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I Finite-element method electromagnetic simulations and contour integration

Supporting Figure 1a shows the 64 discretized contour integration points (red circles), which

have been used to numerically compute the contour integrals. This particular example

is shown for a height h = 150 nm of the silicon cylinders, which corresponds to the full

backward scattering condition (Kerker 2). The black crosses represent two fundamental

resonance modes, or poles, corresponding to the resonator’s magnetic and electric dipoles

at ω = (1.973 − 0.041i) × 1015 s−1 and ω = (1.855 − 0.023i) × 1015 s−1, respectively. In

this specific parameter choice, we observe that zeros of the reflection coefficient are complex

conjugates of each other, as described in the main text. This method of calculating poles

and zeros using the contour integral approach was utilized to study the evolution of the

position of the scattering coefficient singularities in the complex frequency plane as a function

of the nanoresonator height. Supporting Fig. 1b illustrates the evolution of reflection and

transmission poles and zeros (T- and R-zeros) as a function of height h ∈ [75 nm, 300 nm].
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Supporting Fig. 1. a, Calculation of the poles and zeros of the scattering coefficients using the

contour integration method. b, The evolution of the poles and zeros in the complex-frequency plane

with variable height h ∈ [75 nm, 300 nm] of the silicon meta-atoms.

A Real versus complex frequency crossing at the Huygens condition

The parametric evolution of the fundamental resonances, namely the electric dipole (ED) and

magnetic dipole (MD) modes, is observed in the complex-frequency plane (see Supporting

Fig. 1b, crosses). Initially, the MD resonance appears at a higher excitation frequency

compared to the ED mode, starting from h = 75 nm. However, as the nanoresonator height

increases, the MD mode spectrally shifts at a faster rate than the ED, keeping all other

geometric parameters, such as period and diameter, fixed. At a critical height of h = 195 nm,

the resonances cross each other at a real frequency of 1.77× 1015 Hz, as indicated by the red

dashed line in Supporting Fig. 1b. This crossing satisfies the classical condition of Huygens’

sources, where two resonant modes with equal amplitudes but opposite symmetry were

described to spectrally overlap, resulting in a fully transmissive device1.

It is important to emphasize that in a realistic experiment, the spectral overlap does not

occur, particularly in the complex plane. We observe that only the real frequency values of

the complex poles cross. We thus studied the problem in greater depth and demonstrated

that having identical real frequency is an insufficient condition for realizing Huygens’ sources.
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For instance, the presence of a T-zero near the real frequency axis, particularly one close

to the operating frequency, can lead to significant loss of transmission, thereby preventing

the resonator from functioning as a Huygens’ source. Therefore, a thorough investigation

of the evolution of zeros in the complex plane is essential for a complete understanding of

the unidirectional scattering behavior. The necessary conditions for full backward scattering

require that the system operates within the PT -broken regime of the R-zeros and that a

nearby pole is present. In both Kerker 1 and Kerker 2 scenarios, a resonance mode (in this

case, the ED mode) with a high-quality factor exists within the PT -broken regime, serving

as the source term for unidirectional scattering.

II Transmission and reflection zeros as eigenvalue-degeneracies of the scattering

and transfer matrices

In this section, we show that the zeros of the transmission and reflection coefficients correspond

to the spectral positions at which the eigenvalues of the scattering and transfer matrices of a

photonic system are degenerate.

The scattering matrix of a photonic system with mirror symmetry is expressed as

S =

S11 S12

S21 S22

 =

r t

t r

 , (1)

in which r and t are the reflection and transmission coefficients of the system. The eigenvalues

of the scattering matrix given above are

Λ±
S = r ± t. (2)

Thus, the eigenvalues of the scattering matrix are degenerate and unimodular when t = 0

(since |r| → 1 when t → 0), i.e., at the zeros of the transmission coefficient. The normalized

eigenvectors corresponding to these eigenvalues are

Φ±
S =

1√
2

 1

±1

 . (3)

