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a Memristive sensory neuron: b Reconfigurable CMOS neuron:

Limited information fusion capability Large area and high circuit complexity
Para. 2
v Activation
out LUT| function
Memory
NbO, Vo | >
memristor -
b
Reset

Supplementary Figure 1. a, Schematic of a memristive sensory neuron with limited information fusion capability. Existing
memristive sensory neurons are generally limited to fusing no more than two modalities. b, Schematic of a reconfigurable CMOS
neuron with large area and high circuit complexity. Existing reconfigurable CMOS neurons typically rely on complex control logic

and operate in a time-multiplexed manner.
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Supplementary Note 1. Performance of the NbO, memristor.

Supplementary Fig. 2a-b present the cumulative plots of Vi , Vios, Ru and Ry across 50 cycles. Using the NbOy
memristor, together with resistors and capacitors, the oscillation circuit shown in Supplementary Fig. 3a can be further
constructed. In this configuration, the NbOx memristor is connected in parallel with a capacitor (C), and this parallel
branch is then connected in series with a load resistor (Rs). When a voltage stimulus (V) is applied, the capacitor in the
oscillation circuit enters a charging phase and the output voltage (¥,) increases. Once the V, exceeds Vu, the device
switches to the LRS, initiating the discharging phase and causing V5 to drop. As V5 falls below Viow, the device reverts
to the HRS, and the capacitor begins charging again, resulting in a rise in ¥,. This process produces periodic output
spikes. Moreover, the oscillation frequency (f) depends on the series resistance, the parallel capacitance and the

magnitude of the input voltage. Supplementary Fig. 3b-c illustrate the relationships between £, and Vi, Rs and C.
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Supplementary Figure 2. a, Distribution of the extracted Vi and Viold from 50 I-V sweeps. b, Distribution of the extracted Ry and

Ry from 50 I-V sweeps.
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31 Supplementary Figure 3. a, Circuit structure and output oscillation signal of the NbOy-based oscillator. b-d, Effects of Vi, (c), Rs

32 (d)and C (e) on fo.
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33 Supplementary Figure 4. a, Photograph of the piezoresistive sensor used in the circuit. b, Resistance-pressure response curve of

34 the piezoresistive sensor.
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Supplementary Note 2. Memristor model and circuit simulation.

The generation of oscillatory signals primarily arise from the charging and discharging behaviors of the capacitor

induced by the resistive switching of the NbOx memristor. The operating mechanism of the MMN is illustrated in

Supplementary Fig. 6a. Based on the previous circuit analysis, a model is established using the finite difference method

as follows:
Ry = Rp;||R;
I(t) — Vin - Zmem(t)
1
Vinem ()
I(t) — —2mem
_ © (Rm + Ro)
Vinem (¢ + dt) = Vipem (t) + dt C
R Vmem(t) X RM (t) V.
b (Ru(®) +Ry) ~ '™
RM(t + dt) = Vmem(t) X RM(t)
H (Ru + Ro) < Vhold
Ry (), else

(1)

(2)

(3)

(4)

Here, I(f), Rm(f) and Vimem(?) denote the total current, memristor resistance and capacitor voltage at time ¢, respectively.

Ry, Ru, Vin and Vioq are parameters extracted from experimental data at different temperatures. df represents the time

step, and #max denotes the total simulation duration. Supplementary Fig. 6b illustrates the simulation workflow, while

Supplementary Fig. 6¢ and Supplementary Fig. 6d show the simulation curve and the measured curve, respectively.



b (o]
/

| Parameter initialization |
Vi & !
( Q | I, V. calculation |'— X
L g
S g3
§ Re[ IR 2a
- No 3
=
Cig dig
1.8} ‘ 1.8}
b >
017t o1.7F
()] ()]
S S
§ 1.6} ‘>3 1.6}
1.5¢ Simulation 1.5} Experiment
0 100 200 0 100 200
Time (us) Time (us)

49 Supplementary Figure 6. a, Operating mechanisms of the MMN. b, Flowchart of the circuit simulation. ¢-d, Simulated (c) and

50  experimental (d) oscillatory signals of the MMN.
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Supplementary Note 3. Modified memristive multisensory neuron.

