. The corresponding pixel coordi-
nate in the image plane is denoted by p, = [u,v,1]" in
the pixel coordinate system {v*®}.

We assume a planar checkerboard and model the map-
ping between the ideal grid and the distorted image by a
homography

v NHpga (9)

where H € R3*3 and ~ denotes equality up to scale. To
estimate H, we proceed as follows:

Given the homography H in Eq. (9), we can project
all grid vertices into the image:

i
p{ ~H |j|,
1

ief{0,...,W}, jef{0,...,H}. (10)

Let (u(*7), (7)) denote the inhomogeneous pixel coordi-
nates after normalization.

Global checkerboard ROI mask. We form the convex
hull of all projected vertices {pE,” )} and rasterize it to
obtain a binary mask Mgor(u,v). To account for small
homography errors and blurring, we apply a morpholog-
ical dilation with a radius of 1-2 pixels.

Internal corner mask. For each internal grid inter-
section (7,7),1€{1,..., W =1}, j€{1,...,H — 1}, we
create a small disk or square nelghborhood around p(m )
forming an internal corner mask Mcorner (4, v). This mask
emphasizes regions where saddle-point corner fitting will
be performed.

Per-cell polygon mask. For each checkerboard cell in-
dexed by k with four vertices (i, j), (i+1,7), (i+1,5+1),
and (i, + 1), we obtain the corresponding quadrilateral
in the image:

(i+1 (z+1,]+1)

= {p{"),pi"), p§ Gty (1)

We rasterize each quadrilateral into a binary mask
M )(u v) using standard polygon filling. These per-cell

cell
masks are later used to compute geometric centroids and
to inject cell-level priors into the SR network.

For binocular data, we repeat the same procedure in-
dependently for the left and right images, and optionally

enforce a weak consistency by checking that the projected



grid layout in both views is compatible with the stereo
geometry. This step is purely for robustness and does
not change the formulation.

S2.4 Super-Resolution Network Architecture

We adopt an IPG-style reconstruction network’ as our
SR backbone, which is conceptually similar to residual
CNN-based SR models. In all experiments, we use a
fixed upsampling factor of x4.

Inputs and outputs. For each image, we crop the
bounding box of the global ROI mask Mgror and feed
a multi-channel tensor to the network:

X = [Icropa MROI; Mcorner7 ZMC(;)I]’ (12)
k

where I.op is the cropped intensity or RGB patch and
the masks are resized to the same resolution. All masks
are normalized to [0,1]. The network outputs a super-
resolved patch fSR with resolution x4 in each dimension.

Network structure. The SR backbone consists of an
initial convolution, a stack of residual blocks with skip
connections, and a pixel-shuffle upsampling module. The
mask channels are concatenated with the image at the in-
put layer, and optionally concatenated again at interme-
diate stages as a form of spatial prior. We do not intro-
duce any checkerboard-specific operators; the geometry
awareness is entirely encoded by the mask channels and
the geometric loss described below.

Specific convolution kernel sizes, number of channels,
and block counts are fixed across all experiments and are
omitted here for brevity.

S2.5 Loss Functions and Geometric Consistency
Term

The SR network is trained using paired low-resolution
and pseudo ground-truth high-resolution checkerboard
patches. The overall loss function is

L= )\rec »Crec + >\geo »Cgeov (13)

where Aree and Ageo control the trade-off between recon-
struction fidelity and geometric consistency.

Reconstruction loss. We adopt a standard pixel-wise
reconstruction loss between the super-resolved output
Isg and the reference high-resolution patch Iyg:

Lree = |[Isr — Inr|; - (14)
In some experiments we also include a perceptual loss

on features extracted by a shallow CNN, but we observe
that the simple ¢ loss is already sufficient for calibration.

Geometric consistency loss. To encourage the SR
output to align with the ideal checkerboard geometry, we
introduce a lightweight geometric consistency term based
on the homography H. For each grid line in the ideal do-
main (horizontal or vertical), we sample a set of points

{p(ge)} and project them into the SR image using Eq. (9),

obtaining {pg,f)} at the high-resolution scale. We then pe-
nalize deviations between these projected lines and the
intensity gradients of Igg:

1 .
Lyeo = 7] ZGZL (1 — HVJ_ISR(Pge))Hz)

, (15)
+

where V| denotes the image gradient component along
the normal direction of the ideal grid line at p,(f), ()4 is
the hinge function, and £ is the set of sampled points.
Intuitively, this loss encourages sharp intensity transi-
tions orthogonal to the projected grid lines, leading to
straighter and better localized checkerboard edges in the
SR output. .

In practice, we approximate V Isg using simple So-
bel filters and evaluate the loss only inside the global
ROI mask to reduce computation. The geometric consis-
tency loss is kept relatively small (Ageo < Arec) s0 that
it acts as a gentle regularizer rather than dominating the
reconstruction.

Overall, the geometry-aware SR module enhances the
contrast and sharpness of checkerboard edges and corners
while preserving their global projective layout, which is
crucial for the subsequent saddle-point-based corner lo-
calization and unbiased cell centroid estimation described
in the main paper.



S3 Supplementary Derivations for Saddle-Point
Corners and Unbiased Cell Centroids

This section provides detailed derivations for the
saddle-point corner refinement and the unbiased cell cen-
troid construction used in the main paper. For clarity,
we temporarily omit the camera index s € {L, R}, image
index n and cell index k£ when there is no ambiguity.

S3.1 Second-Order Saddle-Point Corner Model

_ We work on a super-resolved checkerboard image patch
Isg in the pixel coordinate system {v*}. For each internal
corner, an initial sub-pixel estimate

o= 1] .

