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Text S1. Chemicals and reagents.
Tetracycline (TET, 99%), chlorotetracycline (CTC, 99%), oxytetracycline (OTC, 99%), minocycline (MC, 99%) and coumarin were supplied by TCI (Shanghai) Development Co., Ltd. 2,2,6,6-Tetramethylpiperidine (TEMP, 99%), and 5,5-dimethylpyrroline-oxide (DMPO, 99%) were purchased from Sigma-Aldrich Chemical Co., Ltd. Cupric sulfate (CuSO4 , 99%), zinc sulfate monohydrate (ZnSO4·H2O,  98%), cobalt sulfate heptahydrate (CoSO4·7H2O, 99%), chromium sulfate hydrate (Cr2(SO4)3·xH2O, 98%), nickel sulfate hexahydrate (NiSO4·6H2O, 99%), manganese sulfate monohydrate (MnSO4•H2O, 99%), ethylenediaminetetraacetic acid (EDTA, 99%), nitro blue tetrazolium chloride (NBT, 98%), and tert-butyl alcohol (TBA, 99.5%) were obtained from Aladdin Industrial Corporation. Sodium nitrate (NaNO3, 99%), sodium chloride (NaCl, 99.5%), sodium hydrogen carbonate (NaHCO3, 99%), acetate acid and nitric acid (HNO3, 65%), and sodium hydroxide (NaOH, 99%) were purchased from Kelong Chemical Co. Ltd (Chengdu, China). All solutions were prepared by directly adding chemicals into the double deionized (DDI, 18.2 MΩ·cm) water produced from a Millipore Reverse Osmosis (RO) system.



[bookmark: _Hlk9969161]Text S2. The determination of H2O2 concentrations
[bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK4][bookmark: OLE_LINK1]The concentration of H2O2 was determined by a UV-vis spectrometer (Mapada UV-1800) to measure the absorbance of stable orange complex at λ = 400 nm, which formed by chelating H2O2 with potassium titanate oxalate under acidic condition. After preparing potassium titanate oxalate stock solution (50 mM) and acetic acid-sodium acetate buffer solution (0.1 mM), the filtered sample (2.5 mL) was added into 1mL acetic acid-sodium acetate buffer solution and 1.5 mL potassium titanate oxalate solution. As a result, the concentration of H2O2 was detected by a UV-vis spectrometer after reacting for 20 min.
 


Text S3. The method of Cu(I) concentration detection
[bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: OLE_LINK10][bookmark: OLE_LINK9][bookmark: OLE_LINK12][bookmark: OLE_LINK11]  The concentration of Cu(I) was determined using a UV-vis spectrometer (Mapada UV-1800). Firstly, 10 mM neocuproine hemihydrate stock solutions was prepared. Then, samples (5 mL) were withdrawn from the reaction solution, and then the 2 mL filtered sample was added into the mixed solution containing, 0.2 mL Neocuproine hemihydrate and 2.8 mL water. The concentration of Cu(I) was detected by a UV-vis spectrometer at λ = 454 nm.


Text S4. Determination of Cu(III). 
The peroxynitrite complexation strategy was used for Cu(III) detection. To achieve this, a mixture of 0.5 mL of NaIO4 (10 mmol L-1) and 1 mL of acetic acid-sodium acetate buffer (10 mmol L-1) was prepped. During the oxidation process, 1 mL of the reaction solution was added and immediately transferred to a quartz cuvette to measure the absorption strength at the range of 200-600 cm-1 via UV-vis spectrometer.




Table S1  Sign of each cross-peak in the synchronous and asynchronous maps from 2D-COS
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Fig. S1 (a) The degradation reaction rate (kobs) of tetracycline in the Cu(II), H2O2, Cu(II)/PAA and Cu(II)/H2O2 processes; (b) kobs of tetracycline in various transition metals/H2O2 processes. ([TET] = 5 µM, [Cu(II)] =[Cr(III)] =[Mn(II)] =[Zn(II)] =[Co(II)] = [Ni(II)] =0.25 mM, [H2O2] = 2 mM, initial pH =5.5)
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Fig. S2 UV–vis spectra of TET and TET + various metal ions solutions. ([TET] = 5 µM, [Cu(II)] =[Cr(III)] =[Mn(II)] =[Zn(II)] =[Co(II)] = [Ni(II)] =0.2 mM)
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[bookmark: _Hlk216285330]Fig. S3 The proposed binding sites and ratios of tetracycline, minocycline with Cu(II)
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Fig. S4 EEM spectrum of (a) 0.1 mM original coumarin, and 7-hydroxycoumarin generated by the reaction of coumarin and ⋅OH within 60 min in H2O2 process (b) and Cu(II)/H2O2 process; (e) Fluorescence intensity change of 7-hydroxycoumarin generated by the reaction of coumarin and ⋅OH. ([coumarin] = 0.1 mM, [Cu(II)] =0.25 mM, [H2O2] = 2 mM, initial pH =5.5)
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Fig. S5 Monitoring the formation of Cu(III) through ultraviolet-visible spectroscopy in Cu(II)/H2O2. ([Cu(II)] = 0.25 mM, [H2O2] = 2 mM, [NaIO4] = 2 mM, initial pH =5.5)
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Fig. S6 Singlet oxygen identification by EPR detection in different processes. ([TET] = 5 µM, [Cu(II)] = 0.25 mM, [H2O2] = 2 mM, [TEMP] = 5 mM, initial pH =5.5)
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[bookmark: _Hlk216371488]Fig. S7 The species distribution of (a) Cu(II) and (b) TET at different pH values
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Fig. S8 Effect of H2O2 concentration, Cu(II) concentration, initial pH and TET concentration on the degradation of TET by the Cu(II)/H2O2 process. ([TET] = 2.5-20 µM, [Cu(II)] =0.05-1.0 mM, [H2O2] = 0.1-10 mM, initial pH =3-11)
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Fig. S9 Linear relationship by plotting 1/[TET] versus 1/ΔAbs at pH 5.5.
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