

1 **NINJ1 plays a vital role in the release of neutrophil extracellular traps in acute lung injury**

2 Wen-Jing Zhong^{1,2,3}, Yu-Biao Liu^{2,3,4}, Xin-Yu Yang^{2,3,4}, Meng-Rui Chen^{2,3,4}, Nan-Shi-Yu Yang^{2,3,4}, Chen-Yu
3 Zhang^{2,3,4}, Jian-Bing Xiong^{5,6}, Wei-Feng Tang⁷, Cha-Xiang Guan^{2,3,8}, Yan-Feng Zhang^{1,6}, Jia-Xi Duan^{*1,6},
4 Yong Zhou^{*2,3,4}

5 ¹Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University,
6 Changsha, Hunan 410008, China;

7 ²Department of Physiology, Xiangya School of Basic Medical Science, Central South University, Changsha,
8 Hunan 410078, China;

9 ³ National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078,
10 China;

11 ⁴ Key Laboratory of General University of Hunan Province, Basic and Clinical Research in Major Respiratory
12 Disease, Changsha, Hunan 410078, China;

13 ⁵ Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China;

14 ⁶ National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University,
15 Changsha, Hunan 410008, China;

16 ⁷ Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South
17 University, Changsha, Hunan 410011, China;

18 ⁸ School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China;

19
20 Keywords: Ninjurin-1, acute lung injury, neutrophils, neutrophil extracellular traps

