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I Finite-element method electromagnetic simulations and contour integration

Supporting Figure [l shows the 64 discretized contour integration points (red circles), which
have been used to numerically compute the contour integrals. This particular example
is shown for a height ~ = 150 nm of the silicon cylinders, which corresponds to the full
backward scattering condition (Kerker 2). The black crosses represent two fundamental
resonance modes, or poles, corresponding to the resonator’s magnetic and electric dipoles
at w = (1.973 — 0.041i) x 10" s7! and w = (1.855 — 0.0237) x 10" s, respectively. In
this specific parameter choice, we observe that zeros of the reflection coefficient are complex
conjugates of each other, as described in the main text. This method of calculating poles
and zeros using the contour integral approach was utilized to study the evolution of the
position of the scattering coefficient singularities in the complex frequency plane as a function
of the nanoresonator height. Supporting Fig. [Ip illustrates the evolution of reflection and

transmission poles and zeros (T- and R-zeros) as a function of height A € [75nm, 300 nm].
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Supporting Fig. 1. a, Calculation of the poles and zeros of the scattering coefficients using the
contour integration method. b, The evolution of the poles and zeros in the complex-frequency plane

with variable height h € [75nm, 300 nm]| of the silicon meta-atoms.

A Real versus complex frequency crossing at the Huygens condition

The parametric evolution of the fundamental resonances, namely the electric dipole (ED) and
magnetic dipole (MD) modes, is observed in the complex-frequency plane (see Supporting
Fig. , crosses). Initially, the MD resonance appears at a higher excitation frequency
compared to the ED mode, starting from h = 75 nm. However, as the nanoresonator height
increases, the MD mode spectrally shifts at a faster rate than the ED, keeping all other
geometric parameters, such as period and diameter, fixed. At a critical height of h = 195 nm,
the resonances cross each other at a real frequency of 1.77 x 10'® Hz, as indicated by the red
dashed line in Supporting Fig. [Ib. This crossing satisfies the classical condition of Huygens’

sources, where two resonant modes with equal amplitudes but opposite symmetry were

described to spectrally overlap, resulting in a fully transmissive device.

It is important to emphasize that in a realistic experiment, the spectral overlap does not
occur, particularly in the complex plane. We observe that only the real frequency values of
the complex poles cross. We thus studied the problem in greater depth and demonstrated

that having identical real frequency is an insufficient condition for realizing Huygens’ sources.



For instance, the presence of a T-zero near the real frequency axis, particularly one close
to the operating frequency, can lead to significant loss of transmission, thereby preventing
the resonator from functioning as a Huygens’ source. Therefore, a thorough investigation
of the evolution of zeros in the complex plane is essential for a complete understanding of
the unidirectional scattering behavior. The necessary conditions for full backward scattering
require that the system operates within the P7T-broken regime of the R-zeros and that a
nearby pole is present. In both Kerker 1 and Kerker 2 scenarios, a resonance mode (in this
case, the ED mode) with a high-quality factor exists within the P7T-broken regime, serving

as the source term for unidirectional scattering.

IT Transmission and reflection zeros as eigenvalue-degeneracies of the scattering

and transfer matrices

In this section, we show that the zeros of the transmission and reflection coefficients correspond
to the spectral positions at which the eigenvalues of the scattering and transfer matrices of a
photonic system are degenerate.

The scattering matrix of a photonic system with mirror symmetry is expressed as

S S rt
g [Pm o) | (1)
So1 Sa2 tr
in which r and ¢ are the reflection and transmission coefficients of the system. The eigenvalues

of the scattering matrix given above are

AS=r+t. (2)

Thus, the eigenvalues of the scattering matrix are degenerate and unimodular when t = 0
(since |r| — 1 when t — 0), i.e., at the zeros of the transmission coefficient. The normalized

eigenvectors corresponding to these eigenvalues are

%=5 ] (3)

The scattering matrix relates outgoing waves to incoming waves in the photonic system

under consideration, s_ = Ss, (where s, and s_ are the incoming and outgoing waves,
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respectively). To relate the fields on the left-hand side of the photonic system to those on
the right-hand side, on the other hand, we must evaluate the system’s transfer matrix. The

transfer matrix M is obtained from the entries of the scattering matrix as follows?

