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S1 Evaluation Metrics

We describe the formula for each evaluation metric
used to assess performance. We employ standard
metrics commonly used in depth estimation and
completion tasks. We note that all metrics except
d, are better when they become lower.
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S2 Scale Invariant Metric in
Global and Segment Scale

We show the superiority of our method over the
simple combination of an affine transformation
and an MDE model in Table 1. To further justify
synthetic pair generation with random rescal-
ing independently for each segment, we measure
SILog metrics in two scales, global and segment,
and report the results in Table S1. The result of
a typical SILog calculation between the estimated
depth map and the ground truth depth map is
shown in the ‘global’ column, which is identical to
Table 1. For the segment scale, we first segment
the MDE depth map with the segmentation net-
work (fseq), compute the SILog for each segment,
and average the calculated SILog metrics. Since
we measure scale invariant accuracy within each
segment, depth error between segments is not cal-
culated. The segment scale SILog is written in the
‘segment’ column.

The significant reduction in SILog when com-
puted segment-wise reveals a key insight: while
the global scale of monocular depth predictions
is unreliable, local regions often exhibit internally



Table S1: Comparison of scale invariant metric (SILog) in two scales (global, segment). The values are

multiplied by 100.

Method ‘ Global Segment
DepthAnything with global affine transformation 184.87 8.51
DepthAnything with segment-wise affine transformation | 1.754 1.18
Ours | 0.022  0.023

consistent depth structures. This observation pro-
vides strong empirical motivation for our proposed
method—refining relative depth predictions by
segmenting and rescaling each region individually
to synthesize training data. By leveraging this
piecewise geometric consistency, StarryGazer
circumvents the need for ground-truth depth while
achieving high accuracy across domains.

S3 Comparison with
Additional Baseline
Methods

S3.1 Supervised Depth Completion
Methods

We mostly compared our method with unsuper-
vised depth completion approaches in the main
manuscript. Here, we list the results of sev-
eral state-of-the-art supervised depth completion
methods in Table S2 and S3 for NYU Depth V2
and KITTI DC dataset, respectively. Considering
that the supervised methods require ground truth
dense depth maps when training the network,
our method achieves reasonable performance to
the supervised methods without using the ground
truth.

S3.2 Monocular Depth Estimation
Methods

As shown in Tables S4 and S5, we present compar-
isons with several state-of-the-art MDE methods
on the NYU Depth V2 and KITTI DC datasets.
Unlike MDE methods, which rely solely on RGB
input, our approach leverages both RGB and
sparse absolute depth data. Our method consis-
tently outperforms the MDE methods in both
datasets, achieving the lowest RMSE and Rel
values, along with high &, 95 scores, clearly demon-
strating the effectiveness of integrating sparse

depth information to improve estimation accu-
racy. On the NYU Depth V2 dataset, our method
achieves an RMSE of 0.171 and a Rel of 0.039,
and on the KITTI DC dataset, it achieves an
RMSE of 1.061 and a Rel of 0.039, outperform-
ing the MDE methods. These results highlight the
importance of combining RGB and sparse depth
inputs to produce more reliable and accurate
depth estimations.

S4 Experiments on Rendered
Handpose Dataset

As originally designed for hand pose estimation,
the Rendered Handpose dataset [25] consists of
RGB images, corresponding depth maps, seg-
mentation masks, and key point locations. Since
there is no depth information on the background
of humans, we train the model only on the
human region of the segmentation mask. It con-
sists of 41,258 and 2,728 training and testing pairs,
respectively.

The quantitative results in Table S6 show that our
method estimates much more accurate depth val-
ues than the unsupervised or MDE-based meth-
ods. Figure S1 presents the visual results on
the Rendered Handpose dataset. In this dataset,
sparse depth points are available only in the
human region, with no depth information pro-
vided for the background. The absence of back-
ground depth data makes it particularly challeng-
ing to estimate background depth values accu-
rately. Nevertheless, our method accurately esti-
mates depth values for points on the human figure,
achieving a close approximation to the ground
truth. In contrast, the competing method strug-
gles to capture the fine details of the human figure.
These results underscore our approach’s supe-
rior out-of-domain generalization, highlighting the
model’s robustness.



Table S2: Quantitative Comparison with
Supervised Depth Completion Methods
on NYU Depth V2.

Method | RMSE | Rel |
CSPN 1] 0117  0.016
DeepLiDAR [5] 0.115  0.022
GuideNet [6] 0.101  0.015
NLSPN [4] 0.092 0.012
ACMNet [45] 0.105  0.015
TWISE [9] 0.097  0.013
RigNet [7] 0.090  0.012
DySPN [3] 0.090  0.012
SpAgNet [10] 0.114 0015
CompletionFormer [8] 0.090  0.012
Ours | 0171 0.039

Table S4: Quantitative comparison with MDE
methods on NYU Depth V2 dataset.