The scattering matrix relates outgoing waves to incoming waves in the photonic system

under consideration, s− = Ss+ (where s+ and s− are the incoming and outgoing waves,
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respectively). To relate the fields on the left-hand side of the photonic system to those on

the right-hand side, on the other hand, we must evaluate the system’s transfer matrix. The

transfer matrix M is obtained from the entries of the scattering matrix as follows2

M =

S21 − S22S11

S12

S22

S12

−S11

S12

1
S12

 =

t− r2

t
r
t

− r
t

1
t

 . (4)

The eigenvalues of this transfer matrix are

ΛM =
t2 − r2 + 1

2t
± 1

2t

√[
t2 − r2 + 1

]2 − 4t2. (5)

These eigenvalues are degenerate and unimodular if r = 0 and t = 1. The eigenvetors of the

transfer matrix are

Φ±
M =

(
−−1− r2 + t2 ±

√
1− 2r2 + r4 − 2t2 − 2r2t2 + t4

2r
1

)T

. (6)

When r → 0 we have |t| → 1, but t may still carry a phase. Assuming for simplicity that

t → 1 in the vicinity of r = 0, then the eigenvectors of the transfer matrix become

Φ±
M = ∓iΦ±, (7)

where Φ± = (1 ± i)T are the right- and left-circularly polarized eigenstates.

III Temporal coupled-mode theory (TCMT) of multi-mode photonic resonators

A TCMT of a two-mode, two-port resonator

We consider a photonic system that exhibits multiple resonant modes whose resonance

frequencies and decay rates are represented by the n× n matrices Ω0 and Γ, respectively,

where n is the number of modes. The dynamic equations describing the photonic system’s

resonance amplitudes Ψ (n× 1) are expressed as3,4

dΨ
dt

= (−iΩ0 − Γ)Ψ + κTs+, (8)

s− = Sds+ + CΨΨ. (9)
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In the above equations, s+ and s− are m × 1 matrices (m is the number of ports) giving

the incoming and outgoing waves, respectively, Sd is an m×m unitary matrix associated

with the direct transport process of light (e.g., specular reflection), CΨ is an m× n matrix

corresponding to resonant scattering from the system, and κ is an m× n matrix giving the

coupling coefficients of the modes. For a PT -symmetric photonic system, these matrices

satisfy the following relations5

C†
ΨCΨ = 2Γ, (10)

κ = CΨ, (11)

SdC
∗
Ψ = −CΨ. (12)

Note that the mode amplitude is normalized so that |Ψ|2 gives the resonator energy. In

addition, it is assumed that the modes evolve harmonically in time, following the time

dependence e−iΩt so that the mode frequencies are given by Ω0 − iΓ. Using this time

dependence in Eq. (8), we obtain the following resonance amplitude

Ψ = (−iΩ + iΩ0 + Γ)−1κTs+, (13)

where Ω is an n× n diagonal matrix whose entries are the excitation frequencies. Utilizing

this solution in Eq. (9) yields the following scattering matrix

S = Sd + CΨ(−iΩ + iΩ0 + Γ)−1κT. (14)

Using Eqs. (11) and (12) and the fact that Sd is unitary we can rewrite the scattering matrix

as follows

S =

{
I − iκ

[
Ω− (Ω0 − iΓ)

]−1

κ†
}
Sd, (15)

where I is the m×m identity matrix. The term between parentheses above can be rewritten

using Eqs. (10) and (11) as H0 = Ω0 − iκ†κ/2.

The considered two-port metasurface supports two modes of opposite symmetry, an electric

dipolar mode and a magnetic dipolar mode, and is thus equivalent to a photonic system with

n = m = 2, which is described by the following matrices
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Ω0 =

ω1 0

0 ω2

 , Γ =

γ1 γ0

γ∗
0 γ2

 , Sd =

 r0 it0
√

neff

nair

it0
√

neff

nair
r0

 ,

and CΨ =

C11Ψ C12Ψ

C21Ψ C22Ψ

 . (16)

The Fresnel reflection and transmission coefficients r0 and t0 corresponding to the direct

transport process for p-polarized light that is normally incident upon the metasurface are

given by

r0 =
neff − nair

neff + nair

and t0 =
2nair

neff + nair

, (17)

where neff =
√
εeff is the effective index of refraction of the metasurface and nair = 1. In

what follows, we will use the definition t′0 = it0
√

neff

nair
to lighten the notations.

