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Performance evaluation on the In-Distribution (ID) dataset1

For in-distribution (ID) evaluation, we conducted experiments on the CE-Bench-Test dataset to2

compare our proposed CE-R1 with current state-of-the-art VLMs, including Gemma-3-12B 36,3

LLaVA-NeXT-Video 37, QVQ-72B-Preview 38, Qwen-2.5-VL-7B 31, Qwen-2.5-VL-32B 31, Llama-4

3.2-11B-Vision 39, and MedGemma-4B 40. As shown in Table S1, the CE-Bench-Test dataset en-5

compasses five main clinical tasks: anatomy identification (including organ and landmark iden-6

tification), endoscopic findings (covering both abnormal and normal findings), disease diagno-7

sis, report generation, and treatment planning. Table S1 presents a comprehensive breakdown of8

model performance across all 44 specific clinical sub-tasks, revealing CE-R1’s consistent superior-9

ity across the diverse clinical workflow with an overall accuracy of 68.15%±10.99%, substantially10

outperforming the best baseline model, Qwen-2.5-VL-32B (19.62%±8.50%), by a margin of 48.5311

percentage points. In anatomy identification, CE-R1 demonstrates exceptional precision in distin-12

guishing specific anatomical structures, achieving near-perfect performance in challenging land-13

mark recognition tasks including the ileocecal valve (99.5%±2.4%), pylorus (97.2%±5.5%), and14

large intestine (96.3%±6.3%), while baseline models largely fail at these fine-grained anatomical15

distinctions with most achieving accuracies below 15%. For endoscopic findings, CE-R1 main-16

tains superior detection capabilities across the full spectrum of pathological conditions, excelling17

in identifying critical findings such as active bleeding (91.0%±9.6%), ulcers (95.8%±6.7%), and18

foreign bodies (91.5%±9.3%), while also demonstrating robust performance in detecting subtle ab-19

normalities including lymphangiectasia (73.9%±14.6%), angiectasia (84.6%±12.0%), and elevated20

lesions (68.7%±15.5%), as well as achieving 97.4%±5.3% accuracy in identifying normal clean21

mucosa. In disease diagnosis, CE-R1 consistently outperforms baseline models across diverse gas-22

trointestinal conditions with particularly strong performance in duodenal bleeding (70.0%±3.3%),23

chronic gastritis (68.5%±8.8%), and duodenal ulcer (56.4%±6.3%), and for complex inflammatory24

conditions such as Crohn’s disease and ulcerative colitis, CE-R1 achieves accuracies of 45.2%±2.5%25

and 45.7%±7.1%, respectively, substantially exceeding baseline models which rarely surpass 40%.26

For the higher-level clinical tasks of treatment planning and report generation, CE-R1 demon-27

strates significant advantages with accuracies of 76.7%±5.9% and 81.4%±6.4%, respectively, sub-28

stantially outperforming the best baseline model Qwen-2.5-VL-32B (35.1%±4.5% for treatment29

planning and 38.2%±5.8% for report generation). This comprehensive analysis underscores that30

CE-R1’s advantages extend beyond aggregate performance metrics to encompass reliable compe-31

tency across the nuanced spectrum of clinical scenarios encountered in capsule endoscopy practice,32

establishing its potential for comprehensive clinical deployment.33
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Supplementary Table S1: Performance comparison among different methods on CE-Bench-Test dataset. S.I.
is the abbreviation for small intestine.

