

1 Supplementary Information for:

2 **Multiscale 3D microfluidic platform for intraorganoid delivery**

3 **Author List:** Maria Jose Quezada^{1,2,3†}, Jamin Lee^{1,4,5,6†}, Zengyao Lv^{7†}, Khizar Nandoliya^{8†}, Ingrid
4 Cheung^{1,9†}, Qiong Wang^{6,†}, Woo-Yeol Maeng⁶, Naijia Liu⁶, Amir Vahabikashi¹⁰, Kyoung-Ho Ha⁶,
5 Yong-Woo Kang⁶, Dae-Hyeon Song¹¹, Yuming Huang⁶, Clara Asseily², Rakan Walid da Cruz²,
6 Shreyaa Khanna¹, Jintao Liu^{12,13}, John D. Finan¹⁴, Lara Leoni¹⁵, Daniele Prociassi¹⁵, Yonggang
7 Huang^{6,7,16}, Gyu-Chul Yi^{4,5}, Juyeol Bae^{12,13*}, John A. Rogers^{2,6,16*} & Colin K. Franz^{1,6,9,17*}

8

9 **Affiliations:**

10 ¹Regenerative Neurorehabilitation Laboratory, Shirley Ryan Ability Lab, Chicago, IL 60611,
11 USA.

12 ²Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.

13 ³Department of Physical Therapy and Human Movement Sciences, Northwestern University,
14 Chicago, IL 60611, USA.

15 ⁴Interdisciplinary Program in Neuroscience, College of Science, Seoul National University, Seoul,
16 08826, South Korea.

17 ⁵Center for Novel Epitaxial Quantum Architectures, Department of Physics and Astronomy, Seoul
18 National University, Seoul, 08826, South Korea.

19 ⁶Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208,
20 USA.

21 ⁷Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL
22 60208, USA.

23 ⁸Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University,
24 Chicago, IL 60611, USA.

25 ⁹Department of Physical Medicine and Rehabilitation, Northwestern University.

26 ¹⁰Bioengineering Department and Institute for Mechanobiology, Northeastern University, Boston,
27 MA, 02115, USA.

28 ¹¹Department of Materials Science and Engineering, Korea Advanced Institute of Science and
29 Technology, Daejeon, 34141, South Korea.

30 ¹²Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-
31 gu, Gwangju 61186, Republic of Korea.