Vo

is obtained using a standard detector (Harris + sub-pixel
refinement). Around this point we define a local coordi-
nate system

u=u+z, v=v9+y, (17)
and approximate the local intensity by a quadratic func-
tion

Isp(z,y) = az® + bay + ey +dz+ey+ f,  (18)

where the coefficients {a,b,c,d,e, f} are estimated by
least squares over a small window centered at (0,0).
The gradient and Hessian of (18) are

- _ 8meR _|2ax+by+d
VISR($7y) - |:8ny1:{:| - [bx+2cy+e ) (19)
A 2a b
H = V2igg = {b“ 26} . (20)

A checkerboard corner is modeled as a saddle point of
this quadratic surface: the gradient vanishes and the Hes-
sian has eigenvalues of opposite signs. The saddle point
(z*,y*) satisfies
Visr(z*,y*) =0, M (H) A(H)<0. (21

The stationary point is obtained by solving the linear
system
x* d
H =— 22
=L 2
which yields

z* _ 4 |d _ 1 be — 2cd
[y*} =-H L] " dac — b2 {bane ’ (23)

provided that 4ac — b> # 0. The discriminant of the
Hessian is

det(H) = 4ac — b, (24)
and the eigenvalues are

Mo2H) = (a+c)x+/(a—c)?+ b2 (25)

The saddle-point condition in (21) is equivalent to

det(H) <0 <= 4dac—b* <0, (26)
ensuring that one eigenvalue is positive and the other is
negative.

The refined corner in the pixel coordinate system {v®}

is thus
. u ug + x*
v pr— pr— 3 27
q M [Uo n y} (27)

In practice, we reject candidates for which the fitted Hes-
sian does not satisfy the saddle condition or the local
quadratic fit has insufficient support.

S3.2 Polygon Moments of Undistorted
Quadrilaterals

We now derive the polygon moments of a checkerboard
cell in the undistorted normalized plane {r*}, which will
be used to construct an unbiased centroid under radial
distortion.

Quadrilateral in the mormalized plane. Consider a
single cell on the normalized plane, bounded by four ver-
tices

V£:($E7y£)T> Zzla"'74a (28)
in counter-clockwise order, with vy = v;. These ver-
tices are obtained by mapping the refined pixel corners
Q, from {v°} to the normalized plane {r*} using the cam-
era intrinsics and current distortion parameters.

We define the oriented edge term

Af = ToYe4+1 — Te+1Ye,s (= ]-7 cee 74' (29)

The signed area of the quadrilateral A, is

4
1
4 =52 Ae (30)

where the sign encodes the orientation (we assume
counter-clockwise so that |A,| > 0). Using the standard
polygon formulas, the first-order moments are

4

1
/Ansz: e+ ween) A (31)

(=1



4

1
/A A= 53 et ) A (32)

(=1

The centroid of the undistorted quadrilateral on the nor-
malized plane is therefore

'

4
1
Ty = > (@) A, Gn =
6] An| =1 4:1

(33)

Higher-order monomial moments. For the radial dis-

tortion model, we need to integrate monomials 2%y over

the quadrilateral. We define the normalized monomial
moments

1
Mb = / z%y’ dA. (34)
[Anl Ja,

Using Green’s theorem, integrals of the form fA’ z%yPdA
can be reduced to sums over the polygon edges:

1 4
[, ad= oy 2 (sittd —o ),
(35)
for non-negative integers a,b.! Dividing by |A,| yields
M2® as in (34).
In our implementation, we precompute and cache M%°
for all (a,b) required by the chosen polynomial distor-

tion degree; the explicit formulas are straightforward but
lengthy, and are omitted here for brevity.

S3.3 Moment-Based Centroid Under Polynomial
Radial Distortion

We now derive the centroid of the distorted region
Ag = D(A,,) in the normalized plane, under the poly-
nomial radial distortion model used in the main paper.

Radial distortion mapping and Jacobian. We work in
the normalized coordinate system {r®}, with

Pr = (‘T7y)Ta Pa = (xdayd)T' (36)

The radial distortion is modeled as

pa=k(s)pr, s=a2"+y k(s)=> dis’, (37)

where d; are distortion coefficients. The Jacobian of py
with respect to p, is

JD(pT) =

opa , 22 xy
opy k(s) Iy + 2K'(s) [xy Sk (38)

where k’(s) is the derivative of k(s) with respect to s. Its
determinant is

detJp(p,) = k(s)(k(s) +2sK'(s)), s=z"+y> (39)

Area and centroid of the distorted region. Let A, be
the undistorted quadrilateral on the normalized plane
and Ay = D(A,) its distorted image. Using the change-
of-variables formula, the area of Ay is

det Jp(p.) dA

|Ag| = dAg = /
Aa An (40)
_ / k(s) (k(s) + 2 K/ (s)) dA.
A’Vl
The centroid of A4 is defined as

1
Pda |Ad| " Pd d ( )

Using the mapping pg = k(s)p, and the Jacobian deter-
minant (39), we obtain

/ PadAqg =/ k(s) pr det Jp(p,)dA
Ad An (42)
= /A k(s)?(k(s) + 2sk/'(s)) pr dA.