Main
Category Sub-Task Gemma

-3-12B
LlaMA-3.2
-11B-Vision

LLaVA-NeXT
-Video

MedGemma
-4B

QVQ-72B
-Preview

Qwen2.5-VL
-32B

Qwen2.5-VL
-7B CE-R1

Anatomy
Identification

Stomach 9.97±9.99 27.93±14.96 9.86±9.94 20.25±13.40 8.02±9.05 2.56±5.26 13.68±11.46 95.77±6.71
Esophagus 26.98±14.80 36.08±16.01 12.27±10.93 39.11±16.27 4.04±6.56 4.76±7.10 11.40±10.59 50.51±16.67
Small intestine 12.47±11.01 27.63±14.91 14.42±11.71 13.57±11.41 43.93±16.54 89.76±10.10 20.22±13.39 94.31±7.72
Large intestine 15.28±11.99 1.81±4.44 12.98±11.20 18.27±12.88 2.31±5.01 0.17±1.38 21.45±13.68 96.29±6.30
Duodenal bulb 2.34±5.04 9.78±9.90 0.53±2.42 0.32±1.88 9.14±9.61 11.90±10.79 3.51±6.13 80.00±13.33
Duodenal papilla 0.00±0.00 12.50±11.02 12.50±11.02 0.00±0.00 12.50±11.02 0.00±0.00 0.00±0.00 37.50±16.14
Ileocecal valve 9.65±9.84 3.25±5.91 0.63±2.64 0.16±1.32 4.61±6.99 6.24±8.06 3.25±5.91 99.48±2.40
Antrum 2.39±5.09 2.26±4.95 0.39±2.07 0.32±1.89 0.77±2.92 0.13±1.20 2.84±5.54 93.96±7.94
Pylorus 5.59±7.65 13.30±11.32 2.39±5.10 0.27±1.72 1.06±3.42 6.65±8.30 6.65±8.30 97.24±5.46

Endoscopic
Finding

Active bleeding 0.27±1.74 0.68±2.75 0.27±1.74 1.50±4.06 1.78±4.41 8.34±9.22 0.14±1.23 90.97±9.55
Fresh blood stains 0.00±0.00 0.86±3.08 0.00±0.00 3.45±6.08 0.86±3.08 15.52±12.07 0.00±0.00 75.00±14.43
Old blood stains 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 66.67±15.71
Erosion 2.40±5.10 0.82±3.00 0.31±1.84 0.31±1.84 1.79±4.41 9.85±9.93 2.60±5.31 69.08±15.41
Ulcer 4.83±7.15 6.90±8.45 0.73±2.85 2.17±4.86 10.95±10.41 20.31±13.41 4.73±7.08 95.79±6.70
Congestion 0.00±0.00 0.13±1.19 0.13±1.19 0.38±2.06 0.76±2.90 0.51±2.37 0.76±2.90 71.21±15.09
Erythema 2.33±5.02 0.00±0.00 0.00±0.00 9.30±9.68 0.00±0.00 2.33±5.02 2.33±5.02 44.19±16.55
Inflammation lesion 2.17±4.86 10.87±10.38 4.35±6.80 19.57±13.22 15.22±11.97 34.78±15.88 15.22±11.97 34.78±15.88
Foreign body 0.00±0.00 10.11±10.05 1.06±3.42 14.36±11.69 2.13±4.81 3.19±5.86 1.06±3.42 91.49±9.30
Parasitosis 0.00±0.00 6.74±8.36 0.00±0.00 0.00±0.00 3.37±6.02 4.49±6.91 1.12±3.51 82.02±12.80
Lymph Follicle
Hyperplasia 0.27±1.74 0.00±0.00 0.00±0.00 0.00±0.00 0.27±1.74 0.00±0.00 0.00±0.00 79.35±13.49

Lymphangiectasia 0.58±2.53 0.29±1.79 0.00±0.00 0.00±0.00 0.29±1.79 0.00±0.00 0.00±0.00 73.91±14.64
Elevated lesion 2.04±4.71 4.76±7.10 1.36±3.86 7.48±8.77 10.20±10.09 16.33±12.32 6.12±7.99 68.71±15.46
Polypoid lesion 15.82±12.16 15.82±12.16 2.55±5.26 1.53±4.09 12.76±11.12 18.37±12.91 11.73±10.73 64.29±15.97
Diverticula 0.00±0.00 0.00±0.00 0.00±0.00 12.50±11.02 0.00±0.00 0.00±0.00 0.00±0.00 56.25±16.54
Angiectasia 0.43±2.17 1.28±3.75 0.43±2.17 0.00±0.00 5.56±7.64 10.68±10.30 0.00±0.00 84.62±12.03
Vascular
abnormalities 3.51±6.13 1.66±4.26 0.18±1.43 0.37±2.02 9.04±9.56 11.99±10.83 0.00±0.00 77.31±13.96