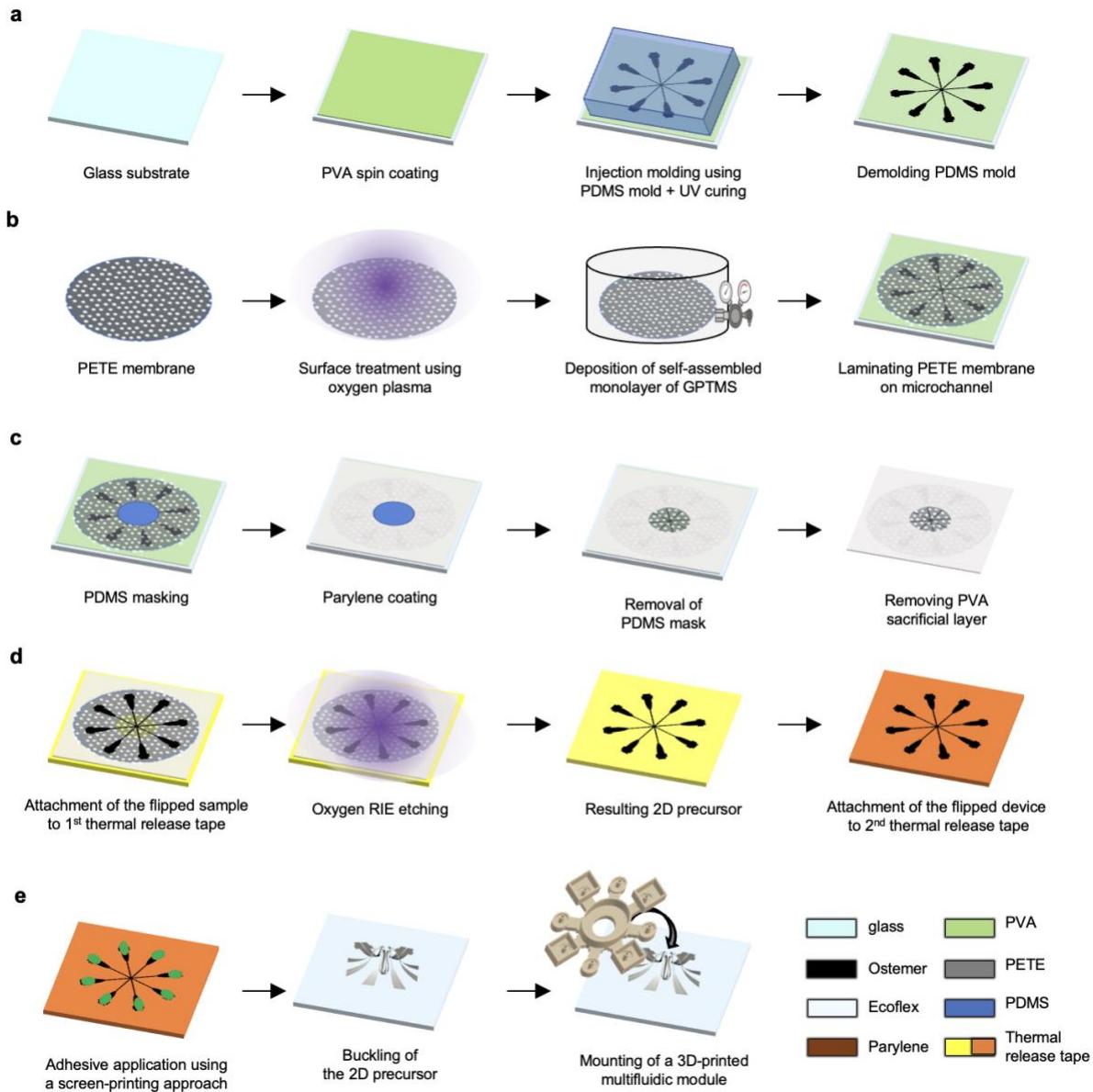
32 ¹³Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National
33 University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea

34 ¹⁴Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago,
35 IL 60607, USA.

36 ¹⁵Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
37 60611, USA.

38 ¹⁶Department of Materials Science and Engineering and Department of Mechanical Engineering,
39 Northwestern University, Evanston, IL 60208, USA.

40 ¹⁷The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern
41 University, Chicago, IL 60611, USA.


