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Experimental Section
[bookmark: _Hlk199885808]Materials: Castor oil (CO), rosin acid, Chitosan (Viscosity 100-200 mPa·s), and 1,8-diazabicycloundec-7-ene (DBU) were purchased from Anaiji Chemical Co., Ltd. Castor oil glycidyl ether (COGE, AR) was provided by Guangzhou Ruishi Biological Company. Surfactant (AK-158), N,N-Dimethylcyclohexylamine, DOPO-HQ (99%), and graphene were purchased from the Alibaba e-commerce platform.
[bookmark: OLE_LINK3]Synthesis of castor oil-based polyols (COGER): COGE (100 g), rosin acid (66.54 g), and DBU (1.0 g) were added to a 250 mL conical flask and heated to 130 °C. The reaction was carried out at this temperature for 8 h. Finally, a brownish-red oily liquid (COGER) was obtained.[1]
Synthesis of chitosan crosslinking agent(CS/DOPO-HQ): Chitosan (10 g) was dissolved in a 7% aqueous acetic acid solution, followed by the addition of paraformaldehyde (3.72 g) and DOPO-HQ (20 g). The mixture was stirred for 30 minutes, then slowly heated to 110°C and reacted for 6 hours. After the reaction was complete, the crude product was filtered and ultrasonically washed several times with aqueous acetic acid and anhydrous ethanol. Finally, it was vacuum dried to obtain a light yellow multifunctional chitosan crosslinking agent (CS/DOPO-HQ).[1-3]
Preparation of Semi-rigid polyurethane foam: The obtained COGER and CO were mixed and stirred at 1500 r/min for 1 min. Then, a certain amount of surfactant AK-158, N, N-Dimethylcyclohexylamine, and foaming agent water was added with continuous stirring for 30 s. Then, add an appropriate amount of PM-200, stir for 8 s, and leave it to cure at room temperature for 1 h. The final polyurethane foam SPUR is obtained. Using the same method, polyurethane semi-rigid foams with different properties were prepared by changing the ratio of polyols (CO, COGER, CS/DOPO-HQ) in the system. Specific formulations are detailed in Supporting Information Table S1.[4, 5]
Characterization
Structural characterization. The samples were characterized by Fourier transform infrared reflectance spectroscopy (FT-IR) using an infrared spectrometer (Nicolet IS10, Thermo Scientific, USA) with a scan range of 4000 to 400 cm-1. 1H nuclear magnetic resonance (NMR) spectroscopy of the samples was performed on an ARX 300 NMR (Bruker, Germany) spectrometer using CDCl3 as solvent. The surface morphology of the samples was observed by cold field emission electron microscopy (SU8010, Hitachi High-Technologies Corporation, Japan).[1,2] The surface morphology and elemental composition of the samples were observed using cold field emission electron microscopy (SU8010, Hitachi High Technology Co., Ltd., Japan) and energy-dispersive X-ray spectroscopy (EDS). XPS spectra were recorded on an Axis Ultra DLD (Kratos, UK) spectrometer to analyze the Binding energies and valence states of chemical elements of the sample.
Thermogravimetric analysis-differential scanning calorimetry test. Cross-linking behavior was performed on a NETZSCH simultaneous TGA-DSC (449C) at a heating rate of 10 °C/min in N2.[3,4] However, Thermogravimetric analysis (TG, 209 F1, NETZSCH, Germany) of the samples was tested at temperatures from 50 to 800 °C at a heating rate of 10 °C/min.[6]
Mechanical tests. Compression and cyclic compression tests were performed on an electronic universal testing machine (Instron 3365, Anglo-Saxon, UK) at 25 °C and 5.0-50 mm/min by ISO 527-4.The tensile strength of the samples was also tested on a universal testing machine, and the specific method is as per GB/T 1040.1-2025. Foam density was measured following ASTM D1622. The sample size was 50 × 50 × 50 mm3, and the final result was the average of three tests. Shore A hardness was measured using a Shore hardness tester (HTS-200A, Shanghai, China) with a sample size of 100 × 100 × 50 mm3. 
Dynamic mechanical analysis. Dynamic mechanical testing was performed using a DMA Q 800 analyzer (TA Instruments, USA). Specimens with dimensions of 35 × 12 × 3 mm3 were analyzed at a heating rate of 5 °C/min in the temperature range -100 to 150 °C, samples were analyzed in single cantilever mode in an air atmosphere with a frequency of 1 Hz.[5]
Flame retardancy test. Limited Oxygen Index (LOI) values were recorded using a Limited Oxygen Index Meter (JF-3, China) with sample dimensions of 130 × 6.5 × 3 mm3. A cone calorimeter (CONE, FTT2000, Fire Testing Technology, U.K.) was used to measure the fire behavior of the SPUs by ISO 5660-1. To eliminate sources of error, the samples were each cut to a size of 100 × 100 × 50 mm3 and tested three times. The gaseous products of the samples' combustion were detected using a thermogravimetric analyzer (TG209F1, Netzsch, Germany) and an FT-IR spectrometer (Nicolet IS50, Nicolet, U.S.A.), and all samples were heated to 800 °C in an air atmosphere at a rate of 10 °C/min with a flow rate of 40 mL/min.
Electromagnetic shielding testing: Conductivity was measured using a four-point probe instrument (RTS-8, China), with measurements repeated for five samples and the results averaged. EMI shielding performance was evaluated using a vector network analyzer (PNA-N5247A, Agilent Technologies, USA). EMI testing was performed using a coaxial method in the X-band (8.2–12.8 GHz), using samples cut into 13 mm diameter disks; five samples of each type were measured five times. Scattering parameters (S11 and S21) were recorded to calculate the power coefficients of reflectivity (R), transmissivity (T), and absorptivity (A), and their relationship can be described as:
R=                    S-1
                    S-2
A=1-R-T                    S-3
Then SEtotal, SER, and SEA can be calculated as follows: 
           S-4
           S-5
SEtotal= SER+ SEA +SEM        S-6
[bookmark: _Hlk216121469]where SEM is the microwave multiple internal reflections, which can be negligible when SEtotal≥10 dB[7, 8]