Normal clean mucosa 0.02±0.47 19.65±13.25 9.38±9.72 2.61±5.32 12.43±11.00 24.33±14.30 13.05±11.23 97.43±5.27

Disease
Diagnosis

Colonic bleeding 6.25±3.61 18.75±3.61 0.00±0.00 18.75±3.61 18.75±6.91 18.75±6.91 6.25±3.61 50.00±5.89
Colonic ulcer 40.74±8.83 26.85±7.02 8.33±5.56 33.33±7.52 37.04±9.81 42.59±9.57 22.22±7.75 45.37±8.70
Ulcerative colitis 40.00±10.89 18.33±8.68 0.00±0.00 44.00±9.49 33.00±7.20 23.33±6.67 35.33±6.80 45.67±7.09
Duodenal bleeding 10.00±3.33 0.00±0.00 0.00±0.00 10.00±3.33 10.00±3.33 40.00±0.00 20.00±6.67 70.00±3.33
Duodenal
inflammation 17.98±7.71 14.11±5.76 4.17±3.44 22.14±7.96 20.60±6.63 25.83±7.37 18.57±7.51 46.25±7.13

Duodenal polyp 15.00±5.27 25.00±7.07 17.50±7.18 7.50±3.57 14.17±5.13 35.83±10.02 31.67±10.96 40.00±11.10
Duodenal ulcer 11.67±4.24 5.56±4.14 0.00±0.00 3.33±2.48 2.78±2.07 16.39±5.65 16.39±5.65 56.39±6.26
Chronic gastritis 23.13±7.46 27.51±8.59 5.05±4.61 21.62±7.47 28.21±8.45 40.53±8.45 29.22±9.54 68.54±8.75
Hemorrhagic gastritis 0.00±0.00 6.25±3.61 0.00±0.00 20.83±4.17 5.00±2.89 16.25±5.70 12.50±7.22 56.67±2.36
Crohn’s disease 38.10±5.72 23.81±7.19 0.00±0.00 33.33±7.27 26.19±7.78 33.33±7.27 19.05±7.53 45.24±2.51
S.I. bleeding 3.33±2.48 13.33±6.57 0.00±0.00 0.00±0.00 13.33±6.57 33.33±7.86 0.00±0.00 50.00±0.00
S.I. enteritis 35.29±7.53 27.33±8.28 1.86±2.03 37.81±7.51 31.00±7.59 35.76±8.41 25.43±8.48 52.57±8.78
S.I. mass 21.67±6.48 26.67±5.39 10.00±4.08 26.67±5.39 26.67±9.20 26.67±9.20 15.00±10.00 46.67±5.72
S.I. ulcer 33.40±7.83 18.78±7.92 6.22±4.50 26.86±8.31 27.56±8.77 31.41±8.78 18.46±8.01 48.97±7.44

Treatment Planning 41.32±5.14 10.05±3.12 5.15±1.79 32.11±4.70 28.20±4.80 35.13±4.54 19.16±3.65 76.68±5.92
Report Generation 19.52±4.73 25.98±6.26 8.99±5.24 20.72±5.68 23.21±6.25 38.16±5.83 36.64±6.28 81.43±6.37
Overall Accuracy 10.83±6.34 11.44±7.60 3.50±4.89 11.97±6.87 11.81±7.27 19.62±8.50 10.63±7.12 68.15±10.99

Performance evaluation on the Out-Of-Distribution (OOD) datasets34

To assess generalization capacity across diverse clinical settings, we evaluated VLM performance35

on four external datasets from independent hospitals (YPH, TSH, RJH, and PWH). Tables S2 and36