Applying Eq. (10), we get

|C11Ψ| = |C21Ψ| =
√
γ1, (18)

|C12Ψ| = |C22Ψ| =
√
γ2. (19)

Since the structure has mirror symmetry and the two modes have opposite symmetry, then

γ0 = 0 (see Ref.5) and from Eqs. (18) and (19) we have the following relations between the

entries of CΨ

C11Ψ = ±C21Ψ, (20)

C12Ψ = ∓C22Ψ, (21)

where the top (bottom) signs are used when the first (second) mode is even and the second

(first) mode is odd. Using the above relations in Eq. (12) yields

CΨ = κ =

±i
√

γ1(r0 ± t′0) ∓i
√

γ2(r0 ∓ t′0)

i
√

γ1(r0 ± t′0) i
√

γ2(r0 ∓ t′0)

 . (22)

It can be readily verified that the above expression for CΨ satisfies Eq. (10) with γ0 = 0 as

required.
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Supporting Fig. 2. Comparison of the a & b, amplitude and c & d, phase of the transmission

coefficient as a function of real frequency and variable cylinder height h computed via an FEM

calculation and TCMT [panels b & d, Eq. (24)]. The solid lines indicate the real part of the

frequencies of the zeros in each case. The zeros for TCMT were calculated from Eq. (30).

Thus, replacing Eq. (22) in Eq. (14) and using Eq. (11), the scattering matrix is expressed

as

S =

r t

t r

 =

r0 − (r0+t′0)γ1
(−iω+iω1+γ1)

− (r0−t′0)γ2
(−iω+iω2+γ2)

t′0 −
(r0+t′0)γ1

(−iω+iω1+γ1)
+

(r0−t′0)γ2
(−iω+iω2+γ2)

t′0 −
(r0+t′0)γ1

(−iω+iω1+γ1)
+

(r0−t′0)γ2
(−iω+iω2+γ2)

r0 − (r0+t′0)γ1
(−iω+iω1−γ1)

− (r0−t′0)γ2
(−iω+iω2+γ2)

 . (23)

Note that the above scattering matrix corresponds to the case in which the first mode is

even and the second is odd [cf. Eq. (22)]. The transmission and reflection coefficients are

therefore given by
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Supporting Fig. 3. Comparison of the a & b, amplitude and c & d, phase of the reflection

coefficient as a function of real frequency and variable cylinder height h computed via an FEM

calculation and TCMT [panels b & d, Eq. (25)]. The solid lines indicate the real part of the

frequencies of the zeros in each case. The zeros for TCMT were calculated from Eq. (35).

t(ω) = t′0 −
(r0 + t′0)γ1

(−iω + iω1 + γ1)
+

(r0 − t′0)γ2
(−iω + iω2 + γ2)

, (24)

r(ω) = r0 −
(r0 + t′0)γ1

(−iω + iω1 + γ1)
− (r0 − t′0)γ2

(−iω + iω2 + γ2)
. (25)

B Calculation of the zeros from the scattering matrix

The zeros of the transmission coefficient above (ω̃t
zero) are given by the roots of the quadratic

equation
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at
(
ω̃t

zero

)2
+ btω̃

t
zero + ct = 0, (26)

in which

at = −t′0, (27)

bt = t′0(ω1 + ω2)− ir0(γ2 − γ1), (28)

ct = −t′0(ω1ω2 + γ1γ2)− ir0(γ1ω2 − γ2ω1). (29)

Thus, the two zeros of the transmission coefficient are

ω̃t
zero,± =

−bt ±
√

b2t − 4atct
2at

. (30)

From the above solution, we find that the two zeros are degenerate when the discriminant

∆ = b2t − 4atct = 0, i.e., when the following system of equations is satisfied

{
(t′0)

2(ω1 + ω2)
2 −

[
r0(γ2 − γ1)

]2
− 4(t′0)

2(ω1ω2 + γ1γ2) = 0,

(ω1 + ω2)(γ2 − γ1) + 2(γ1ω2 − γ2ω1) = 0.
(31)

One solution to the above equations is

ω2 = ω1, (32)

γ2 = γ1

[
ft(r0, t

′
0)±

√
[ft(r0, t′0)]

2 − 1

]
, (33)

where ft(r0, t
′
0) = 1− 2(t′0/r0)

2.