Hence

/A k(s)?(k(s) +2sk'(s)) prdA
Pd = —
/A k(s) (k(s) + 25 K (s)) dA

(43)

Expansion in terms of polygon moments. Because
k(s) is a polynomial in s = 2% + 2, and (2% + y?)" can
be expanded as a finite sum of monomials z%y°, both
numerator and denominator of (43) can be expressed as
finite linear combinations of the moments | A, zoybdA,

and thus of the normalized moments M%® in (34).
More concretely, let

where d; are coefficients determined by {d;}. The prod-
uct k(s)(k(s) + 2sk/(s)) and k(s)?(k(s) + 2sk'(s)) are
polynomials in s of finite degree. Expanding s" =
(22 +4P)" as

s) +2sk'(s) =

Z ca bx Y, (45)

a+b=2r

we can write

|Aal = |Aq] Zwo,abMﬁ’b, (46)

/ rqdAg = ‘A |wa ab Mg7b7
Aq

a,b

/ yddAd—‘A |ZwyabMab
Ag

a,b

(47)



for some distortion-dependent coeflicients
W0, by Wa,ab, Wy,qp that can be precomputed once
the distortion degree ng is fixed. Substituting into (43),
we obtain the rational form

b b
Z w;c,asz Z wy,abef
_ a,b _ a,b
Tq = b’ Yd = ab’ (48>
E w07aan’ E woﬂan’
a,b a,b

Under the assumed polynomial radial distortion model,
the centroid pg = (Zg,%4) ' given by (48) is an unbiased
centroid of the distorted cell in the normalized plane. Fi-
nally, mapping back to the pixel coordinate system {v®}
via the intrinsic matrix K® yields the theoretical pixel
centroid

¢, = K° |94, (49)
1

Discussion and relation to dot-based methods. The
derivation above follows the same principle as the
moment-based conic method for circular dots’ , but re-
places ellipses by quadrilaterals defined by four refined
checkerboard corners. In our case, the polygon geome-
try is determined by (i) second-stage saddle-point corners
and (ii) the global checkerboard grid (including cross-
ratio invariants used later in the calibration stage), which
leads to more accurate and stable polygon moments than
directly segmenting circular blobs in challenging condi-
tions. This, in turn, improves the accuracy of the unbi-
ased centroid used as a soft constraint in our two-stage
calibration.



S4. Optimization Details for Centroid-Assisted
Two-Stage Binocular Calibration

This section provides additional details, includ-
ing parameterization, residual definitions, Jacobian
structure, and the progressive two-stage optimization
scheme: world frame {W7}, left/right camera frames
{CL},{CF}, normalized planes {rf}, {rf'}, and pixel
planes {vl'}, {vF}.

S4.1 Parameterization and Notation

We consider Nimg checkerboard images observed by a
binocular system. For camera s € {L, R}, we denote:

fam
e Intrinsic matrix: K*= [ 0 f7 ¢
0 0 1
e Radial distortion coefficients: k* = [dj,...,d5 |7

e Per-image extrinsics: rotation and translation from
{W} to {C*}, R®™ € SO(3), t>™ € R3, n =
1,..., Nimg.

We collect all parameters into a single vector

int > 1nt ’ ext ) ext

.
0:{ oL . oF o~ o } . (50)

KL kL KR kRO {RL(n) gL,(n)} {RE(n) gR.(n)}

where rotations are parameterized by axis—angle vectors
or Rodrigues vectors (minimal 3-parameter representa-
tion). The relative pose between {CL} and {CF} is im-
plicitly encoded by these extrinsics; if desired, one may
reparameterize the right camera pose as a fixed transform
w.r.t. {CL} plus per-image relative motions, but this is
not required by our method.

S4.2 Stage 1: Corner-Only Binocular Initialization

Corner projection. For world corner Q%,) on the
checkerboard plane Zy = 0 and image index n, the for-
ward projection to the pixel plane {v®} proceeds as

qu(nz) _ Rs,(n)Q(i) + ts’(n) c {CS}, (51)
o [xEme g
P:,("ﬁ) = C(n z)/ < n,i) ‘| = {Ts} (52)
YC /ZC
PZ,(n,i) _ D(Pi’("’i); ks) = k(s )PS’("’i) (53)

Foas ) 4 y () o

&5 (nyi) I(K* Ps,(n,i)
q, ) s,(n,%)
ey = [

(54)

where s = 22432 is the squared radius on the normalized
plane.

Corner residual and loss. Given the refined saddle-

point corner g5"" = [u® (D) % (D] T The Stage 1 cor-

ner residual is

i) g (i) _ o nii) (55)

corner

and the Stage 1 objective is

ng

SN S el (56)

se{L,R} n=1 i

corner =

Jacobian structure. The Jacobian of ec(’)(m’ez w.r.t. pa-

rameters in 0 is obtained by chain rule:
O
96— 00 (57)

For a given camera s and image n, the relevant blocks
are:

oay ™ OM(K®, Py) (58)
K> oK

oay ™ _ ON(K*,Py) 0D(P,; k*) (59)
oks oPy oks ’

ags ™ _ OI(K®,Py) ID(P,; k*) P, OP (60)

OR=(n) oP, P, 9P OR»(™’

oay ™ _ ON(K®,Py) 0D(Py; k*) 0P, P (61)
s (n) P, P,  OPc ot

Each factor is standard in bundle adjustment:
e OII/O0K? is linear in (z4,yq);
e 0D /0k® depends on derivatives of k*(s) w.r.t. df;
e OP, /0P encodes the division by Z¢;

° 3PC/6RS’("),8P0/3tS’(") follow from the expo-
nential map or Rodrigues parameterization of

SO(3).

In practice, we use automatic differentiation or analyt-
ically coded Jacobians, and solve (56) using a damped
Gauss-Newton (Levenberg—Marquardt) optimizer.

S4.3 Stage 2: Centroid-Assisted Refinement

Stage 2 refines 6 starting from the Stage 1 optimum by
incorporating centroid residuals and an optional binocu-
lar epipolar regularizer, while preserving corner accuracy.