Sy — S225u 52 o

_ S12 S12 . t t
M = ) | = (4)

_Su 1 _r 1

S12 S12 t t

The eigenvalues of this transfer matrix are

Zf2—7“2—|—1 1 2
A= 222 1) — 42,
M 2t oV 2=+ (5)

These eigenvalues are degenerate and unimodular if » = 0 and ¢ = 1. The eigenvetors of the

transfer matrix are

T

Dy, =

( —1—r?+ 2 V1—2r2 4t — 202 — 2022 + 4 1) (6)
2r

When r — 0 we have |t| — 1, but ¢ may still carry a phase. Assuming for simplicity that

t — 1 in the vicinity of » = 0, then the eigenvectors of the transfer matrix become

where &, = (1 =+ i)T are the right- and left-circularly polarized eigenstates.

IIT Temporal coupled-mode theory (TCMT) of multi-mode photonic resonators
A TCMT of a two-mode, two-port resonator

We consider a photonic system that exhibits multiple resonant modes whose resonance
frequencies and decay rates are represented by the n x n matrices €0y and I', respectively,
where n is the number of modes. The dynamic equations describing the photonic system’s

resonance amplitudes ¥ (n x 1) are expressed as>*

dv
e (—iQ% — D)V + K15y, (8)
S_ = Sd8+ + C\p\I/ (9)



In the above equations, s, and s_ are m x 1 matrices (m is the number of ports) giving
the incoming and outgoing waves, respectively, Sq is an m X m unitary matrix associated
with the direct transport process of light (e.g., specular reflection), Cy is an m x n matrix
corresponding to resonant scattering from the system, and x is an m X n matrix giving the
coupling coefficients of the modes. For a PT-symmetric photonic system, these matrices

satisfy the following relations®

ClCy = 2r, (10)
R = O\p, (11)
SaC% = —Cly. (12)

Note that the mode amplitude is normalized so that |¥|? gives the resonator energy. In
addition, it is assumed that the modes evolve harmonically in time, following the time
—iQt

dependence e so that the mode frequencies are given by )y — ¢I'. Using this time

dependence in Eq. , we obtain the following resonance amplitude

U= (—iQ+iQ% + 1) 'wlsy, (13)

where €2 is an n x n diagonal matrix whose entries are the excitation frequencies. Utilizing

this solution in Eq. @ yields the following scattering matrix

S = Sq+ Cy(—iQ2+1iQ + 1) k" (14)

Using Egs. and and the fact that Sy is unitary we can rewrite the scattering matrix

as follows

—1
S = {1 - m[Q —(Q — z'r)] /J}Sd, (15)
where [ is the m x m identity matrix. The term between parentheses above can be rewritten

using Eqs. and as Hy = Qp — irx'k/2.
The considered two-port metasurface supports two modes of opposite symmetry, an electric
dipolar mode and a magnetic dipolar mode, and is thus equivalent to a photonic system with

n = m = 2, which is described by the following matrices



w; 0 ro  iloy/ ek
O = 1 T= 71 Yo Sy = we |
0 wy Y% V2 ity /3 1o
Cip C
and Cy = e (16)
Cory Caoy

The Fresnel reflection and transmission coefficients rg and ¢, corresponding to the direct
transport process for p-polarized light that is normally incident upon the metasurface are

given by

o Neff — Najr d o 2nair
g = ——— an to = -,
Neft + Nair Neft + Nair

(17)

where neg = /o 1S the effective index of refraction of the metasurface and n,, = 1. In

what follows, we will use the definition ¢, = ity /=% to lighten the notations.

Applying Eq. , we get

|Ci1e| = |Core| = /M1, (18)
|Ci29| = |Cow| = /2 (19)

Since the structure has mirror symmetry and the two modes have opposite symmetry, then
70 = 0 (see Ref”) and from Egs. and we have the following relations between the

entries of C'y

Chiv = +Chy, (20)

Crov = FCOxuy, (21)

where the top (bottom) signs are used when the first (second) mode is even and the second

(first) mode is odd. Using the above relations in Eq. yields

+i/71(ro £ty) Fin/72(ro F f)
i/ o £15)  iv/72(ro F 1)
It can be readily verified that the above expression for Cy satisfies Eq. with v =0 as

required.
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Supporting Fig. 2. Comparison of the a & b, amplitude and ¢ & d, phase of the transmission
coefficient as a function of real frequency and variable cylinder height A computed via an FEM
calculation and TCMT [panels b & d, Eq. ] The solid lines indicate the real part of the

frequencies of the zeros in each case. The zeros for TCMT were calculated from Eq. .