The real degenerate transmission zeros are expressed as

ω̃t
zero, deg =

ω1 + ω2

2
− ir0

2t′0
(γ2 − γ1). (34)

with ω1,2 and γ1,2 satisfying Eq. (31).

The zeros of the reflection coefficient (ω̃r
zero) of Eq. (25) are

ω̃r
zero,± =

−br ±
√

b2r − 4arcr
2ar

. (35)
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in which

ar = −r0, (36)

br = r0(ω1 + ω2)− it′0(γ2 − γ1), (37)

cr = −r0(ω1ω2 + γ1γ2)− it′0(γ1ω2 − γ2ω1). (38)

The conditions ruling the pole frequencies at the reflection zero degeneracy are obtained by

interchanging r0 and t′0 in Eq. (31). Degenerate reflection zeros can occur for

ω2 = ω1, (39)

γ2 = γ1

[
fr(r0, t

′
0)±

√
[fr(r0, t′0)]

2 − 1

]
, (40)

where fr(r0, t
′
0) = 1− 2(r0/t

′
0)

2 and the real degenerate reflection zeros are expressed as

ω̃r
zero, deg =

ω1 + ω2

2
− it′0

2r0
(γ2 − γ1), (41)

with ω1,2 and γ1,2 satisfying Eqs. (39) and (40).

The transmission and reflection coefficients are calculated from Eqs. (24) and (25) for the

considered metasurface geometry using the complex pole frequencies computed by an FEM

electromagnetic simulation (see Methods in the main text). The real frequency response

as a function of cylinder height for the transmission and reflection coefficients computed

by an FEM simulation and from Eqs. (24) and (25) are shown in Supporting Fig. 2 and 3.

As shown from the figures, the temporal coupled-mode theory calculations [Eqs. (24) and

(25)] are in fair agreement with the FEM simulations. However, some of the behavior is

absent from the TCMT calculation (see Supporting Fig. 2 and 3), which is associated with

additional resonances that are unaccounted for in the current calculation. We note here that

the temporal coupled-mode theory only captures spectral behavior around the frequencies of

the poles that are used in the calculation. As such, it is expected that a higher degree of

accuracy can be obtained by increasing the number of poles included in the calculation. The

full evolution of the amplitudes of the transmission and reflection coefficients as a function

of increasing cylindrical height h calculated by TCMT for complex and real frequencies can

be found in visualizations 1 and 2 accompanying this supplemental document.
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Supporting Fig. 4. Comparison of the complex frequencies of a, transmission and b, reflection

zeros computed via an FEM simulation (see Methods) and TCMT (section III) as a function of

increasing cylinder height h. For panel a, h ∈ [130 nm, 300 nm] and for panel b, h ∈ [75 nm, 220 nm].

The transmission and reflection zeros are calculated using Eqs. (30) and (35) and are

compared to those obtained via finite-element method (FEM) calculations, showing fair

agreement (see Supporting Fig. 4). A slight shift in the real frequency of the zeros calculated

using TCMT is observed compared to that of the FEM calculation. The shift corresponds

to a difference in wavelength ∆λ ≃ 30 nm and ∆λ ≃ 10 nm for transmission and reflection,

respectively.

C The role of modal symmetry

For the case in which the two modes have the same symmetry, we confirm below that

degenerate zeros can only occur in the presence of material loss and gain, indicating that the

Kerker behavior is indeed associated with the interaction of modes with opposite symmetry.

In the symmetric case, degenerate zeros arise when the loss and gain channels are in balance,

which is a behavior that is again associated with PT -symmetry6.