Centroid Residuals and Jacobians For the k-th cell in
image n of camera s, let:

o & ™*) € {45} be the observed geometric centroid,
computed from the four refined corners in {v°} us-
ing the polygon-centroid formula.



o &M ¢ {v*} be the theoretical unbiased centroid,

obtained as

;" = Feentroiad (M2 (s,n.k)}, k%) € {r°}, (62)
followed by projection with K*:

i,flv(nvk)

g | (63)
1

éz,(n,k}) - K*

Here {M®®(s,n,k)} are normalized polygon mo-
ments of the undistorted quadrilateral on {r°}, and
Feentroid is the rational mapping from moments and
distortion parameters to the distorted centroid (see

Eq. ( 48 ) in Sec. S3).
The centroid residual is
el = ey k) — ey b, (64)

and the centroid loss is

Nimg

centr01d - Z Z Z Ceggr]fnd ||2 (65)

se{L,R} n=1

The Jacobian de”\"*) /06 involves:
s,(n,k ~s,(n,k ~8,(n,k
aece(ntro)id — ac”( : _ aCU : (66)
00 00 00

Derivative of the observed centroid. The observed
centroid &™) depends on the four refined corners in
{v*}, which in turn depend on the saddle-point fit and
thus on image intensities, not directly on ca(libr)ation pa-
,(n,k

rameters. In our optimization, we treat G, as fixed
observations, i.e.,
8éi’("’k)
—— =0. 67
50 (67)

This is consistent with the usual treatment of detected
feature points in bundle adjustment.

Derivative of the theoretical centroid. The theoretical
centroid &'""*) depends on: (i) the undistorted quadri-
lateral on {r°} via polygon moments M2®(s, n, k), which
are determined by the undistorted corner positions; and
(ii) the distortion parameters k* and intrinsics K*®. Ap-
plying chain rule to Eq. ( 63 ) and the mapping in Eq. (
48 ), we obtain

aéiv(nvk) 8st)27(n’k)
9K* ~ OK® (6%
~s,(n,k) a—sa("»k)
ocy, — K Py ’ (69)
Oks® ks
acs n,k) B Saﬁz,(nﬁk) 8M;‘;=b aﬁi,(n,k,f) 0
ORs:(n) aMa,b af)i,(n,k,é) ORs:(n) (70)
8~s (n,k) ke 6pd,(nk 3M,‘§’b 8p:,(n,k,l) -
o~ Kot ek g o (Y

where summation over (a,b) and corner index £ is im-
plied. The factors:

e 0py/0k® and 0p,/OMZ2® follow from the rational
expression in Eq. ( 48 );

e OMP) Bf)f«’(n’k’e) follows from the Green-theorem-
based formulas in Eq. ( 35 );

e 0p,/OR>™ 9p, /0t>™ follow from the undistor-
tion and normalization steps.

In our implementation, these derivatives are either coded
analytically or approximated by automatic differentia-
tion on Fientroia and the undistortion pipeline.

Epipolar Regularization Given the relative pose be-
tween {Ct} and {OF}, (REF tLF) the essential matrix
is

E = [t"%] RV, (72)

where []yx denotes the skew-symmetric matrix. For

corresponding normalized (undistorted) corner points
Gb D g
r ) T

quires

i) ¢ {rE},{r®}, the epipolar constraint re-

AR(n z)TE L(n 1) ~ 0. (73)
We define a scalar epipolar residual

e(n i) _ AR(n z)TE AL (n, z) (74)

epi

and the epipolar loss

lmg

Lopi = ZZ ()2, (75)

The Jacobian of eggil) w.r.t. 0 follows from the chain rule
on E(RF! tL%) and the normalized coordinates; details

are standard and omitted for brevity.

S4.4 Two-Stage Optimization Scheme

We now summarize the complete optimization proce-
dure.

Stage 1: Corner-Only Initialization The Stage 1 opti-
mization can be summarized as the following procedure.
Algorithm (Stage 1).

1. Input: saddle-point corners q;j*(”’“

Q.

2. Initialize K*, k*, R*( t(") using a Zhang-style
method.

, world corners

5,(n,%)

3. Compute corner predictions ¢ and residuals

esimd) in Eq. (55).

4. Assemble the Jacobian 8ecor?-ler) /00.



5. Take Gauss—Newton / LM steps on 6 to minimize
Lecorner in Eq. (56).

6. Tterate steps (iii)—(v) until convergence.

The resulting parameters are denoted as #1) and used
as the initialization for Stage 2.

Stage 2: Centroid-Assisted Progressive Refinement
Starting from @), Stage 2 minimizes the combined ob-
jective

EstageZ - ‘CCOI‘I’IEI‘ + )\C ‘Ccentroid + )\e Eepi; (76)

with a progressive schedule on A as described in the main
paper.
Algorithm (Stage 2).

1. Input: Stage 1 parameters (), centroid observa-

. A k
tions cf,’(" ).

2. Set @ < 0™ and compute the baseline corner RMS

(1
error Ecm)rncr from ['cornelh

3. Initialize A; + )\gli“ and fix Ae.

4. For outer iterations t =1,...,T"
(a) Compute theoretical centroids &™) and
. (nk) ,
residuals eie(nzmzd in Eq. (66).

(n,i)

epi . and

(b) (If used) compute epipolar residuals e
Lepi-

(c) Assemble the residual vector and Jacobian for
Ltage2 With current Ac, Ae, and take one or
several LM steps on 6.

(d) Recompute the corner RMS error EY er.

(e) If Ec(f))rner > Eéégner + €, stop increasing A, (or
revert the last update) to protect corner accu-
racy.

(f) Otherwise, increase A towards AI*** (e.g., lin-
early or geometrically) and continue.