42 [†]These authors contributed equally

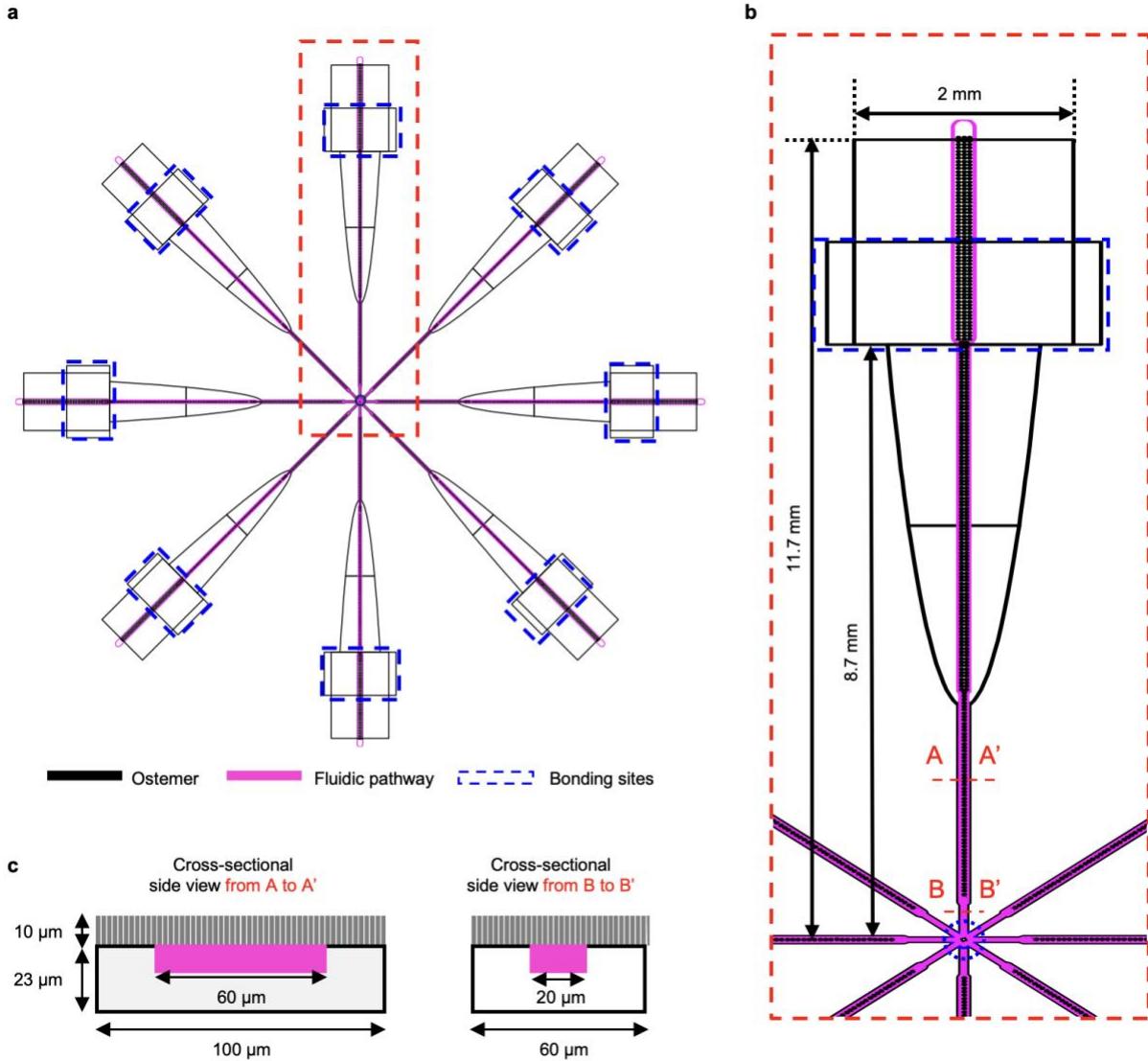
43 * Corresponding Authors

45 Correspondence to [Juyeol Bae](#), [John A. Rogers](#) and [Colin K. Franz](#)

46

47	Supplementary Fig. 1 Fabrication processes for the multiscale 3D microfluidic platform.	3
48	Supplementary Fig. 2 Dimensional characteristics of the planar precursor.....	4
49	Supplementary Fig. 3 Mechanical characteristics of the material used for buckling the precursor 50 into 3D microchannel.....	5
51	Supplementary Fig. 4 A microfluidic device for multiplexed delivery of solutes at targeted 52 localized region.....	5
53	Supplementary Fig. 5 Top view of experimental setup for characterizing the mechanism of 54 solute transport through the porous interface into the agarose phantom.	6
55		
56	Supplementary Table 1 List of antibodies and molecular probes.	6
57		
58		