Method | RMSE | | 01251 | Rel|
ZoeDepth [15] 0.277 | 0.953 | 0.077
ZeroDepth [16] 0.269 | 0.954 | 0.074
NeWCRFs [28] 0.334 | 0.922 | 0.095

IEBins [29] 0.314 | 0.936 | 0.087
Metric3D [19] 0.187 | 0.987 | 0.045
DepthAnything [18] 0.206 0.984 | 0.056
DepthAnything V2 [37] | 0.206 | 0.979 | 0.044
Ours | 0.171 | 0.999 | 0.039

Table S6: Quantitative comparison on Rendered
Handpose.

Method | MAE (m)} | RMSE (m)|

NLSPN [4] 0.485 0.563
CompletionFormer [8] 0.443 0.524
Depth Prompting [47] 0.700 0.797
Metric3D V2 [35] (global) | 0.479 0.564
Metric3D V2 [35] (segment) | 0.447 0.532
UniDepth V2 [36] (global) | 0.407 0.526
UniDepth V2 [36] (segment) | 0.398 0.478
Ours | 0.352 0.408

Table S3: Quantitative Comparison with
Supervised Depth Completion Methods
on KITTI DC.

Method | MAE | RMSE |
CSPN [1] 0279  1.019
DeepLiDAR 3] 0226  0.758
GuideNet [6] 0218  0.736
NLSPN [4] 0.199  0.741
PENet [2] 0210  0.730
ACMNet [45] 0.206  0.744
TWISE [9] 0.195 0.840
RigNet [7] 0203  0.712
GuideFormer [11] 0.207 0.721
DySPN [3] 0192  0.709
CompletionFormer [8] | 0.203 0.708
SemAttNet [38] 0205  0.709
Ours | 0.242 1.061

Table S5: Quantitative comparison with MDE
methods on KITTI DC dataset.

Method | RMSE | | 61051 | Rel]
ZoeDepth [15] 2281 | 0.971 | 0.053
ZeroDepth [16] 2.087 | 0.968 | 0.057
NeWCRFs [28] 2129 | 0.974 | 0.052

IEBins [29] 2.011 | 0.978 | 0.050
Metric3D [19] 1.766 | 0.989 | 0.039
DepthAnything [18] 1.896 0.982 | 0.046
DepthAnything V2 [37] | 1.861 | 0.983 | 0.045
Ours | 1.061 | 0.995 | 0.039

S5 Additional Ablation Studies

S5.1 Change of Performance
according to the Number of
Sparse Depth Points

In Table S7, we compare our method with
KBNet [48] according to the number of points
in input sparse depth maps. Our method shows
better MAE and RMSE values for all tested con-
figurations (50, 200, 500, and 2000 points). This
validates the robustness of our approach in han-
dling different levels of sparsity. Moreover, the
tendency for a larger performance gap when the
number of points gets smaller shows that our
model is capable of producing highly accurate esti-
mation results even with a small amount of given
information. We present a qualitative analysis of
our method in varying levels of input sparsity
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Fig. S1: Qualitative results on the Rendered Handpose dataset (out-of-domain). Sparse depth points
exist only on the human figure; the background has no depth.

Table S7: Sparsity analysis on NYU Depth V2: Quantitative comparison with KBNet using MAE and
RMSE across different numbers of sparse input points (50, 200, 500, 2000).

# of Points | 50 | 200 | 500 | 2000
Method | MAE| RMSE| | MAE| RMSE| | MAE| RMSE| | MAE| RMSE|

KBNet [50] | 0.300  0.450 | 0.180  0.280 | 0.106 ~ 0.198 | 0.102  0.170
Ours | 0.256  0.400 | 0.150 0.240 | 0.100 0.171 | 0.097 0.146

Sparse Depth
Fig. S2: Qualitative analysis of StarryGazer
with varying sparse point counts. Rows corre-

spond to n=50, 200, 500, and 2000 points.

Output Sparse Depth Output

in Figure S2. It illustrates how the quality of
depth completion improves as the number of input
points (n) increases. Specifically, at n = 50, the
depth map successfully captures most of the struc-
ture of the scene, showing the model’s robustness
even with a very sparse input despite the slight
loss of some finer details. As the number of input
points increases, from n = 200 to n = 500, the

depth maps begin to more accurately represent the
scene. The most accurate estimation is observed
when n = 2000, where the depth map is consider-
ably more detailed. This progressive enhancement
underscores the importance of input density in
achieving precise depth estimation, as higher point
counts provide richer spatial information for the
model to leverage.

Table S8: Ablations on filling the gaps on
NYU Depth V2.