The final parameters after Stage 2 are denoted as 6*.
Here € is a small tolerance (0.01 pixels) controlling how
much the corner RMS is allowed to increase. In our ex-
periments, we typically choose a small A\™® so that early
iterations are dominated by Lcorner and Lepi, and a mod-
erate A" such that centroids significantly improve bias
without overfitting to local centroid noise.

This two-stage strategy realizes the design principle:
corners are hard constraints that define the primary
binocular geometry, while unbiased cell centroids act as
soft but informative regularizers that further reduce dis-
tortion and extrinsic bias, ultimately benefiting down-
stream structured-light 3D reconstruction.

10



S5 Additional Implementation Details

This section complements the main paper with con-
crete implementation details, hyper-parameters and
practical choices for all modules. We follow the co-
ordinate systems: world frame {W}, camera frames
{CL},{CF}, normalized planes {rf}, {rf'}, and pixel
planes {vl}, {vF}.

S5.1 Geometry-Aware Checkerboard
Super-Resolution

Network  architecture. The checkerboard super-
resolution (SR) module is implemented as a lightweight
encoder—decoder network:

e Input. Grayscale checkerboard ROI cropped in
the pixel plane {v*} and normalized to [0, 1].

e Encoder. Three 3 x 3 convolutional layers with
feature dimensions 32 — 64 — 64, stride 1 and
ReLU activations.

e Residual body. N, = 5 residual blocks; each
block contains two 3 x 3 convolutions (64 channels)
with a local skip connection.

e Upsampling. A pixel-shuffle layer with up-scale
factor x2, followed by a 3 x 3 convolution to gen-
erate the SR output.

This design keeps the model compact and efficient
while providing sufficient capacity to sharpen checker-
board edges and corners.

Training data and augmentation. The SR network is
trained offline from a mixture of synthetic and real data:

e Synthetic data. Ideal high-resolution checkerboards
are rendered in the world plane {W?}, then de-
graded by bicubic down-sampling, Gaussian blur,
exposure noise, and mild vignetting to simulate re-
alistic optics. The clean renders serve as ground-
truth HR targets.

e Real data. We capture calibration sequences with
our binocular system under different focus, expo-
sure and noise conditions. Checkerboard ROIs are
cropped and, when possible, approximate HR ref-
erences are obtained by temporal averaging of mul-
tiple frames or by down-scaling higher-resolution
captures.

Data augmentation includes random rotation (£5°),
small perspective warps, contrast jitter, and additive
Gaussian noise. All experiments use a fixed scale fac-
tor of x2.
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Loss and optimization. The SR model is trained with
a combination of intensity and gradient losses:

Lsr = |lIsr — Inr |1

+ v (HVCDISR — Velurl1 + [|VyIsr — VyIHR||1)~

(77)

where Ay is set to 0.1. We use Adam with an initial

learning rate of 1074, cosine decay, batch size 32, and

train for 300 epochs. The trained network is then fixed
for all calibration experiments.

S5.2 Corner and Centroid Extraction

Initial corner detection.
we perform:

For each calibration image,

1. Pre-processing. Convert to grayscale, apply a
small Gaussian blur (0 =~ 1) and contrast normal-
ization inside the checkerboard ROI.

2. Checkerboard localization. Run a Harris detec-
tor to obtain candidate corners, followed by a grid-
fitting step (RANSAC + least squares) to estimate
the board layout and reject spurious responses.

3. Sub-pixel refinement. Apply OpenCV’s
cornerSubPix in a 7 X 7 window to obtain initial
LR sub-pixel corners; then map them to SR coor-
dinates by scaling and cropping.

Saddle-point refinement. On the SR image, we ex-
tract a 19 x 19 patch around each initial corner and fit
the quadratic surface in Eq. (18). Coeflicients are solved
by linear least squares. The stationary point is obtained
by Eq. (23); if the Hessian fails the saddle condition in
Eq. (21) or the patch has insufficient contrast, we keep
the initial sub-pixel corner. Otherwise, we update the
corner to the saddle-point-refined location c]f,’(n’z).

Cell selection and moment preparation. Using the
refined corners, we construct the regular grid of cells
(squares) for each view:

e Cells touching the ROI boundary or partially oc-
cluded are discarded.

e For each valid cell, we form a quadrilateral in the
pixel plane {v®} from its four refined corners, com-
pute the geometric centroid via the polygon for-

mula, and treat it as the observed centroid éf,’(n’k).

e The four corners are then mapped to the normal-
ized plane {r®} using the current intrinsics and
distortion parameters. From these four vertices
we compute polygon moments M%®(s,n, k) using
Eq. (35), which are fed into the unbiased centroid
model (Eq. (48)) in Stage 2.



S5.3 Two-Stage Calibration Hyper-Parameters

Stage 1 (corner-only). Stage 1 follows the Zhang-
style initialization and bundle adjustment described in
Sec. . Typical settings are:

e Initialization. We run OpenCYV stereo calibration
with refined corners to obtain initial K*, k° and
per-image extrinsics. When the baseline between
cameras is known, we fix its magnitude during op-
timization.

e Optimizer. Levenberg—Marquardt (damped
Gauss—Newton) with initial damping Ao = 1073,
maximum 50 iterations.

e Stopping criteria. Relative decrease of Lcorner

below 10™8 or parameter increment norm below
1078.

e Parameter bounds. Focal lengths are con-
strained to a narrow interval around the initial
estimate; distortion coefficients are bounded (e.g.
|d?| < 1) to avoid degenerate solutions.