For other combinations of physical modalities, the memristive multisensory neuron (MMN) can be modified for
applicability. Supplementary Fig. 7a shows the schematic of the modified MMN. By employing an NbOx memristor
and two resistive sensors, the fusion of three physical modalities is achieved. The NbOx memristor performs temperature
sensing, while the resistive sensor R, senses the second physical modality. The analysis of their effects on oscillatory
signals follows the same process as in the MMN. The third physical modality can be sensed using the resistive sensor
Rri1. An increase in the resistance of Rr; slows down the capacitor charging and discharging process, resulting only in a

reduction of fosc. Therefore, the circuit can be described as follows:

_ Ry + (Rpz1IR2)

max RH Vth (5)
Ry, + (Rp2||R3)
min = R—LVhold (6)
R
Vin - R_::)Vmin
Vin - R_HOVmax
R
Vi _ﬁvmax
tf = CRLolTl R—Fl (8)
Vin - R_LOVmin
1
fosc = (9)
t. + t¢
Ruo = Re1l|(Ru + (Re21|R2)) (10)
Ryo = Rp1||(Ry + (Rp2[|R2)) (11)

Supplementary Fig. 7b-d present the circuit simulation results based on measured data. It can be observed that the
three physical modalities exert different and monotonic effects on the fused oscillatory signals, thereby enabling the

decoupling of the tirmodal information.
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69 Supplementary Figure 7. a, Circuit structure of the modified MMN capable of fusing trimodal information. The temperature

70 modality is sensed by the NbO, memristor, while the other two modalities are sensed by resistive sensors. b-d, Simulated effects of

71 Rr (b), T(c) and Rk (d) on features of oscillatory signals.
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72 Supplementary Figure 8. Architecture of the proposed memristive perception system. The system consists of an MMN for trimodal
73 information fusion and an MHA for adaptive computation. This MHA integrates a RRAM array chip and MHNs. The MCU controls

74 the weight update and the working mode of neurons to achieve in-situ switching of the network architectures.



75  Supplementary Note 4. Performance of the RRAM array.

76  The resistive switching characteristics of the 1TIR cell exhibit excellent cycle-to-cycle consistency over 200 cycles
77  (Supplementary Fig. 9a). Under pulsed operation, the devices demonstrate reliable 5-bit storage resolution across a
78  range from 12.5 uS to 200 uS (Supplementary Fig. 9b). We also evaluated the matrix-vector multiplication (MVM)
79  performance, which is critical for neural network computation. Supplementary Fig. 9c shows the measured output with

80  3-level inputs and 4-bit weights.
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81 Supplementary Figure 9. a, Switching characteristics of the 1TIR cell over 200 cycles. b, Cumulative probability distribution of

82 conductance (5 bits). ¢, MVM performance of the 1-Mb array.



83

84

85

86

87

88

89

90

91

92

93
94

95

96

Supplementary Note S. Principle of functional reconfiguration in the memristive hybrid neuron.

The circuit diagram of the memristive hybrid neuron (MHN) and the operating points of the NbOx memristor for
different functions are shown in the Supplementary Fig. 10. When the input current is relatively low, the NbOx memristor
operates in the high-resistance state, where the nonlinear resistance of the device leads to an approximately exponential
current-voltage relationship (as indicated by the red line). Since the resistance of the NbOyx memristor in the HRS is
much larger than that of the series resistor, the absolute value of the output at point A approximates the voltage across
the NbOx memristor, thereby realizing the conversion from input current to output voltage to implement the Tanh
function. As the input current increases, the feedback loop of the operational amplifier can be regarded as an oscillation
circuit, where the NbOyx memristor switches between HRS and LRS (as indicated by the blue line), thereby generating

spike signals at point B to realize the LIF function.