The transmission coefficient for the case of two modes having the same symmetry is5

t′ = t′0 −
(r0 + t′0) [(−iω + iω2)γ1 + (−iω + iω1)γ2]

(−iω + iω1 + γ1)(−iω + iω2 + γ2)− γ1γ2
(42)
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The zeros of this transmission coefficient are

ω̃t′

zero =
−b′t ±

√
(b′t)

2 − 4a′tc
′
t

2a′t
. (43)

in which

a′t = −t′0, (44)

b′t = t′0(ω1 + ω2) + ir0(γ1 + γ2), (45)

c′t = −t′0ω1ω2 − ir0(γ1ω2 + γ2ω1). (46)

These zeros are degenerate if the following system of equations is satisfied

{
(t′0)

2(ω1 + ω2)
2 −

[
r0(γ1 + γ2)

]2
− 4(t′0)

2ω1ω2 = 0,

(ω1 + ω2)(γ1 + γ2)− 2(γ1ω2 + γ2ω1) = 0,
(47)

which yields the conditions

ω2 = ω1, (48)

γ2 = −γ1. (49)

Therefore, for two modes of the same symmetry, degenerate zeros only occur in the presence

of loss and gain, particularly when the loss and gain channels are in balance, as indicated by

Eq. (49). This is also the case for reflection.

IV The constrained Hamiltonian eigenvalue problem

In this section, we formulate an eigenvalue problem whose eigenvalues are the frequencies Ω

that satisfy some constraint (e.g., transmission or reflection zeros). The eigenvectors will be

the modal mixtures yielding the desired scattering behavior. The constraint corresponds to

a specific “target” scattering matrix: s− = Ss+. Using this scattering matrix to eliminate s+

from the dynamical equations (8) and (9), we can re-write Eq. (8) in a form that is equivalent

to the time-dependent Schrödinger equation, i.e.,7
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i
dΨ
dt

= HΨ, (50)

in which the Hamiltonian H satisfies the following eigenvalue problem [cf. Eq. (13)]

H(Ω)Ψ = ΩΨ, (51)

H(Ω) = i
{
− iΩ0 − Γ + κT[S(Ω)− Sd]

−1κ
}
. (52)

It is clear from the above equations that in the limit Det(S) → ∞ we obtain the usual

Hamiltonian eigenvalue problem, i.e., −iΩΨ = (−iΩ0 − Γ)Ψ, where Ω gives the system’s

complex pole frequencies. The Hamiltonian of Eq. (52) is expressed as follows

H(Ω) = H0 +H ′(Ω), (53)

where H0 = Ω0 − iΓ = Ω0 − iκ†κ/2 is the interaction-free Hamiltonian giving the temporal

evolution of the modes and H ′(Ω) = i
{
κT[S(Ω)− Sd]

−1κ
}

is the interaction Hamiltonian,

which describes the scattering behavior.

For a two-mode, two-port photonic resonator, we write S =

S11 S12

S21 S22

 and define

∆S = S − Sd =

∆S11 ∆S12

∆S21 ∆S22

 =

S11 − r0 S12 − t′0

S21 − t′0 S22 − r0

 so that

(S − Sd)
−1 = ∆S−1 =

B11 B12

B21 B22

 =
1

∆S11∆S22 −∆S12∆S21

 ∆S22 −∆S12

−∆S21 ∆S11

 . (54)

Using Eq. (22), we have

H ′ = iκT(S − Sd)
−1κ =

−iD11 k12

k21 −iD22

 . (55)

where

D11 = γ1(r0 + t′0)
[
(B11 +B21) + (B12 +B22)

]
, (56)

k12 = i
√
γ1γ2

[
B11 +B21 −B12 −B22

]
, (57)

k21 = i
√
γ1γ2

[
B11 −B21 +B12 −B22)

]
, (58)

D22 = γ2(r0 − t′0)
[
B11 −B21 −B12 +B22

]
. (59)
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Note that the top signs in Eq. (22) were used above. Therefore, the Hamiltonian is given by

H =

ω1 − iγ̃1 k12

k21 ω2 − iγ̃2

 , (60)

in which

γ̃1 = γ1 +D11, (61)

γ̃2 = γ2 +D22. (62)