S3 present comparative results across primary clinical tasks.37
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External validation on TSH and RJH datasets. Table S2 presents results across three clini-38

cal tasks of anatomy identification, endoscopic finding detection, and report generation. CE-R139

achieved superior performance on both datasets, with accuracy of 87.98±7.48% and 65.96±15.88%40

for anatomy identification on TSH and RJH respectively, and 87.74±7.61% and 84.42±9.30%41

for finding detection. The model’s low variance indicates robust prediction stability across het-42

erogeneous clinical scenarios and varying acquisition protocols. For report generation, perfor-43

mance gaps narrowed considerably. CE-R1 led both datasets with accuracies of 69.98±1.22%44

on TSH and 60.15±0.75% on RJH, followed closely by QVQ-72B-Preview (63.34±2.29%) and45

Qwen2.5-VL-32B-Instruct (64.01±1.48%) on TSH. This convergence suggests that large-scale46

language pre-training partially compensates for limited domain exposure in high-level reasoning47

tasks. Conversely, general-purpose models collapsed on fine-grained visual tasks. LLaVA-NeXT-48

Video achieved only 10.58±6.69% for anatomy identification on TSH, representing an 87.9% per-49

formance deficit compared to CE-R1. Most striking were the catastrophic failures of ostensibly50

medical-oriented models. MedGemma-4B and Gemma-3-12B registered near-zero accuracies for51

finding detection on TSH (0.60±0.42% and 0.28±0.19%) and RJH (2.16±1.50% and 2.32±1.60%),52

demonstrating that superficial medical knowledge integration proves insufficient for specialized53

imaging modalities requiring deep visual-clinical reasoning alignment.54

External validation on YPH dataset. YPH evaluation encompassed five tasks of anatomy identi-55

fication, finding detection, disease diagnosis, report generation, and treatment planning (Table S3).56

CE-R1 achieved peak performance across all tasks with accuracies of 79.07±11.70%, 87.20±7.89%,57

50.71±6.11%, 70.25±1.91%, and 60.24±4.08% respectively, suggesting successful internalization58

of hierarchical medical knowledge rather than task-specific pattern matching. General-purpose59

VLMs exhibited task-dependent competency. QVQ-72B-Preview and Qwen2.5-VL-32B-Instruct60

performed credibly on abstract reasoning tasks, achieving 68.34±2.03% and 64.81±2.11% for re-61

port generation and 44.21±7.11% and 38.84±5.64% for diagnosis. However, these models experi-62

enced precipitous decline in perceptually demanding tasks. Performance gaps in specialized visual63

recognition were particularly pronounced. CE-R1 outperformed the best general-purpose model,64

LlaMa-3.2-11B-Vision, by 237% in anatomy identification (79.07±11.70% versus 23.47±12.70%)65

and by 257% in finding detection (87.20±7.89% versus 24.40±13.05% achieved by Qwen2.5-VL-66

32B-Instruct). These disparities represent the boundary between clinically actionable systems and67

those inadequate for deployment, establishing domain-specialized training as fundamentally nec-68

essary rather than merely beneficial.69

External validation on PWH dataset. PWH validation confirmed CE-R1’s cross-institutional70

robustness (Table S3). The model dominated visual discrimination tasks with anatomy identifi-71

cation achieving 72.17±14.20% and finding detection achieving 88.04±7.44%, exceeding near-72

est competitors by margins of 58.55 and 76.08 percentage points respectively. Disease diagnosis73

showcased CE-R1’s most impressive performance at 70.00±0.12%, nearly doubling the accuracy74

of Qwen2.5-VL-32B-Instruct (37.26±5.87%). The remarkably low standard deviation of 0.12%75

indicates exceptional prediction consistency, which is critical for clinical decision support where76

erratic behavior compromises patient safety. Competing models exhibited substantially higher vari-77
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Supplementary Table S2: Performance Results for RJH and TSH Datasets