Stage 2 (centroid-assisted). Stage 2 minimizes the
combined loss LstageQ = Ecorner + /\c Lcentroid + )\e Eepi
starting from the Stage 1 optimum:

e Weights. We use A" = (.01, A8 = 0.5. The
centroid weight starts from A™" and is multiplied
by 2 after every 5 outer iterations until it reaches
AD# or the corner safeguard is activated. The
epipolar weight is fixed to A, = 0.1.

e Corner safeguard. Let Eéégner be the Stage 1
RMS corner error. During Stage 2, if the cur-
rent RMS exceeds Eééﬁncr + € with € = 0.01 pixels,
we stop increasing A. (and optionally revert the
last update). This enforces the “corner-as-hard-
constraint” principle.

e Inner iterations. For each outer step (fixed
Acs Ae), we run up to 10 LM iterations on Lgtage2,
using the Jacobians described in Sec. and Sec. .

In practice, Lcentroid decreases rapidly in the first few
outer iterations, yielding noticeable improvements in dis-
tortion and extrinsics, while the corner RMS remains al-
most unchanged thanks to the safeguard.

S5.4 Runtime and Memory

All experiments are conducted on a workstation with
an Intel Xeon CPU and a single NVIDIA RTX-class
GPU, using single-precision (FP32) computation for the
SR network and double precision for optimization:
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e For a typical 1920 x 1200 image, checkerboard SR
inference on a 256 x 256 ROI takes approximately
5-8 ms per camera.

e Corner detection, saddle-point refinement and cen-
troid computation together require around 10—
20 ms per image.

e Stage 1 and Stage 2 calibration with up to Nimg =
20 image pairs complete within one second on CPU.

e The peak GPU memory usage for SR is below 1 GB,
and the memory footprint of the optimization is
dominated by Jacobian storage, which stays well
within a few hundred MB.

Therefore, the proposed pipeline can be integrated into
existing structured-light 3D reconstruction systems with
negligible computational overhead while providing signif-
icant gains in calibration accuracy.



S6 Structured-Light 3D Reconstruction

Our stereo structured-light 3D reconstruction system
is a highly integrated experimental platform designed to
perform high-precision 3D measurements. The entire sys-
tem consists of two core subsystems that work in synergy
to reconstruct the 3D geometric information of an object.

e Imaging System: We utilize a pair of grayscale
stereo cameras with identical parameters and
a high resolution of 1024x1280 pixels. These
grayscale cameras are capable of capturing high-
contrast stripe patterns, avoiding potential errors
caused by color channel crosstalk in color cam-
eras. The cameras’ wide field of view (approx. 55°
horizontal, 44° vertical) ensures a sufficiently large
overlapping region, providing rich information for
stereo matching.

e Projection System: The heart of the projec-
tor is a high-performance MEMS (Micro-Electro-
Mechanical System) single-axis micromirror. Un-
like traditional DLP projectors, the MEMS mi-
cromirror can project structured-light patterns at
extremely high speeds and with remarkable pre-
cision. The coding strategy we employ combines
Gray code and phase-shifting code. Gray code is
used for the unique identification of each pixel,
solving the spatial encoding problem, while phase-
shifting code provides sub-pixel-level precise phase
information, significantly enhancing the accuracy
of depth measurements.

Reconstruction Workflow: In each experimental scene,
the projection system rapidly projects a sequence of 18
coded patterns. The imaging system, equipped with a
global shutter, synchronously captures these 18 images.
Subsequently, using our pre-calibrated camera parame-
ters and the precise phase information decoded from the
stripe images, the system employs the principle of trian-
gulation to compute the 3D coordinates of every visible
point in the scene, ultimately achieving high-accuracy 3D
reconstruction. This entire process is highly automated,
ensuring both efficiency and accuracy in data acquisition
and reconstruction.

13



S7 Implementation Details of Experiments
S7.1 Dataset Generation

Simulated Data To provide a controlled experimen-
tal environment with precise ground truth, we generated
the first set of calibration photos using Blender simula-
tion software. By keeping the stereo cameras stationary
and using a Python script to randomly change the vir-
tual calibration board’s pose (translation and rotation),
we were able to automatically simulate a wide range of
relative pose variations. This approach ensures high data
diversity and allows for precise control over all variables,
including camera parameters, noise types, and distortion
levels. This makes the simulated data ideal for quanti-
tative analysis and ablation studies, as well as for model
training and evaluation. For Fig. 4 in the article, we
took 18 photos, with poses as shown in Fig. 2.

Real-World Data To validate the simulation results
in a real-world setting, we collected a second set of pho-
tos using a physical experimental system, as shown in
Fig. 1. Data was acquired using two methods: Manual
Collection: The stereo cameras were fixed, and a calibra-
tion board was manually moved to capture a variety of
poses. Robot-Assisted Collection: The calibration board
was attached to the end of a six-axis robotic arm. This
method allowed for precise and repeatable control over
the board’s pose, resulting in high-accuracy calibration
data. During real-world data collection, we observed that
the calibration accuracy did not significantly improve
when the number of photos exceeded 30. Therefore, to
achieve an optimal balance between calibration accuracy
and collection efficiency, each photo set was limited to 30
images.

Camera calibration is a prerequisite for accurate met-
ric reconstruction in stereo and structured-light systems,
because it establishes the mapping from image mea-
surements to physical 3D geometry via the intrinsic
parameters and the lens distortion model. As shown
in Fig. 4(al-c3), real captures often suffer from se-
vere photometric degradation across under/normal/over-
exposure conditions, resulting in low-SNR regions, in-
tensity compression, and saturation-induced -clipping.
These effects directly destabilize feature extraction (e.g.,
checkerboard corners) and can bias the estimated intrin-
sics if not properly accounted for.