Thus, replacing Eq. in Eq. and using Eq. , the scattering matrix is expressed

as

rt ro — (rottg)n _ _ (ro=tp)re oo (ro+tp) 7 i (ro—tp)y2
S = _ (—tw+iw1+v1) (—iw+tiwa+y2) 0 (—tw+iw1+v1) (—tw+iwz+v2) ) (23)
- oo (ro+tp)m + (ro—tg)v2 _ (rottp)n  (ro—th)r2
0 (—tw+iw1+71) (—twtiwa+72) 0 (—tw+iw1—71) (—twtiwa+72)

Note that the above scattering matrix corresponds to the case in which the first mode is
even and the second is odd [cf. Eq. (22)]. The transmission and reflection coefficients are

therefore given by
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Supporting Fig. 3. Comparison of the a & b, amplitude and ¢ & d, phase of the reflection
coefficient as a function of real frequency and variable cylinder height A computed via an FEM

calculation and TCMT [panels b & d, Eq. ] The solid lines indicate the real part of the
frequencies of the zeros in each case. The zeros for TCMT were calculated from Eq. .

(ro + )1 N (ro — to) 72
(—iw +iwy +71)  (—iw + iws + 72)’
(ro +to)m (ro — to) e

e _ . 25
r(w) =ro (—iw +iw +7) (—iw 4 dws + ¥2) (25)

t(w) =t, —

B Calculation of the zeros from the scattering matrix

The zeros of the transmission coefficient above (&, ) are given by the roots of the quadratic

equation



~t 2 ~t o
ay (wzero) + bthero +o = 07

in which

ay = —té),
by =t (w1 + wa) —ire(y2 — 1),
c = —to(wiws + 7172) — iro(Yawe — Yawr).

Thus, the two zeros of the transmission coefficient are

~t - _bt + b% — 4atCt

zero, £ ~

2a/t

(26)

(30)

From the above solution, we find that the two zeros are degenerate when the discriminant

A =b? — 4a;c; = 0, i.e., when the following system of equations is satisfied

{(t@?(wl @) = [rolm = )] = 4t wren +mm) =0,
(w1 +w2) (2 = ) + 2(nws — yewr) = 0.

One solution to the above equations is

Wy = Wi,

T2 =" ft(r07t6) == \/[ft(T0=t6)]2 -1 )

where fi(ro,th) = 1 — 2(ty/r0)>
The real degenerate transmission zeros are expressed as

- Wi +wy iy
Woero, deg — 9 - 2_t6<72 - 71)

with wy 2 and v, o satistying Eq. .
The zeros of the reflection coefficient (@],..) of Eq. are

. —b, = /b? — 4a,c,

zero,+ = 2
Ay
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(34)

(35)



in which

ar = —To, (36)
bT = To(wl + wg) — Zté(’)@ — ’)/1>, (37)
¢ = —ro(wiws + 1172) — itg(Nwe — Yow1). (38)

The conditions ruling the pole frequencies at the reflection zero degeneracy are obtained by

interchanging 7y and ¢{, in Eq. (31). Degenerate reflection zeros can occur for

Wy = Wr, (39)

Y2 =N fr(ro,tf)) + \/[fT(T07t6)]2 -1}, (40)

where f,(ro,ty) = 1 — 2(ro/t})? and the real degenerate reflection zeros are expressed as

~r Wi + wo Zt/
Waero, deg — 9 - _0(72 - 71)7 (41>

27”0
with w; o and 7, » satisfying Eqgs. and .
The transmission and reflection coefficients are calculated from Eqgs. and for the

considered metasurface geometry using the complex pole frequencies computed by an FEM
electromagnetic simulation (see Methods in the main text). The real frequency response
as a function of cylinder height for the transmission and reflection coefficients computed
by an FEM simulation and from Egs. and are shown in Supporting Fig. |2l and .
As shown from the figures, the temporal coupled-mode theory calculations [Egs. and
([25))] are in fair agreement with the FEM simulations. However, some of the behavior is
absent from the TCMT calculation (see Supporting Fig. [2| and 7 which is associated with
additional resonances that are unaccounted for in the current calculation. We note here that
the temporal coupled-mode theory only captures spectral behavior around the frequencies of
the poles that are used in the calculation. As such, it is expected that a higher degree of
accuracy can be obtained by increasing the number of poles included in the calculation. The
full evolution of the amplitudes of the transmission and reflection coefficients as a function
of increasing cylindrical height h calculated by TCMT for complex and real frequencies can

be found in visualizations 1 and 2 accompanying this supplemental document.