Methods Anatomy
Identification

Endoscopic
Finding

Report
Generation

Overall
Accuracy

TSH Dataset

Gemma-3-12B 10.04±6.39 0.28±0.19 62.61±1.86 24.31±2.81
LlaMa-3.2-11B-Vision 23.83±12.84 17.64±10.27 51.17±2.12 30.88±8.41
LLaVA-NeXT-Video 10.58±6.69 6.61±4.37 23.81±3.29 13.67±4.78
MedGemma-4B 18.16±10.51 0.60±0.42 59.10±1.84 25.95±4.26
QVQ-72B-Preview 10.48±6.64 13.64±8.33 63.34±2.29 29.15±5.75
Qwen2.5-VL-32B 9.82±6.26 18.88±10.83 64.01±1.48 30.90±6.19
Qwen2.5-VL-7B 14.43±8.73 13.87±8.45 61.55±1.81 29.95±6.33
CE-R1 87.98±7.48 87.74±7.61 69.98±1.22 81.90±5.44

RJH Dataset

Gemma-3-12B 12.59±7.78 2.32±1.60 49.57±2.44 21.49±3.94
LlaMa-3.2-11B-Vision 15.13±9.08 16.62±9.80 40.30±2.53 24.02±7.14
LLaVA-NeXT-Video 15.25±9.14 10.91±6.87 19.20±2.38 15.12±6.13
MedGemma-4B 30.44±14.97 2.16±1.50 47.26±2.21 26.62±6.23
QVQ-72B-Preview 12.96±7.98 24.52±13.09 48.43±1.93 28.64±7.67
Qwen2.5-VL-32B 12.72±7.85 26.94±13.92 49.33±2.27 29.66±8.01
Qwen2.5-VL-7B 12.85±7.92 25.15±13.31 44.20±2.03 27.40±7.75
CE-R1 65.96±15.88 84.42±9.30 60.15±0.75 70.18±8.64

ance ranging from 3.38% to 6.46%, suggesting unstable decision boundaries. Report generation re-78

vealed an intriguing deviation where Qwen2.5-VL-32B-Instruct achieved comparable performance79

to CE-R1 (42.39±4.13% versus 43.09±1.72%). This likely reflects the task’s greater reliance on80

language modeling capabilities where general-purpose pre-training provides compensatory advan-81

tages. However, CE-R1 reclaimed decisive leadership in treatment planning with 51.99±2.53%82

compared to 27.37±1.44% for Qwen2.5-VL-32B-Instruct, achieving a 90% relative improvement.83

This demonstrates that while general-purpose models generate linguistically coherent narratives,84

they struggle to synthesize multimodal evidence into actionable therapeutic recommendations.85

Cross-institutional validation establishes CE-R1’s robust generalization across geographi-86

cally diverse datasets with varying imaging protocols and disease distributions. Performance hier-87

archies exhibit clear task dependency where specialized visual discrimination creates insurmount-88

able challenges for general-purpose models, while higher-level reasoning tasks show narrower89

gaps. CE-R1’s combination of high accuracy with low variance across diverse scenarios positions90

it as the only system approaching clinical deployment viability, with particular strength in fine-91

grained anatomical and pathological characterization that is most critical for diagnostic accuracy.92
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Supplementary Table S3: Performance Results for PWH and YPH Datasets.

Methods Anatomy
Identification

Endoscopic
Finding

Disease
Diagnosis

Report
Generation

Treatment
Planning

Overall
Accuracy

YPH Dataset

Gemma-3-12B 9.65±6.17 0.30±0.21 37.15±5.35 61.53±1.59 35.37±1.92 28.80±3.05
LlaMa-3.2-11B-Vision 23.47±12.70 16.37±9.68 29.24±5.40 51.40±2.61 4.26±0.22 24.95±6.12
LLaVA-NeXT-Video 13.03±8.01 2.98±2.04 7.91±2.22 27.13±3.30 7.81±0.26 11.77±3.17
MedGemma-4B 20.50±11.52 0.00±0.00 30.08±4.21 55.75±2.06 26.42±1.25 26.55±3.81
QVQ-72B-Preview 9.52±6.09 16.37±9.68 44.21±7.11 68.34±2.03 26.51±1.47 32.99±5.28
Qwen2.5-VL-32B 9.12±5.86 24.40±13.05 38.84±5.64 64.81±2.11 33.26±1.50 34.09±5.63
Qwen2.5-VL-7B 16.47±9.73 14.88±8.96 39.27±5.78 59.00±2.05 17.61±0.33 29.45±5.37
CE-R1 79.07±11.70 87.20±7.89 50.71±6.11 70.25±1.91 60.24±4.08 69.49±6.34