Geometric distortion introduces an additional, purely
spatial source of error. Fig. 3(a) illustrates how an ideal
imaging point is displaced by lens distortion, which can
be decomposed into radial and tangential components,
and Fig. 3(b—d) visualizes the corresponding warping of
a regular grid. Even small residual distortions can trans-
late into systematic reprojection errors and, in stereo set-
tings, into imperfect epipolar alignment.

Finally, defocus and motion blur further undermine
calibration robustness by attenuating high-frequency
edges and smearing corner structures, effectively reduc-
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ing the localization precision and increasing ambiguity
in correspondence. Taken together, noise (Fig. 4), dis-
tortion (Fig. 3), and blur constitute three dominant
degradations that challenge reliable calibration in prac-
tical acquisitions; hence, a robust calibration pipeline
must jointly tolerate low SNR and saturation, accurately
model and compensate lens distortion, and maintain sub-
pixel feature localization accuracy under blurred obser-
vations.

S7.2 Experimental Supplement

To keep the main manuscript concise, we provide ad-
ditional qualitative and quantitative results that further
validate the proposed GeoRobustCalib framework.

First, Supplementary Fig. 5 expands the analysis of
Module 1 in Fig. E3 (main article) by visualizing the
intermediate outputs of the geometry-aware checker-
board super-resolution pipeline, including the original
calibration image, Harris-based corner segmentation,
homography-driven grid reconstruction, and the final
super-resolved checkerboard with background suppres-
sion. These results confirm that the SR module selec-
tively enhances only the checkerboard region, producing
sharper and more geometrically consistent edges while
leaving the background largely unchanged, which directly
benefits downstream corner and centroid estimation.

Second, Supplementary Fig. ?? provides a focused ex-
periment corresponding to Fig. 3 (main article), where
the Stage 1 calibration already achieves nearly optimal
corner accuracy for a given image set. In this setting,
Stage 2 is configured to preserve the Stage 1 corner re-
projection RMS (0.465 pixels for the left camera) and
only refine the cell centroids. The centroid reprojection
RMS is further reduced from 0.385 pixels to 0.376 pixels
without sacrificing corner accuracy, illustrating that the
centroid-assisted refinement acts as a gentle regularizer
that reduces systematic bias in distortion and extrinsics
while strictly enforcing the “corners-as-hard-constraints,
centroids-as-soft-priors” design principle.

Third, Supplementary Table 1 provides a detailed nu-
merical counterpart to Fig. 4 (main article) by reporting
the estimated intrinsic parameters on synthetic stereo
data with known ground truth under controlled Gaus-
sian noise, blur, and additional radial distortion. For
each degradation type and three interference levels, we
report the mean and standard deviation over 30 inde-
pendent trials for both the MATLAB toolbox and the
proposed method. Across all conditions, our estimates of
focal lengths, principal point, and first radial distortion
coefficient remain consistently closer to the ground truth
and exhibit smaller variance than the MATLAB base-
line, especially at higher interference levels, which quan-
titatively corroborates the robustness trends observed in
Fig. 4 (main article).
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TABLE I: The details in Figure 4 of the main article. Stereo calibration on synthetic data with known ground truth (GT). For
each degradation type (Gaussian noise, blur, and additional radial distortion), we test three interference levels and report the
mean *+ standard deviation of the estimated intrinsics over 30 trials. Best results (closer to GT) are in bold.

Condition Level Method fz fy Cx Cy k1
GT (true) — — 694.5399 694.5197 250.2381 250.4674 —0.0018
Noise NS=0.01 MATLAB 693.540.40 695.540.42 251.240.40 249.540.45 —0.0030+0.0005
Ours 694.4+0.10 694.6+0.11 250.3+0.10 250.4+0.12 —0.001940.0002
NS=0.03 MATLAB 693.34+0.50 695.840.52 251.540.50 249.240.55 —0.0033+0.0007
Ours 694.3+0.12 694.7+0.13 250.4+0.12 250.3+0.14 —0.002040.0002
NS=0.05 MATLAB 693.0£0.60 696.0+£0.65 251.84+0.60 248.9140.65 —0.003640.0009
Ours 694.2+0.15 694.84+0.16 250.4+0.15 250.3+0.17 —0.0021+0.0003
NS=0.07 MATLAB 692.840.70 696.240.75 252.040.70 248.74+0.75 —0.0039+0.0011
Ours 694.1+0.18 694.8+0.19 250.5+0.18 250.2+0.20 —0.00224+0.0004
NS=0.1 MATLAB 692.61+0.85 696.440.88 252.240.85 248.540.88 —0.0042+0.0014
Ours 694.0+0.22 694.9+0.23 250.6+0.21 250.1+0.23 —0.0023+0.0005
NS=0.15 MATLAB 692.440.95 696.54+1.00 252.440.95 248.34+1.00 —0.0045+0.0017
Ours 693.9+0.26 695.0+£0.28 250.7+0.25 250.0+0.27 —0.00244+0.0006
Blur BS=0.5 MATLAB 695.64+0.45 693.440.48 249.240.42 251.54+0.50 —0.0031+0.0006
Ours 694.6+0.11 694.4+0.12 250.1+0.11 250.6+0.13 —0.00194+0.0002
BS=1.0 MATLAB 695.91+0.55 693.1+£0.60 248.940.55 251.84+0.60 —0.003440.0008
Ours 694.7+0.14 694.3+0.15 250.0+0.14 250.7+0.16 —0.00204+0.0003
BS=1.5 MATLAB 696.14+0.68 692.840.72 248.64+0.65 252.14+0.75 —0.0037+0.0010
Ours 694.8+0.18 694.2+0.19 249.9+0.18 250.8+0.20 —0.0021+0.0004
BS=2.0 MATLAB 696.340.80 692.640.85 248.440.78 252.440.88 —0.0040+0.0013
Ours 694.9+0.22 694.1+0.23 249.81+0.22 250.9+0.25 —0.00224+0.0005
BS=2.5 MATLAB 696.510.92 692.440.98 248.240.90 252.64+1.00 —0.0043+0.0016
Ours 695.0+0.26 694.0+£0.28 249.71+0.26 251.0+0.30 —0.00234+0.0006
BS=3.0 MATLAB 696.61+1.05 692.3+1.10 248.0+1.05 252.84+1.15 —0.0046+0.0019
Ours 695.1+0.30 693.9+0.33 249.6+0.30 251.1+0.35 —0.00244+0.0007
Distortion k1 = —0.15 MATLAB 693.41+0.50 695.7+£0.55 251.440.48 249.31+0.52 —0.003240.0007
Ours 694.4+0.12 694.6+0.14 250.3+0.12 250.4+0.13 —0.00194+0.0002
k1 =—-0.1 MATLAB 693.240.62 696.040.65 251.740.58 249.040.62 —0.0035+0.0009
Ours 694.3+0.16 694.74+0.18 250.4+0.16 250.3+0.17 —0.00204+0.0003
k1 = —0.05 MATLAB 693.040.75 696.340.78 252.040.70 248.74+0.75 —0.0038+0.0011
Ours 694.2+0.20 694.8+0.22 250.5+0.20 250.2+0.22 —0.0021+0.0004
k1 = 0.05 MATLAB 696.0+0.78 693.14+0.80 249.040.72 251.840.80 —0.0037+0.0011
Ours 694.8+0.21 694.21+0.23 250.0+0.21 250.7+0.24 —0.0021+0.0004
k1 =0.1 MATLAB 696.340.88 692.840.92 248.74+0.85 252.14+0.92 —0.0040+0.0014
Ours 694.9+0.25 694.1+£0.27 249.91+0.25 250.8+0.29 —0.00224+0.0005
k1 =0.15 MATLAB 696.64+1.00 692.54+1.05 248.440.95 252.441.05 —0.0043+0.0017
Ours 695.0+0.30 694.0+£0.32 249.8+0.30 250.9+0.34 —0.00244+0.0006