Since in our TCMT derivation, we assume a nano-structure with mirror-symmetry, i.e.,

S11 = S22 = r(ω) and S12 = S21 = t(ω), then from Eqs. (57) and (58) we have k12 = k21 = 0

so that the Hamiltonian is

H =

ω1 − iγ̃1 0

0 ω2 − iγ̃2

 , (63)

with eigenvalues

ω̃1 = ω1 − iγ̃1(ω̃1), (64)

ω̃2 = ω2 − iγ̃2(ω̃2), (65)

where

γ̃1(ω̃1) = γ1

{
1 + 2

(r0 + t′0)
[
r(ω̃1)− r0 + t′0 − t(ω̃1)

]
[r(ω̃1)− r0]2 + [t(ω̃1)− t′0]

2

}
, (66)

γ̃2(ω̃2) = γ2

{
1 + 2

(r0 − t′0)
[
r(ω̃2)− r0 − t′0 + t(ω̃2)

]
[r(ω̃2)− r0]2 + [t(ω̃2)− t′0]

2

}
. (67)

The eigenvalues given in Eqs. (64) and (65) indicate that if scattering zeros are imposed in the

Hamiltonian of Eq. (52), then the resulting eigenvalues correspond to those of the scattering

zeros ω̃t,r
zero,±. In Supporting Fig. 5, we show a comparison between the complex frequencies

of transmission and reflection zeros [T- (ω̃t
zero,±) and R-zeros (ω̃r

zero,±)] obtained directly

from the scattering matrix [Eqs. (23), (30), and (35)] and by injecting the zero frequencies
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Supporting Fig. 5. a & b, Real and c & d, imaginary parts of T- and R-zeros as a function of

the dimensionless geometric parameter h/a (h is the variable cylinder height and a = 200 nm is

the cylinder radius), calculated directly from the scattering matrix [Eq. (23)], denoted by ω̃t,r
zero,±

(hollow circles), and by injecting ω̃t,r
zero,± into the right-hand-sides of Eqs. (64) and (65) [solid lines],

respectively.

[Eqs. (30) and (35)] into the right-hand-sides of Eqs. (64) and (65). The equivalence between

the frequencies obtained from both methods validates the assumption that T- or R-zeros are

recovered from the Hamiltonian eigenvalue problem [Eq. (51)] when constrained by scattering

zeros.

The Hamiltonian is PT -symmetric when it commutes with the parity-time operation,

that is

16



[
PT , H

]
= (PT )H −H(PT ) = 0, (68)

where P is the parity operator, which in the current case is the Pauli matrix σx =

0 1

1 0

.

The action of the time-reversal operator T is to take the complex conjugate of everything as

well as interchanging the input and output channels. These operators satisfy the relations

P2 = 1, P = P†, T 2 = 1, T = T †, P = P−1, T = T −1, and
[
P , T

]
= 0. Thus, the

PT -symmetry condition of Eq. (68) can be rewritten as follows

H = (PT )H(PT ) (69)

= PH∗P (70)

From the above relation, we find that the Hamiltonian of Eq. (63) is PT -symmetric if

ω1 − iγ̃1(ω̃1) = ω2 + iγ̃∗
2(ω̃2) and ω2 − iγ̃2(ω̃2) = ω1 + iγ̃∗

1(ω̃1). (71)

When imposing transmissionless or reflectionless scattering, the eigenvalues of the constrained

Hamiltonian are the zeros and thus follow the same complex plane behavior as the zeros.

In the PT -symmetry regime of the zeros, Eq. (71) is hence satisfied, and spontaneous

PT -symmetry-breaking occurs when Eq. (71) no longer holds.

Media

Two visualizations (visualizations 1 and 2) accompany this supporting information document.

The visualizations show a TCMT calculation [Eqs. (24) and (25) of this supplementary

information document] of the evolution of the nano-cylinder array’s transmission (visualization

1) and reflection (visualization 2) coefficients as a function of cylinder height h. Each

visualization has two panels: (left panel) complex plane behavior of the transmission or

reflection coefficient; (right panel) real frequency response of the transmission or reflection

coefficient.
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