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Figure S1. Validation of the two-step simulation protocol. (a) Comparison of Aggregation

Propensity (AP) values derived from a single run versus the average of three independent runs.

Each data point represents one of the 130 selected tripeptides. Error bars indicate the standard

error of the mean (SEM) across the three runs. (b) Assessment of Amyloid-like Tendency (ALT)
stability over extended simulations. Blue dots represent ALT values at the initial simulation

time (t=200 ns), while red dots represent values after extended simulation (t=2000 ns). Both

are plotted against the corresponding AP at t = 200 ns. Gray arrows illustrate the shift in ALT

for each tripeptide over the extended timeframe.
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Figure S2. Determination of cutoff thresholds for peptide scalar properties. Histograms (gray
bars) display the distributions of (a) tripeptide AP values, (b) tripeptide ALT values, and (c)
tetrapeptide ALT values. Red curves represent the bimodal distributions fitted to the
distributions according to P(x) = Af; (x) + (1 — 1) f,(x), fi and f> are two independent skew-
normal distributions and A is the mixing coefficient. Vertical dashed lines indicate the cutoff
thresholds (xcut), defined as the point where dP/dx = 0 and d?P /dx? > 0.
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Figure S3. Simulation snapshots of amyloid-forming tripeptides. Representative images of ten
end-capped tripeptides known for amyloid-like assembly. Left: Stick representation of the
monomeric peptide. Right: Final snapshot of the simulation trajectory showing the terminal

configuration.
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Figure S4. Tripeptide selection for experimental validation. (a) Schematic workflow of the
tripeptide selection process based on simulated AP and ALT descriptors. (b) Distribution of
selected tripeptides. Each data point represents a peptide system, with the simulated ALT value
plotted against the simulated AP value. Points are colored light gray for peptides with logPme1 >
—1.0 and dark gray otherwise. Peptides selected as positive cases and negative controls for
experimental validation are highlighted with light blue and sandy brown circles, respectively.
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Figure SS. Grid display of simulation and experimental validation results for predicted
amyloid-forming tripeptides. Column 1: Peptide sequence. Column 2: Final snapshot from
simulations. Column 3: ThT florescence spectra. Column 4: FTIR spectra characterizing -
sheet contents. Column 5: SEM micrographs showing morphologies of assemblies.
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Figure S5 (continued)
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Figure S6. Grid display of simulation and experimental validation results for

tripeptides forming non-amyloid structures.
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Figure S6 (continued)
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Figure S7. Performance assessment of the fine-tuned Uni-Mol model for ALT prediction.
Evaluation was performed on a test set of 800 tripeptides. (a) Key performance metrics across
different values of the hyperparameter a. The optimal model (0=0.7) is highlighted in bold. (b)
Precision-recall curve for the optimized model (a=0.7), demonstrating its predictive robustness.
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Figure S8. Grid display of simulation and experimental validation results for predicted

amyloid-forming tetrapeptides.
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Figure S8 (continued)
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Figure S9. Grid display of simulation and experimental validation results

tetrapeptides forming non-amyloid structures.
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Figure S9 (continued)
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Figure S10. Photographs of tetrapeptide hydrogels discovered in this study.
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Figure S11. Amino acid preference in amyloid-forming peptides. Frequency of individual
amino acids in tripeptide and tetrapeptide sequences are shown as sandy brown and light blue
bars, respectively. Analysis was restricted to peptides with logPmo < -1.0. Peptides were
classified as amyloid-forming based on simulated ALT threshold of > 0.56 for tripeptides and >

0.45 for tetrapeptides.
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Figure S12. The (64, 0,) Plots for amyloid-forming tripeptide sequences with their central
positions occupied by polar (a), aliphatic (b), tyrosine (c), or phenylalanine/tryptophan (d)
residues. Histograms of marginal distributions of two 6 angles are also provided.
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Figure S13. Supplemental distributions of 6 angle between neighboring residues for various

amino acid combinations identified in amyloid-forming sequences.
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