1 A Fusarium graminearum effector protein subverts plant immunity by targeting the

2 TaRPMI1-TaHSA32 regulatory axis
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5  Supplementary Fig. 1 Identification of putative candidate effectors from F.

6  graminearum.

7 (a) The expression of F. graminearum effectors candidates at different infection time
8  points (12, 24, 48, and 72 hpi). The mean expression levels (n=3), presented as logz-
9 transformed transcripts per million (TPM) values, were used to generate a heatmap using

10 TBtools.
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(b) Transcript levels of FgUP7 during F. graminearum infection of wheat heads (0, 24,
48 and 72 hpi). FgActin was used as the internal reference gene. Standard deviation and
mean fold changes from three biological replicates. The asterisk indicates a significant

difference compared with the sample at 0 hpi (one-tailed Student’s t test).

(c) Phylogenetic analysis of FgUP7 orthologs. The phylogenetic tree was constructed
with MEGA7 using neighbor-joining methods. The scale bar corresponds to a genetic

distance of 0.02.
(d) The signal peptide of FgUP7 was predicted by Signa-IP 6.0.

(e) The localization of FgUP7 and FgUP74%" was achieved by infecting N. benthamiana
leaves with A. tumefaciens strains containing FgUP7 and FgUP74%". Fluorescence signals

were detected at 48 hpi. Bar, 50 pm.
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Supplementary Fig. 2 Confirmation of F. graminearum effector candidate (FgUP7)

mutants and the plant basal defense gene expression.

(a) Schematic diagram showing the construction of homologous recombination of the

gene knockout box.

(b) (1) upstream region of FgUP7 was determined using LF/HYGR primers in lanes 1, 4,
7, and 10; (2) downstream sequence of FgUP7 was detected using HY GF/RR primers in
lanes 2, 5, 8, and 11; (3) partial sequence of FgUP7 was amplified using UP7F/UP7R
primers in lanes 3, 6, 9, and 12; M: DL5000 marker.
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(¢) Suppression of Bax-induced ion leakage by transiently expressed FgUP7 in leaves of

4-wk—old N. benthamiana plants.

(d) The expression levels of NbPRI and NbPAD4 were analyzed by RT—qPCR after
transient expression of GFP (control) and FgUP7 in leaves of N. benthamiana plants. The

values are represented by means + SD from three biological replicates (one-tailed

Student’s #-test).

(e) Relative expression levels of TaMAPK3, TaPRI and TaFLS2 in WT and FgUP7
deletion mutant during wheat head infection. The values are represented by means + SD

from three biological replicates (one-way ANOVA test).
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Supplementary Fig. 3 Schematic representation of TaRPMI1 protein domain

architecture and FgUP7-mediated degradation of TaARPM1.

(a) Diagram of TaRPM1 domain truncations.

(b-f) In vitro degradation assays examining the effect of FgUP7 on full-length TaRPM1
and its truncated proteins. MBP-FgUP7 was co-incubated with GST (b), GST-TaRPM1
(¢), GST-TaRPM1-CC (d), GST-TaRPM1-NB-ARC (e), or GST-TaRPM1-LRR (f) at
37°C for 0, 2, 4, and 6 hours. Protein levels were detected using anti-MBP and anti-GST

antibodies.
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Supplementary Fig. 4 The KN9204 mutant of TaARPM1 confers susceptibility to F.

graminearum.

(a) Disease symptoms on coleoptiles of the knrpm 1-8840 mutant at 5 days post-

inoculation with the wild-type F. graminearum strain.

(b) Distribution of disease indices on coleoptiles of the knrpm1-8840 mutant at 5 days
post-inoculation with the wild-type F. graminearum strain. Data are from three

independent experiments.
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Supplementary Fig. 5 Editing types and expression levels of Z7aRPM1 transgenics.

(a) CRISPR/Cas9-mediated gene editing of 7aRPM 1. Mutations of 7aRPM1 from
individual editing lines (KO1#, KO2#) were confirmed by DNA sequencing and are
presented as chromatographs. The number followed by chromatographs represents the

nucleotide change (-, nucleotides missing).

(b) The expression levels in T3 generation 7aRPM1 overexpressing lines (OE1# and
OE2#) were determined by RT-qPCR. Data represent mean + s.e.m (n = 3).
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Supplementary Fig. 6 Overexpression of 7aRPM]1 has no significant effect on the

agronomic traits of wheat.

(a) Representative images of Fielder, 7aRPM-OE, and TaRPM1-KO plants at the

flowering stage and mature stage.

(b) Seed shape of Fielder, TaRPM1-OE, and TaRPM1-KO plants at the kernel ripe stage.
Bar, 1 cm. ¢ Time to heading, plant height, thousand-grain, weight grain width, and grain
length of Fielder, 7aRPM1-OE, and TaRPM1-KO plants. Values represent the means +
SD from at least three independent replicates. All the data were compared to that of wild-
type Fielder using a one-way ANOVA test. In the box plots: center line, median; box,
interquartile range; whiskers, 1.5% interquartile range; and point, the data for agronomic

traits.
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Supplementary Fig. 7 TaRPM1 interacts with TaHSA32.