59

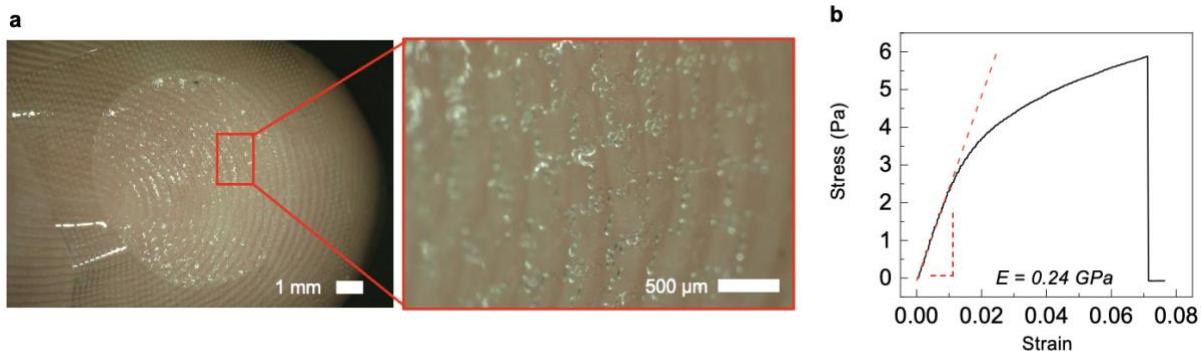

60 **Supplementary Fig. 1 | Fabrication processes for the multiscale 3D microfluidic platform.**

61 **a**, Soft-lithography step for preparing microchannel layer. **b**, Lamination step for bonding the
 62 PETE membrane onto the prepared microchannel layer. **c**, Deposition step for selectively coating
 63 parylene on the surface of the PETE membrane. **d**, Etching step for defining the PETE sheet into
 64 the same 2D layout as the microchannel layer. **e**, Packaging step including buckling the 2D
 65 precursor and mounting the 3D-printed millifluidic modules onto the periphery of the buckled 3D
 66 microchannel.