PWH Dataset

Gemma-3-12B 12.17±7.56 4.35±2.94 27.99±4.43 25.77±2.83 21.92±1.43 18.44±3.84
LlaMa-3.2-11B-Vision 10.14±6.45 6.52±4.31 17.46±3.38 18.76±1.88 5.94±1.54 11.76±3.51
LLaVA-NeXT-Video 4.93±3.31 3.26±2.23 10.76±4.90 11.32±1.25 5.26±0.50 7.11±2.44
MedGemma-4B 7.25±4.75 7.61±4.97 21.15±5.34 16.72±2.20 19.27±0.94 14.40±3.64
QVQ-72B-Preview 11.88±7.40 14.13±8.58 26.34±5.67 30.40±3.81 16.86±1.14 19.92±5.32
Qwen2.5-VL-32B 13.62±8.32 11.96±7.44 37.26±5.87 42.39±4.13 27.37±1.44 26.52±5.44
Qwen2.5-VL-7B 5.51±3.68 9.78±6.24 28.70±6.46 29.89±3.45 12.60±0.68 17.30±4.10
CE-R1 72.17±14.20 88.04±7.44 70.00±0.12 43.09±1.72 51.99±2.53 65.06±5.20

Effectiveness of dynamic router93

We investigated whether dynamic routing can enhance clinical reasoning by comparing three ar-94

chitectural variants: CE-R1 (adaptive routing), CE-R1-Lite (shallow reasoning only), and CE-R1-95

Deep (deep reasoning only). The adaptive CE-R1 model employs a difficulty-aware router that96

channels straightforward queries to CE-R1-Lite while directing challenging cases to CE-R1-Deep.97

We assessed these variants on five clinical tasks from CE-Bench-Test, as shown in Table S4. Our98

analysis reveals that reasoning depth requirements vary significantly across task types. Simple99

visual recognition tasks—anatomy identification and endoscopic finding—do not benefit from100

deep reasoning. In fact, CE-R1-Deep’s performance drops markedly on endoscopic finding tasks101

(83.5±9.7%), underperforming both CE-R1 (94.0±4.0%) and CE-R1-Lite (93.5±4.3%) by approx-102

imately 10 percentage points. This decline suggests that over-complicated reasoning pathways can103

introduce unnecessary noise in tasks where direct pattern matching is optimal. For anatomy iden-104

tification, all variants achieve strong performance above 91%, with CE-R1 reaching 95.0±3.3%.105

Conversely, cognitively demanding tasks demonstrate the critical value of adaptive depth selection.106

Disease diagnosis exemplifies this pattern most clearly: CE-R1 achieves 58.2±5.2% accuracy, sur-107

passing CE-R1-Lite by 12.7 percentage points and CE-R1-Deep by 3.9 percentage points. This108
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Supplementary Table S4: Effectiveness of dynamic router.

Methods Anatomy
Identification

Endoscopic
Finding

Disease
Diagnosis

Report
Generation

Treatment
Planning

Overall
Accuracy

CE-R1-Lite 93.76±4.14 93.46±4.32 45.49±4.54 78.56±3.70 76.04±2.44 84.34±4.13
CE-R1-Deep 91.96±5.23 83.54±9.72 54.27±5.36 45.80±2.93 65.88±3.61 75.00±6.60

CE-R1 95.03±3.34 94.04±3.96 58.16±5.19 81.43±2.58 76.68±2.23 86.72±3.68

superiority extends to report generation, where CE-R1 (81.4±2.6%) dramatically outperforms the109

deep-only variant (45.8±2.9%) by 35.6 percentage points. Interestingly, CE-R1-Lite performs rea-110

sonably well on report generation (78.6±3.7%), suggesting the router intelligently classifies many111

reporting tasks as relatively straightforward. Treatment planning shows a similar trend, with both112