a b
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o o :
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Supplementary Figure 10. a, Circuit diagram of the MHN. b, Operating points of the NbOy memristor for different functions.
Tanh activation function is realized through high-resistance nonlinearity and negative differential resistance of the NbO, memristor,

while the LIF behavior is enabled by threshold switching characteristics of the device.
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Supplementary Figure 11. a, Flexible interlayer connection topology. Each layer can be in-situ converted between ANN and SNN
modes, thereby enabling flexible implementation of arbitrary network topologies. b-d, HNNs with series (b), parallel (c) and
feedback (d) architectures. The serial structure enables multi-stage reasoning using different networks to progressively extract
hierarchical features'. The parallel structure employs multiple specialized networks to perform customized processing of specific

sensing data sources’. The feedback structure leverages high-level outputs to regulate front-end networks, where attention

modulation endows it with strong adaptive capability’.
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103 Supplementary Figure 12. a, Circuit structure of the general encoding unit (GEU). b-¢, Experimental results for ANN (b) and

104 SNN (c) when a sine wave is applied into the circuit.
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105 Supplementary Figure 13. Data acquisition and segmentation of the ECG data. The ECG data are encoded into UP and DN spike
106 sequences. The 187-slot data from two sequences are aggregated into 374 slots, which are then grouped by three overlapped

107  windows and fed into SNN as spike inputs over three timesteps.
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Supplementary Note 6. Network simulation of the ECG classification task.

Benefiting from the in-situ reconfigurability of the MHN, different network architectures can be realized under the same

hardware configuration. We first investigate the performance of three-layer networks with different compositions using

the spatiotemporal backpropagation training algorithm (Supplementary Fig. 14a). As shown in Supplementary Fig. 14b,

the simulation results indicate that the 2LS-1TA HNN slightly outperforms the 1LS-2TA HNN (LS denotes the LIF

neuron configuration and TA denotes the Tanh function configuration). Therefore, ANN, 2LS-1TA HNN and SNN are

subsequently deployed on the MHA for further experiments. Details of the network dimensions are provided in

Supplementary Table 4.
a
#1  #2 #3 #4
Layer1 TA LS LS LS
Layer2 | TA TA LS LS
Layer3 | TA TA TA LS

o

Accuracy (%)
(0]
o

70

90

#1 #2 #3 #4

Supplementary Figure 14. a, Details of three-layer HNNs with different compositions. b, Their corresponding inference accuracies.
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Supplementary Note 7. Electro-thermo-mechanical coupled behaviors of a battery

Electrochemical reactions inside the battery cause expansion and contraction of the anode/cathode electrodes, and the
resulting volume changes induce stress variations that further affect electrochemical behavior. Both electrochemical
processes (e.g., reaction-induced heat) and mechanical processes (e.g., deformation-induced heat) generate thermal
effects. Moreover, battery performance is highly sensitive to ambient temperature: thermal factors not only influence
electrochemical kinetics but also induce thermal stress. Therefore, battery exhibits complex thermo-mechanical
coupling behaviors* (Supplementary Fig. 15). Supplementary Fig. 16a shows the experimental setup, including the
battery, pressure sensor and fixture. This setup enables direct monitoring of the variations in physical parameters during
the battery charging and discharging processes. Supplementary Fig. 16b illustrates the evolution of voltage and stress
under isothermal charge-discharge cycling. To further investigate the effects of thermal factors, the voltage and stress
during the discharge process under different temperature conditions are recorded. Supplementary Fig. 16c-d show the

corresponding curves of battery voltage and stress.

Electro-
chemical

Deformation heat
Mechanical Thermal
Thermal expansion

Supplementary Figure 15. Complex thermo-mechanical coupling behaviors of battery.
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131

132 Supplementary Figure 16. a, Experimental setup comprising a battery, pressure sensor and fixture. b, Evolution of battery voltage
133 and stress under cyclic charge-discharge operation. ¢-d, Battery voltage (c) and stress (d) curves during the discharge process across

134 different temperatures.
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135 Supplementary Figure 17. a, Differential amplifier circuit. b, Connection diagram of the differential amplifier circuit with the

136  battery and the MMN.
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137 Supplementary Figure 18. Schematic diagram of SOC estimation workflow in ANN and SNN modes. Raw data are sampled and
138 segmented into dataset for task-specific training and inference. In ANN mode, SOC values are directly used for training, while in

139 SNN mode, the dataset is partitioned into ten classes representing different SOC ranges.
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Supplementary Note 8. Detailed results of system operation.