[bookmark: OLE_LINK1][image: ]Scheme S1. Synthesis route of COGER.
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[bookmark: OLE_LINK2]Figure S1. Characterization of Polyols. (a) FT-IR spectra of polyols, (b) 1H-NMR spectra of polyols.
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[bookmark: _Hlk208673957]Figure S2. EDS testing. (a) CS, (b) CS/DOPO-HQ.
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Figure S3. FT-IR spectra of foams.
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Figure S4. (a) Density, (b) Shore hardness, and (c) compressive strength of SPU material.
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Figure S5. (a) Cyclic loading-unloading curves of SPU under different strains, (b) Energy dissipation of SPU.
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Figure S6. (a) Cyclic loading-unloading curve of the same strain SPU.
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Figure S7. Vertical burning test of foam. (a) SPU, (b) SPUR, (c) SPUR/CS-D.
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Figure S8. DSC curve.
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Figure S9. Infrared spectra of CS/DOPO-HQ before and after heating.
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Figure S10. Infrared spectra of CS/DOPO-HQ before and after heating.
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Figure S11. Recycled film materials. (a) RSPU, (b) RSPUR.
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Figure S12. Variable-temperature infrared spectra. (a) -N-H, (b) C=O.
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Figure S13. (a)Stress relaxation curve of SPUR/CS-D. (b) ln ( τ ) versus 1000/T plot of SPUN/CS-D.
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Figure S14. Tensile strength of SPUR/CS-D film after repeated recycling.
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Figure S15. Recycling of RCF composite materials.
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Figure S16. Demonstration of the conductivity of RCF.
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Figure S17. The R, A, and T values of the RCF.