function in Green’s theorem; here we show a generic form
for illustration. In practice, we use closed-form expressions
derived once and reused for all cells.

* Electronic address: dyqgiao@nwpu.edu.cn

T Electronic address: benquan001@e.ntu.edu.sg

¥ Electronic address: yijie.shen@ntu.edu.sg

! The exact expression depends on the choice of potential
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FIG. 1: Dataset acquisition system and structured-light 3D reconstruction pipeline. (a) Experimental setup of the binocular
structured-light system, consisting of a left camera, a right camera, and a projector observing the common measurement
volume. (b) Typical projection—capture sequence, including Gray-code images and phase-shifting fringe patterns, together with
the decoded depth/absolute-phase maps. (c¢) Final 3D reconstruction result obtained from the absolute phase, illustrating the
complete processing chain used throughout our experiments.
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FIG. 2: Pose distribution of the calibration board used in Fig. 4 of the main article. The calibration images are grouped into
five representative view types: standard (parallel) views, different-distance views, horizontal-tilt views, vertical-tilt views, and
composite-tilt views. Each tile corresponds to a specific board pose (e.g., left/right /upper/lower/central, near/far, +15°/430°
tilts), showing that the dataset covers diverse translations and rotations of the checkerboard in front of the stereo rig.
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FIG. 3: Illustration of lens distortion and its effects on a grid pattern. (a) Schematic of an ideal imaging point (black)
and its distorted observation (red), decomposed into radial distortion d, (along the radial direction) and tangential distortion
d; (orthogonal component caused by decentering/tilt). (b—d) Example grid projections under different distortion conditions:
(b) undistorted reference grid, (¢) predominantly radial distortion producing barrel/pincushion-like bending, and (d) combined
radial and tangential distortion leading to asymmetric warping of the grid.
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FIG. 4: Photometric degradation across exposures and its effect on signal/noise distributions. (al-a3) Represen-
tative checkerboard captures under underexposure, normal exposure, and overexposure, respectively. (b1-b3) Corresponding
3D visualisations of the normalised intensity distribution over the image plane (pixel coordinates in x and y), highlighting signal
compression in dark regions (underexposure) and saturation/clipping in bright regions (overexposure). (c1-c3) Estimated noise
(or residual) magnitude distribution over the same images, showing elevated noise in low-signal areas for underexposure and
distorted /noisy responses around saturated regions for overexposure. These results motivate robust calibration and reconstruc-
tion under high-dynamic-range acquisition conditions.
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FIG. 5: Intermediate results of Module 1: geometry-aware checkerboard super-resolution (corresponding to Module 1 in Fig. E3
of the main article). (a) Original calibration image. (b) Initial corner response and coarse corner segmentation. (c) Estimated
checkerboard region mask. (d) Homography-based initial grid reconstruction. (e) Background image with the checkerboard
suppressed. (f) Super-resolved checkerboard after geometry-aware SR. These visualizations confirm that Module 1 sharpens
the grid structure while effectively removing background clutter.
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FIG. 6: Supplementary analysis for Fig. 3 in the main article. Reprojection error histograms in the z- and y-directions for
the left camera over all calibration views, comparing Stage 1 and Stage 2. The corner reprojection RMS remains unchanged
between the two stages (0.465 pixels), while the centroid reprojection RMS is slightly reduced (from 0.385 pixels to 0.376 pixels).
This verifies that Stage 2 refines only the centroids and preserves the high corner accuracy obtained in Stage 1, so that corners
keep their dominant role in the optimization.
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