Since the dataset contains test data across seven different temperatures, the system can achieve SOC estimation over a
wide temperature range. When divided by temperature, the statistical results of ANN and SNN modes are shown in
Supplementary Fig. 19 and Supplementary Fig. 20. Under the same hardware configuration, switching between ANN
and SNN modes is realized, with the corresponding weight distributions presented in Supplementary Fig. 21 and
Supplementary Fig. 22. To further analyze the system performance, the dataset is expanded based on measured data.
Simulations are conducted to obtain the system outputs during the discharge process at intervals of 16 s. This dataset is
then used to train the system in ANN mode. As shown in Supplementary Fig. 23, the system achieves SOC estimation

throughout the full discharge process over a wide temperature range.
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151 Supplementary Figure 20. Confusion matrix of the classification results at 50 °C (a), 40 °C (b), 30 °C (c), 20 °C (d), 10 °C (e),
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153 Supplementary Figure 21. Measured 5-bit weights of ANN written into the RRAM array, shown as the positive and negative

154 conductance maps of three layers.
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155 Supplementary Figure 22. Measured 5-bit weights of SNN written into the RRAM array, shown as the positive and negative

156 conductance maps of three layers.
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157 Supplementary Figure 23. SOC estimation error of ANN at 50 °C (a), 40 °C (b), 30 °C (c), 10 °C (d), 0 °C (e) and -10 °C (f).
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Supplementary Table 1. Comparison with previous state-of-the-art sensing neurons.

network

2022 2023 2024
Ref. ) This work
Nat. Commun.’ IEDM® Nat. Commun.’
Sensor Photo-transistor Pressure sensor Pressure sensor
Technology
Fusion X X \ N
T or F or light or
Sensory signals Optical T&F V& T& F
curvature
Spiking reservoir
Processing method SNN SNN HNN

Energy consumption

2.9 nl/spike

~0.1 nJ/spike

3.9-50 nJ/spike

~5.1 nJ/spike

Supplementary Table 2. Comparison with previous state-of-the-art HNN accelerators.
2020 2022 2023 2024
Ref. This work
JSSC® ISSCC’ ISSCC' JSSC!!
28 nm 180 nm 28 nm 28 nm 40 nm TaOx RRAM
Technology
SRAM SRAM SRAM SRAM +NbOy
Implementation Digital Mixed-signal Digital Digital Mixed-signal
Weight precision 8-bit 4-bit 4-, 8-bit 1-, 2-, 4-, 8-bit 4-, 5-bit
Network SNN/ANN SNN SNN/CNN SNN/ANN SNN/ANN
Neuron Distinct Single Distinct Distinct Hybrid
CIM technology X \ X X \
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Supplementary Table 3. Parameters of the MMN and MHN.

Ry 4kQ
MMN R> 500 Q
C 10 nF
50Q
MHN
C 10 nF
Supplementary Table 4. Programming conductance error under different modes.
Layer 1 Layer 2 Layer 3
Task Mode
HMS) | o(uS) | wM@S) [ o@S) | rMS) | o(uS)
ECG
HNN 1.29 1.36 1.34 1.52 1.31 1.48
(4-bit)
SOC ANN 0.777 1.01 0.776 0.964 0.930 1.57
(5-bit) SNN 0.766 0.886 0.774 1.01 0.798 1.44
Supplementary Table 5. Network size.
Task Mode Size
ANN 187X300X100X5
ECG HNN 187X300X100X5
SNN 187X300X100X5
ANN 625X500X300X1
SOC
SNN 625X500X300X%10
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