[bookmark: _Hlk199886638]Table S1. Formulations of SPU foams.
	[bookmark: _Hlk149942335][bookmark: _Hlk199886202]Samples
	COGER/g
	CO/g
	AK-158/g
	N,N-Dimethylcyclohexylamine /g
	Water/g
	CS/DOPO-HQ
	PM-200/g

	SPU
	0
	100
	3
	0.2
	3
	0
	64

	SPUR (20%)
	20
	80
	3
	0.2
	3
	0
	60

	SPUR (40%)
	40
	60
	3
	0.2
	3
	0
	58

	SPUR (60%)
	60
	40
	3
	0.2
	3
	0
	54

	SPUR (80%)
	80
	20
	3
	0.2
	3
	0
	50

	SPUR/CS-D1
	60
	40
	3
	0.2
	3
	4
	58

	SPUR/CS-D2
	60
	40
	3
	0.2
	3
	8
	62

	SPUR/CS-D3
	60
	40
	3
	0.2
	3
	13
	64

	SPUR/CS-D4
	60
	40
	3
	0.2
	3
	16
	67

	SPU/CS-D
	0
	100
	3
	0.2
	3
	13
	64



Table S2. Fire-retardant properties of SPU foams.
	Samples
	SPU
	SPUR
	SPUR/CS-D

	LOI (%)
	19.3
	22.4
	32.8

	TTI (s)
	3 ± 1
	4 ± 1
	4 ± 1

	PHRR (KW/m2)
	830.12 ± 0.01
	625.31 ± 0.02
	102.64 ± 0.01

	TPHRR (s)
	286.62 ± 0.05
	278.43 ± 0.02
	47.34 ± 0.02

	THR (MJ/m2)
	338.13 ± 0.01
	253.43 ± 0.03
	102.61 ± 0.01

	TSP (m2)
	21.10 ± 0.02
	18.22 ± 0.04
	5.21 ± 0.03





Table S3. Comparison of flame-retardant properties of this work with other foam materials.[9-23]
	[bookmark: OLE_LINK5]Samples
	LOI
	THR reduction
	PHRR reduction
	TSP reduction

	1
	31.78
	47.19
	61.97
	58.89

	2
	/
	16.37
	70.63
	/

	3
	/
	62.80
	33.09
	/

	4
	27.48
	25.61
	31.09
	20.45

	5
	27.21
	46.37
	54.36
	26.32

	6
	28.61
	35.08
	50.69
	28.71

	7
	26.48
	16.37
	26.88
	41.57

	8
	/
	50.05
	39.96
	/

	9
	/
	61.15
	40.96
	/

	10
	/
	52.53
	70.95
	/

	11
	28.04
	37.13
	41.63
	24.95

	12
	/
	54.99
	65.93
	/

	13
	22.19
	20.90
	19.18
	21.48

	14
	24.48
	45.76
	51.52
	27.02

	15
	18.96
	12.27
	18.85
	7.99

	16
	24.53
	/
	/
	10.75

	This work
	32.80
	69.80
	78.91
	75.70





[bookmark: _Hlk215614178]Table S4. Fire-retardant properties of SPU foams.
	Samples
	SPU
	SPUR
	SPUR/CS-D

	T5% (°C)
	241.58
	289.71
	278.64

	RC (wt%)
	5.74
	7.26
	35.40



Table S5. Fire-retardant properties of SPU foams.[24-32]
	Samples
	EMI
SE (dB)
	Stress
(MPa)
	Recyclable
	Conductivity
(S/m)

	1
	25.2
	/
	/
	8.4×104

	2
	47.7
	/
	/
	4.1×104

	3
	43.0
	/
	/
	1.6×104

	4
	21.4
	34
	/
	6.5×104

	5
	53.3
	29.5
	/
	2.4×104

	6
	60.0
	6
	/
	9.7×103

	7
	63.3
	2.4
	/
	[bookmark: OLE_LINK6]1.1×104

	8
	58.0
	/
	/
	1.2×104

	This work
	72.4
	29.2
	√
	5.4×104
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