Method | MAE | RMSE |
Masking out the gaps 0.141 0.232
Ours 0.100 0.171

S5.2 Effect on Filling the Gaps after
Rescaling

In our training pipeline (Stage 1), gaps with no
depth information are produced in synthetic depth
maps because of the missing data in the segmen-
tation masks; due to the segment sensitivity of the
segmentation network, there are regions that do



not belong to any segment, and such regions are
transformed into gaps after the rescaling process.
While just masking out these regions when calcu-
lating the loss may be a valid alternative, it can
lose valuable spatial information that could con-
tribute to the overall learning process. Moreover,
masking can make the training more complicated
by introducing discontinuities inside the depth
map. As described in Section 3.2, we conduct a
gap-filling process to ensure continuity of the syn-
thetic depth map. The gap-filling process can be
described as follows:

1. Identify non-zero elements to determine regions
with depth data.

2. Compute the average value within the non-
zero neighborhood of each zero-valued pixel
by applying a 5 X 5 convolution operation,
effectively smoothing over gaps.

3. Update only the zero-valued elements in the
depth image, preserving original depth values
where they exist.

This process enhances the continuity and quality
of the synthetic depth images, which is crucial for
effectively training the depth completion model.
We conduct experiments to compare the effect of
applying an average filter to fill in the gaps ver-
sus masking the gaps from the loss for training.
The results are presented in Table S8. By utilizing
the average filter to fill gaps or holes, the process
yields a more consistent and continuous train-
ing dataset, which in turn enhances the model’s
overall performance.

Table S9: Performance comparison with
different Monocular Depth Estimation
(MDE) models on the NYU Depth V2

dataset.
MDE Model ‘ MAE | RMSE |
ZoeDepth [15] 0.092 0.171
Metric3D V2 [35] 0.112 0.186
UniDepth V2 [36] 0.070 0.152
DepthAnything [18] 0.100 0.171
DepthAnything V2 [37] 0.095 0.169

S5.3 Ablations on the Type of
backbone MDE models

As shown in Table S9, we evaluate the effect of
MDE models on the final performance by replac-
ing the DepthAnything [18] model with other
Monocular Depth Estimation (MDE) models.
Compared to DepthAnything, UniDepth V2 [36]
shows substantially better performance, reducing
MAE by about 30% and also improving RMSE.
We attribute the result to the better generalizabil-
ity of the model.

Table S10: Inference time com-
parison with existing depth com-
pletion methods.

Method | Inference time (ms)

SS-S2D [12] 80
DFuseNet [13] 80
DDP [44] 80
VOICED [51] 44
AdaFrame [53] 40
SynthProj [49] 60
ScaffNet [52] 32
KBNet [50] 16
Ours ‘ 89

S6 Inference Time Comparison

We measure and compare the inference time in
Table S10 with a target depth map resolution
of 304 by 228 pixels. While our methods require
two large models (monocular depth estimation
and semantic segmentation) for training, only the
MDE model is used in the inference phase since we
do not generate synthetic pairs. In the main exper-
iment, we use DepthAnything with a ViT-S back-
bone that has the smallest number of parameters
among the available configurations to mitigate
the increase in inference time. Despite showing a
longer inference time, we argue that our method
is still meaningful, considering the improved per-
formance and the practical applicability of our
approach.



Table S11: Ablations on the
type of segment maps used
for generating synthetic dense

depth maps.
Mseg Iseg | MAE| RMSE |
X v 0.167 0.266
v v 0.124 0.188
v X | 0100  0.171

RGB GT Loy Mg
Fig. S3: Qualitative comparison of depth com-
pletion using RGB-based segmentation (Isg) and
relative depth-based segmentation (Mseg) for syn-
thetic data generation.

S7 Alternative Approach
without MDE Models

In our approach, synthetic training pairs are typ-
ically generated by applying segmentation to rel-
ative depth maps using MDE models [36, 37].
However, MDE models may struggle in complex
scenes, leading to inaccuracies. To address the
challenge, we propose an alternative approach
that bypasses the need for MDE models by
directly segmenting the RGB image and applying
affine transformations based on grayscale values
to create synthetic pairs.

We compare three strategies for generating
synthetic dense depth: using segmentation from
depth maps (Mgeg), from RGB images ([seg),
and a mixed strategy randomly choosing between
the two per iteration. As shown in Table S11,
M, consistently yields the most accurate results,
with lower MAE and RMSE. I, performs worse
due to over-segmentation in regions with uniform
depth, while the mixed strategy gives intermediate
results.

Qualitatively shown in Figure S3, Mges pro-
duces smoother and more stable depth predic-
tions, while Iy, can better preserve fine bound-
aries. This flexibility allows our method to adapt
depending on the availability and quality of MDE
outputs. Me, is ideal when MDEs are reliable,
while I, provides a viable alternative in their
absence.
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