(a) Yeast two-hybrid assays showed no interaction between the empty AD vector and
TaRPM1 or its domains (CC, NB-ARC, LRR), confirming that these constructs serve as
negative controls. Transformants were grown on DDO (SD/-Trp/-Leu) and QDO (SD/-
Trp/-Leu/-His/-Ade) media.

(b) Co-localization of TaRPM1 and TaHSA32. N. benthamiana leaves were infiltrated
with a mixture of 4. tumefaciens strains co-expressing the indicated constructs.

Fluorescence signals were detected at 48 hpi. Bar, 50 pm.

(c) Interaction between TaRPM1 and TaHSA32 was detected using BiFC assays. N.
benthamiana leaves were infiltrated with a mixture of 4. tumefaciens strains co-

expressing indicated constructs. GFP signals were detected at 48 hpi. Bar, 50 um.
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Supplementary Fig. 8 The N-terminus of TaRPM1-CC are required for interactions
with TaHSA32.

Interaction assays of TaHSA32 with TaARPM1-CC mutants in yeast. Transformants were
grown on DDO (SD/-Trp/-Leu) and QDO (SD/-Trp/-Leu/-His/-Ade) media.

100
B0l
6O

noa
e 3

Relative mRNA levels
s @
o

@

b b b

o

Supplementary Fig. 9 Temperature induction of TaHSA32.

RT—qPCR was performed to assess the transcript levels of 7aHHSA32 in wheat leafs

subjected to 6-hour treatments at different temperatures (15, 20, 25, 30, and 35 °C).
TaActin was used as the internal reference gene. Values are mean + SD (n=3). Different

letters indicate significant differences (P < 0.05) based on one—~way ANOVA and

Duncan's multiple range test.
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Supplementary Fig. 10 FgUP7 and TaHSA32 are co-localized.

(a) Co-localization of FgUP7 and TaHSA32 N. benthamiana leaves were infiltrated with
a mixture of A. tumefaciens strains co-expressing the indicated constructs. Fluorescence

signals were detected at 48 hpi. Bar, 50 pm.

(b) Yeast three-hybrid assay was performed to assess TaRPM1-CC-TaHSA32 interaction
in the presence or absence of FgUP7. An unlabeled TaRPM1-CC construct was used as a

control.
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110  Supplementary Fig. 11 BARPM1 positively regulates B. distachyon resistance to F.
111  graminearum.

112  (a) Protein homology alignment between TaRPM1 and BARPM1;

113 (b) Schematic diagram of the protein structure of BARPM1;

114  (¢) RT—gPCR analysis of BARPMI induction by F. graminearum infection. Expression

115  levels were normalized to the non-inoculated spike tissues of Bd21-3 at 3 days (set as 1),
116  with BdTUAG6 used as the internal reference gene. Data are from three biological

117  replicates;

118  (d) CRISPR/Cas9-mediated gene editing of BdRPM . Mutations in BdRPM1 from
119  individual edited lines (kol, ko2) were confirmed by DNA sequencing. Numbers indicate



120
121
122

123
124
125

126

127

128
129
130
131
132

133
134
135
136

137
138
139

nucleotide changes (—, nucleotide deletion; +, nucleotide insertion). e Representative
images of Bd21-3 and bdrpm-ko spikes inoculated with the wild-type strain of F.

graminearum, photographed at 7 days post-inoculation (dpi);

(f) Disease index distribution in Bd21-3 and bdrpm [-KO spikes at 10 dpi after
inoculation with the wild-type strain of F. graminearum, determined from three

independent experiments.
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Supplementary Fig. 12 BARPM1 interacts with BAHSA32.

(a) Yeast two-hybrid assays revealed an interaction between BARPM1 (or its individual
domains: CC, NB-ARC, and LRR) and BdAHSA32. No interaction was observed between
the empty AD vector and BARPMI or its domains (CC, NB-ARC, LRR), confirming that
these domains served as negative controls. Transformants were cultured on DDO (SD/-

Trp/-Leu) and QDO (SD/-Trp/-Leu/-His/-Ade) media.

(b) Interaction between BARPM1 (and its truncations BARPM1-CC, -NB-ARC, and -
LRR) and BAHSA32 was detected using BiFC assays. N. benthamiana leaves were
infiltrated with a mixture of 4. tumefaciens strains co-expressing indicated constructs.

GFP signals were detected at 48 hpi. Bar, 50 um.

(¢) Co-localization of BARPM1 and BAHSA32. N. benthamiana leaves were infiltrated
with a mixture of 4. tumefaciens strains co-expressing the indicated constructs.

Fluorescence signals were detected at 48 hpi. Bar, 50 um.