11



44 v % 'vv Transmission Reflection 0”00 © Zero 1 (FEM)
v o o o | ¥ Zero1(TCMT)
s v o ¥ 05 ? %, © | 0 zero 2 (FEM)
— 2. : v o ¥ — ¥V O | v Zero 2 (TCMT)
» v % v v
[s2] <
o ° o \4
X, 0 wmevemw QOO OVOW $ 90 | % 0 oooomeevy W VDT SOO
2 ° 3 °
E -2 ° ° v £ v M
ov T -051 yo°o
o o
o VY v o
v o° v o °
-4 - v, W Ooo0!
T T T -1 T T T T

1.6 1.7 1:8 ' 1i9 ' 2 ' 21 14 1.6 1i8 2 2.2 2.4
Re(w) [x10"° s7] Re(w) [x10"° s7]

Supporting Fig. 4. Comparison of the complex frequencies of a, transmission and b, reflection
zeros computed via an FEM simulation (see Methods) and TCMT (section as a function of

increasing cylinder height h. For panel a, h € [130 nm, 300 nm| and for panel b, h € [75 nm, 220 nm].

The transmission and reflection zeros are calculated using Egs. and and are
compared to those obtained via finite-element method (FEM) calculations, showing fair
agreement (see Supporting Fig. . A slight shift in the real frequency of the zeros calculated
using TCMT is observed compared to that of the FEM calculation. The shift corresponds
to a difference in wavelength A\ ~ 30 nm and A\ ~ 10 nm for transmission and reflection,

respectively.

C  The role of modal symmetry

For the case in which the two modes have the same symmetry, we confirm below that
degenerate zeros can only occur in the presence of material loss and gain, indicating that the
Kerker behavior is indeed associated with the interaction of modes with opposite symmetry.
In the symmetric case, degenerate zeros arise when the loss and gain channels are in balance,
which is a behavior that is again associated with P7T-symmetry9.

The transmission coefficient for the case of two modes having the same symmetry is®

(ro + 1) [(—iw + dwa) 71 + (—iw + iw; ) 2]
(—iw + iwy + 1) (—iw + iwgy + 72) — 1172
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The zeros of this transmission coefficient are

b O dad

o= 43
zero 2&2 ( )
in which
a; = _t67 (44>
b; = t{)(wl + WQ) + 7:’/‘0(’)/1 + 72), (45)
C; = —t'owlwg — i?“o(”)/lwg + ’)/le). (46)
These zeros are degenerate if the following system of equations is satisfied
1\2 2 2 N2
(1) (@1 +wn)® = [ro(m +72)| = 4(t)wrez = 0,
(47)
(w1 4 w2)(71 +72) — 2(n1w2 + yaw1) = 0,
which yields the conditions
Wy = W, (48)
T2 =N (49)

Therefore, for two modes of the same symmetry, degenerate zeros only occur in the presence
of loss and gain, particularly when the loss and gain channels are in balance, as indicated by

Eq. . This is also the case for reflection.

IV  The constrained Hamiltonian eigenvalue problem

In this section, we formulate an eigenvalue problem whose eigenvalues are the frequencies (2
that satisfy some constraint (e.g., transmission or reflection zeros). The eigenvectors will be
the modal mixtures yielding the desired scattering behavior. The constraint corresponds to
a specific “target” scattering matrix: s_ = Ss,. Using this scattering matrix to eliminate s
from the dynamical equations and @D, we can re-write Eq. in a form that is equivalent

to the time-dependent Schrédinger equation, i.e.,”
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— = HWU 20
i =Y, (50)

in which the Hamiltonian H satisfies the following eigenvalue problem [cf. Eq. ]

H(Q)W¥ =QU, (51)

H(Q) =i{ —iQ — T +x"[S(Q) — Sa] 's}. (52)

It is clear from the above equations that in the limit Det(S) — oo we obtain the usual
Hamiltonian eigenvalue problem, i.e., —iQWU = (—iQ)y — I')¥, where Q) gives the system’s

complex pole frequencies. The Hamiltonian of Eq. is expressed as follows

H(Q) = Hy+ H(9), (53)
where Hy = Qy — i’ = Qy — ixTk/2 is the interaction-free Hamiltonian giving the temporal
evolution of the modes and H'(Q) = i{xT[S(2) — Sa] 'k} is the interaction Hamiltonian,

which describes the scattering behavior.