CE-R1 (76.7±2.2%) and CE-R1-Lite (76.0±2.4%) exceeding CE-R1-Deep (65.9±3.6%) by over113

10 percentage points. The aggregate performance metrics confirm the router’s efficacy: CE-R1114

achieves 86.72±3.68% overall accuracy, outperforming CE-R1-Lite by 2.38 points and CE-R1-115

Deep by 11.72 points. These findings demonstrate that adaptive complexity matching—rather than116

uniformly shallow or deep reasoning—optimizes both performance and computational resource117

allocation across diverse clinical reasoning scenarios.118

Performance comparison on simple and difficult questions119

Clinical examination tasks demonstrate substantial variation in complexity, necessitating flexible120

reasoning approaches tailored to question difficulty. We employed a systematic categorization121

method for the CE-Bench-Test dataset: CE-R1-Lite generated predictions across multiple tem-122

perature configurations (0.6, 0.7, 0.8, and 0.95), with questions achieving mean accuracy below123

75% designated as difficult cases. Table S5 reveals distinct performance patterns across difficulty124

levels and task types. For simple questions, CE-R1-Lite dominates in four out of five tasks, achiev-125

ing exceptionally high accuracy in Anatomy Identification (98.91%±1.07), Endoscopic Finding126

(98.16%±1.80), Report Generation (93.48%±1.60), and Treatment Planning (82.12%±1.15). No-127

tably, CE-R1-Deep shows substantial performance degradation on these straightforward cases,128

with Endoscopic Finding accuracy dropping to 86.98%±11.33 and Report Generation plummet-129

ing to 48.14%±4.24—a 45.34 percentage point decline. This suggests that excessive reasoning130

depth may introduce unnecessary complexity and potential error propagation in simple scenarios.131

The performance landscape shifts dramatically for difficult questions. CE-R1-Deep demonstrates132

marked improvements, particularly in Anatomy Identification (37.27%±23.38 vs. 17.07%±14.15)133

and Endoscopic Finding (31.21%±21.47 vs. 21.70%±16.99), representing relative gains of 118%134

and 55% respectively. Disease Diagnosis emerges as a consistently challenging task where deeper135

reasoning proves advantageous across both difficulty levels—CE-R1-Deep achieves 54.19%±7.38136

on simple questions and maintains 54.47%±8.06 on difficult ones, outperforming CE-R1-Lite by137

approximately 9 percentage points in both cases. Interestingly, Report Generation exhibits an in-138
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Supplementary Table S5: Performance Comparison on the Simple and Difficult Questions.

Methods Difficulty Anatomy
Identification

Endoscopic
Finding

Disease
Diagnosis

Report
Generation

Treatment
Planning

CE-R1-Lite
Simple

98.91±1.07 98.16±1.80 45.67±6.51 93.48±1.60 82.12±1.15
CE-R1-Deep 95.63±4.18 86.98±11.33 54.19±7.38 48.14±4.24 68.23±4.74
CE-R1-Lite

Difficult
17.07±14.15 21.70±16.99 45.04±6.18 62.04±4.05 55.28±5.96

CE-R1-Deep 37.27±23.38 31.21±21.47 54.47±8.06 43.19±3.91 57.69±5.47

verse pattern: CE-R1-Lite maintains superior performance (62.04%±4.05 vs. 43.19%±3.91) even139

on difficult questions, suggesting this task may benefit more from concise, direct reasoning than140

elaborate analytical processes. The variance in scores provides additional insights. CE-R1-Deep141

exhibits substantially higher standard deviations on difficult questions, particularly in Anatomy142

Identification (±23.38%) and Endoscopic Finding (±21.47%), indicating less stable performance143

when applying deep reasoning to challenging cases. This variability underscores the importance of144

adaptive routing mechanisms. These contrasting patterns validate our dynamic routing approach.145

By intelligently selecting between Lite and Deep reasoning pathways based on question difficulty,146

CE-R1 with routing achieves superior performance over both standalone variants, effectively cap-147

turing the benefits of lightweight reasoning for straightforward tasks while leveraging deep analyt-148

ical capabilities for complex clinical scenarios.149
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