67

68

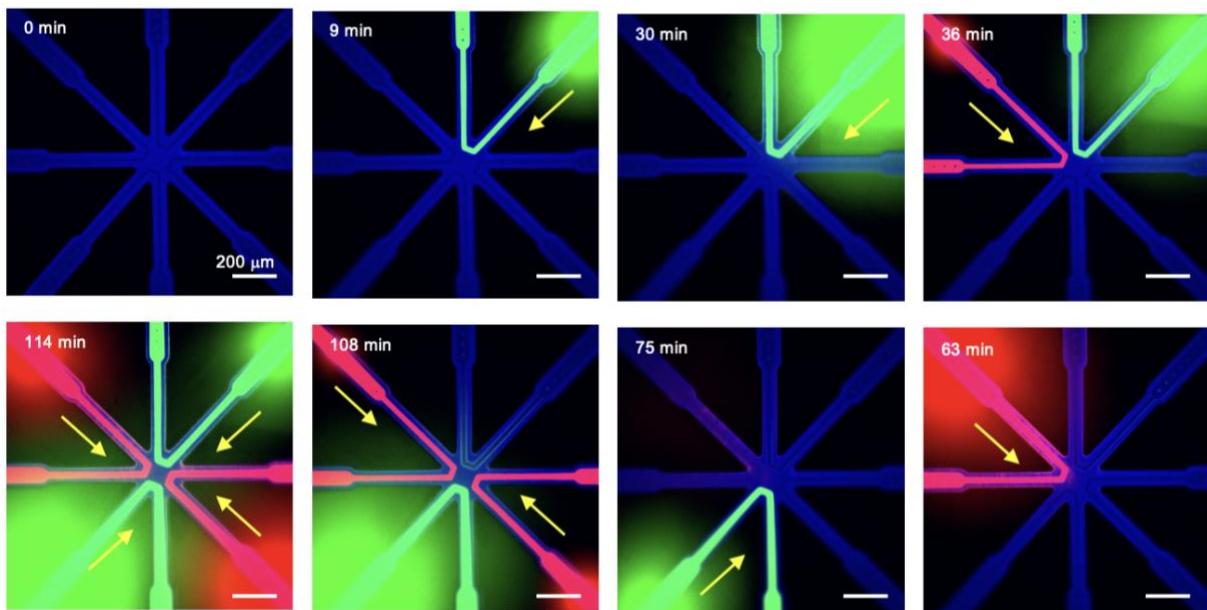
69

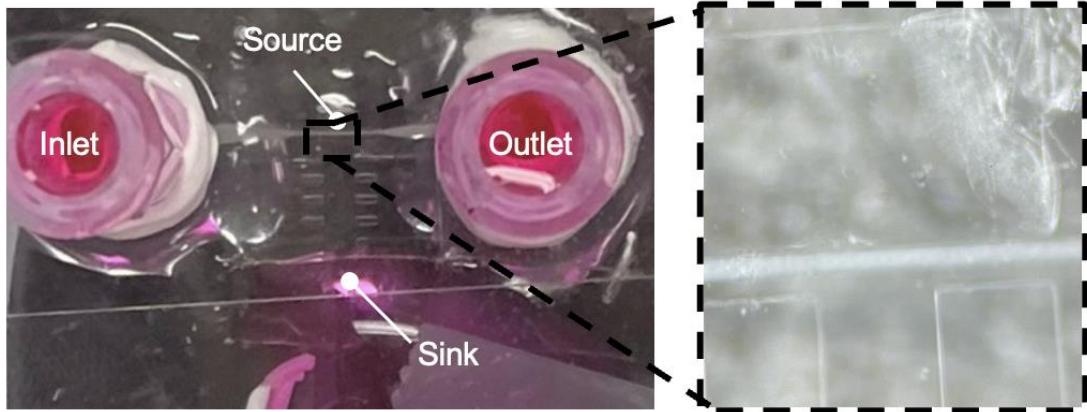


70

71 **Supplementary Fig. 2 | Dimensional characteristics of the planar precursor.**

72 **a**, 2D layout showing the design of the planar precursor. **b**, Enlarged view of a single wing in the
 73 2D layout. **c**, Cross-sectional side views of the planar precursor along lines A–A' and B–B' in the
 74 enlarged view of the wing.


75


76
77 **Supplementary Fig. 3 | Mechanical characteristics of the material used for buckling the**
78 **precursor into 3D microchannel.**

79 **a**, Photographs showing an Ostemer microchannel layer placed on a fingerprint. The magnified
80 view reveals that the layer conforms to the fingerprint ridges because the polymer is flexible
81 (Young's modulus of $10.29 \times 10^6 \text{ N/m}^2$). **b** Stress–strain curve obtained from tensile testing of the
82 PETE membrane used to seal the microchannel layer.

83

84
85 **Supplementary Fig. 4 | A microfluidic device for multiplexed delivery of solutes at targeted**
86 Time-lapse widefield fluorescence microscopy showing multiplexed spatiotemporal delivery of
87 $50 \mu\text{M}$ SRB and $100 \mu\text{M}$ fluorescein isothiocyanate (FITC) into 2-mm-thick 1% agarose. Arrows
88 indicate the flow direction of the solutions from the upstream wing.

89
90
91

Supplementary Fig. 5 | Top view of experimental setup for characterizing the mechanism of solute transport through the porous interface into the agarose phantom.

92

Antibody	Species	Dilution	Catalogue number, Company
Olig2	rabbit	1:100	AB9610, Millipore Sigma
Pax6	mouse	1:200	ab245110, abcam
Islet1	goat	1:2000	AF1837, Bio-Techne
NF Vio R667	human	1:1000	130-131-154, Miltenyi Biotec
NeuN Vio R667	human	1:1000	130-131-153, Miltenyi Biotec
Goat anti Mouse Alexa Fluor™ 555	mouse	1:1000	A-21424, Thermo Fisher Scientific
Donkey anti Rabbit Alexa Fluor™ 647	rabbit	1:1000	A-31573, Thermo Fisher Scientific
Donkey anti Rabbit Alexa Fluor™ 555	rabbit	1:1000	A-31572, Thermo Fisher Scientific
Donkey anti Goat Alexa Fluor™ 555	goat	1:1000	A-21432, Thermo Fisher Scientific
DAPI		1:50	D1306, Invitrogen
DRAQ5		1:100	ab108410, Abcam
Cholera Toxin Subunit B (Recombinant), Alexa Fluor™ 555 Conjugate		1:100	C22843, Invitrogen

93 **Supplementary Table 1 | List of antibodies and molecular probes.**