Si S
For a two-mode, two-port photonic resonator, we write S = 12 and define
So1 Sao
AS11 AS S11 — 19 Sta — 1
AS=5—-5;= H 2 = it = fo =12 = so that
ASy ASy So1 —ty Saz — 10
By B 1 ASy —AS
(S— St = AS—! = n bl 22 12 (54)
B21 B22 ASHASQQ — A512A521 _AS21 ASH
Using Eq. , we have
—iD k
H =ix"(S — 8y) 'k = S (55)
ko1 —iDaqy

where

D11 = 1(ro + t4) [(Bi1 + Ba1) + (Biz + Ba)],
k12 = iy/7172[ B + Ba1 — Biz — Bas),

ko1 = i\/W[Bn — Bo1 + Bz — 322)}»

Doy = y(ro — t) [ Bi1 — Ba1r — Bi2 + Bas].

14



Note that the top signs in Eq. were used above. Therefore, the Hamiltonian is given by

wp — Y k
o 1 4! 12 ’ (60)

ko Wo — @"72

in which

Y1 =7 + Dy, (61)

Y2 = Yo + Dao. (62)

Since in our TCMT derivation, we assume a nano-structure with mirror-symmetry, i.e.,
511 = 522 = T(u)) and 512 = 521 = t(W), then from Eqs and we have 1{512 = 1{321 =0

so that the Hamiltonian is

— 0
H= " , (63)
0 Wo — 172
with eigenvalues
w0 = w — iY1(@1), (64)
(;.)2 = Wy — ’i’?g(d)g), (65)

where

o (o + 1) [r(@1) = ro + th — (@)
%(“’1):%{”2 7)ol + [@n) — &P } o
o (ro — ) [r(@2) = ro — th + (&)
”N”:”%+2 (@) ol + @)~ P } o

The eigenvalues given in Eqs. and indicate that if scattering zeros are imposed in the
Hamiltonian of Eq. , then the resulting eigenvalues correspond to those of the scattering
ZEeros JJE;;O 4. In Supporting Fig. E we show a comparison between the complex frequencies
of transmission and reflection zeros [T ( Wyoro, i) and R-zeros (@7, . )| obtained directly

zero,+

from the scattering matrix [Egs. (23), (30), and (35| and by injecting the zero frequencies
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Supporting Fig. 5. a & b, Real and ¢ & d, imaginary parts of T- and R-zeros as a function of
the dimensionless geometric parameter h/a (h is the variable cylinder height and a = 200 nm is
the cylinder radius), calculated directly from the scattering matrix [Eq. ], denoted by ‘D;g;o,i
(hollow circles), and by injecting ‘:’;gro,i into the right-hand-sides of Eqs. and [solid lines],

respectively.

[Eqgs. and ] into the right-hand-sides of Egs. and . The equivalence between
the frequencies obtained from both methods validates the assumption that T- or R-zeros are
recovered from the Hamiltonian eigenvalue problem [Eq. (51)] when constrained by scattering

Zeros.

The Hamiltonian is P7T-symmetric when it commutes with the parity-time operation,

that is
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[PT.H] = (PT)H — H(PT) =0, (68)

01

10
The action of the time-reversal operator 7 is to take the complex conjugate of everything as

where P is the parity operator, which in the current case is the Pauli matrix o, =

well as interchanging the input and output channels. These operators satisfy the relations
P2=1,P=P,T2=1,T=T,P=P"' T=T7" and [P,T] = 0. Thus, the
PT-symmetry condition of Eq. can be rewritten as follows

H = (PT)H(PT) (69)
— PH"P (70)

From the above relation, we find that the Hamiltonian of Eq. is PT-symmetric if

Wy — 2’71((:}1) = Wy + Z;)V/;((IJQ) and Wo — 7/72((:}2) = W1 + Z’?T((I}l) (71)

When imposing transmissionless or reflectionless scattering, the eigenvalues of the constrained
Hamiltonian are the zeros and thus follow the same complex plane behavior as the zeros.
In the PT-symmetry regime of the zeros, Eq. is hence satisfied, and spontaneous
PT-symmetry-breaking occurs when Eq. no longer holds.

Media

Two visualizations (visualizations 1 and 2) accompany this supporting information document.
The visualizations show a TCMT calculation [Egs. and of this supplementary
information document| of the evolution of the nano-cylinder array’s transmission (visualization
1) and reflection (visualization 2) coefficients as a function of cylinder height h. Each
visualization has two panels: (left panel) complex plane behavior of the transmission or
reflection coefficient; (right panel) real frequency response of the transmission or reflection

coefficient.
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