21
22 ***To whom correspondence should be addressed:**

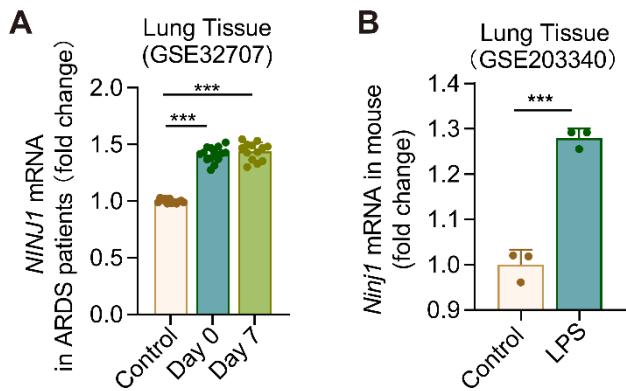
23 Prof. Yong Zhou

24 Department of Physiology

25 Xiangya School of Basic Medical Science, Central South University

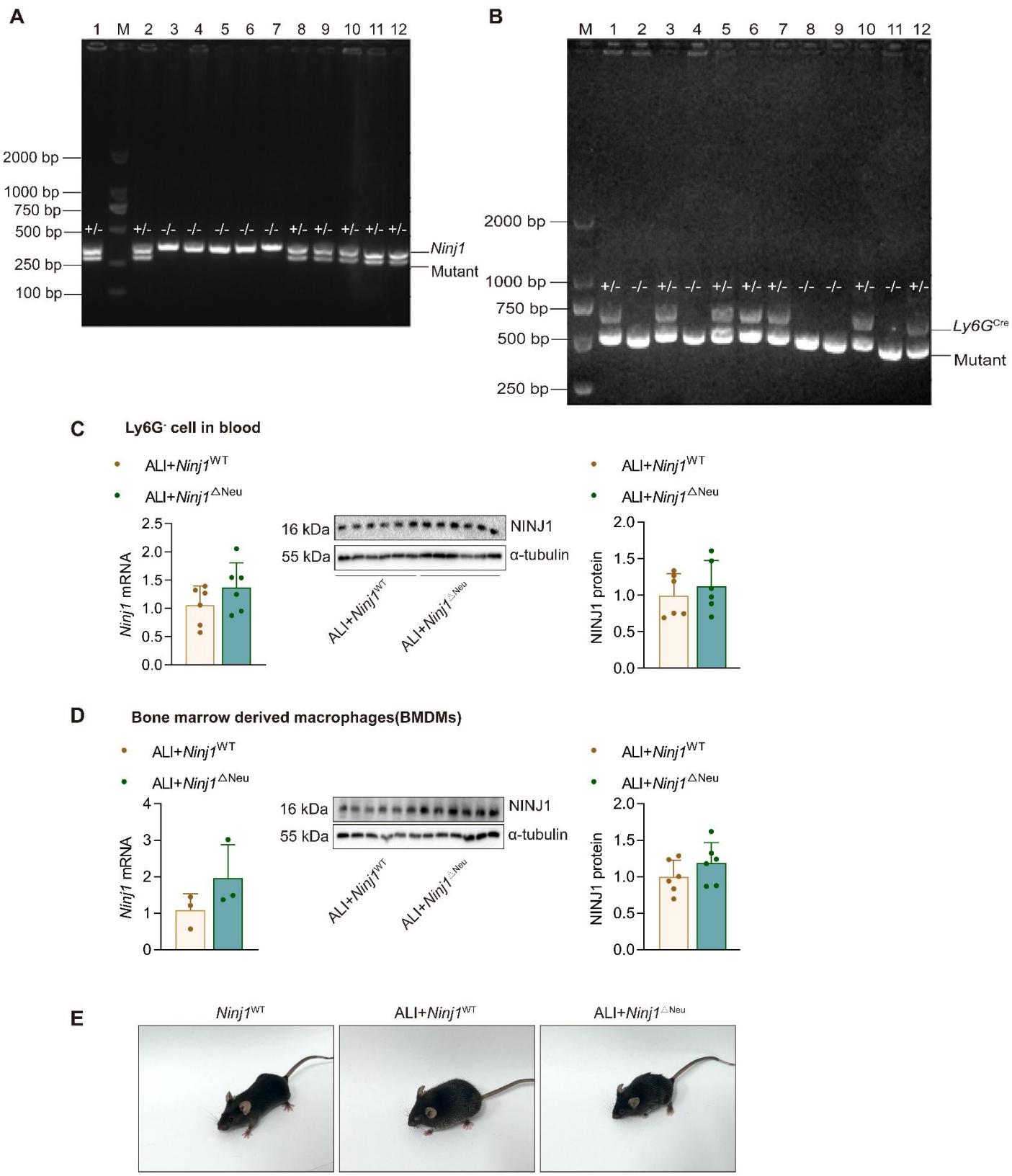
26 Changsha, Hunan 410078, China

27 Tel.: +86-731-88660446


28 E-mail: zhouyong421@csu.edu.cn

29 or

30 Dr. Jia-Xi Duan


31 Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University
32 Changsha, Hunan 410008, China

33 E-mail: duanjiaxi91@csu.edu.cn

Figure S1. NINJ1 expression is significantly increased in ALI/ARDS.

A) Human *NINJ1* mRNA expression in the lungs from ARDS patients was determined by microarray (GSE32707) ($n=14$). Blood samples were collected from enrolled ARDS patients at the time of hospital admission (Day 0) and on Day 7 thereafter. B) *Ninj1* mRNA expression in the lungs from LPS-induced ALI mice (GSE203340) ($n=3$). *** $P < 0.001$.

42

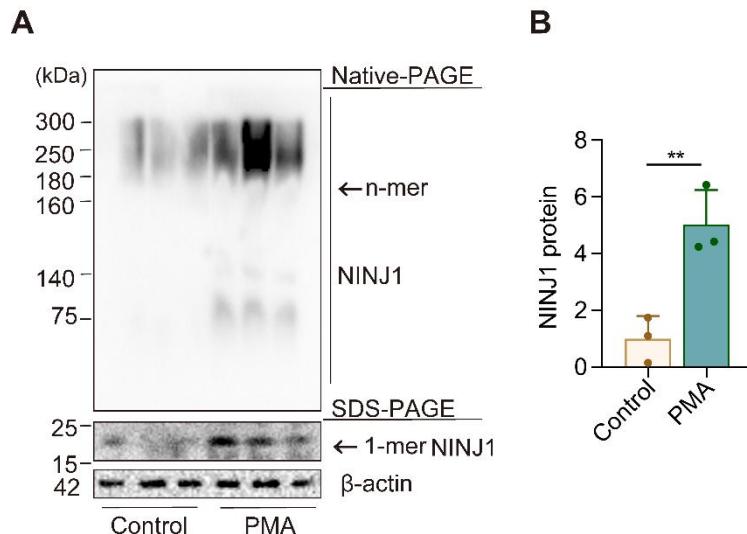
43 **Figure S2. Generation of neutrophil-specific conditional *Ninj1*-null mice.**

44 A) Targeted disruption of the *Ninj1* gene was verified by PCR of genomic DNA isolated from candidate mice.

45 B) Targeted disruption of the *Ly6G^{Cre}* gene was verified by PCR of genomic DNA isolated from candidate

46 mice. *Ninj1^{WT}* and *Ninj1^{ΔNeu}* mice were intratracheally administered with LPS (5 mg/kg). C) Real-time PCR

47 and Western blot were employed to detect NINJ1 expression in Ly6G⁻ cells isolated from bone marrow from


48 *Ninj1^{WT}* and *Ninj1^{ΔNeu}* mice. D) Detection of NINJ1 expression by Real-time PCR and Western blot in

49 BMDMs from *Ninj1^{WT}* and *Ninj1^{ΔNeu}* mice. E) The physical appearance of *Ninj1^{WT}* and *Ninj1^{ΔNeu}* mice

50 administered with LPS. $n = 6$ mice/group, $*P < 0.05$, $**P < 0.01$, and $***P < 0.001$.

51

52

Figure S3. NINJ1 oligomerization is elevated in PMA-induced neutrophils.

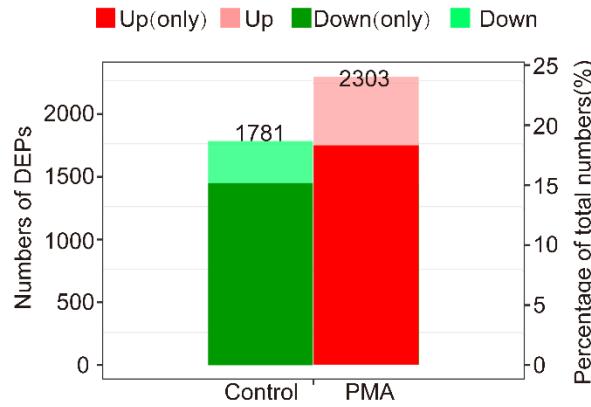
Bone marrow neutrophils in mice were treated with PMA (10 nM) for 4 h. A) Native-PAGE analysis of NINJ1 oligomerization in PMA-treated neutrophils. SDS-PAGE analysis of NINJ1 monomer and β -actin was used as the internal control. B) Quantification of NINJ1 monomer protein levels, $n = 3$, $**P < 0.01$.

53

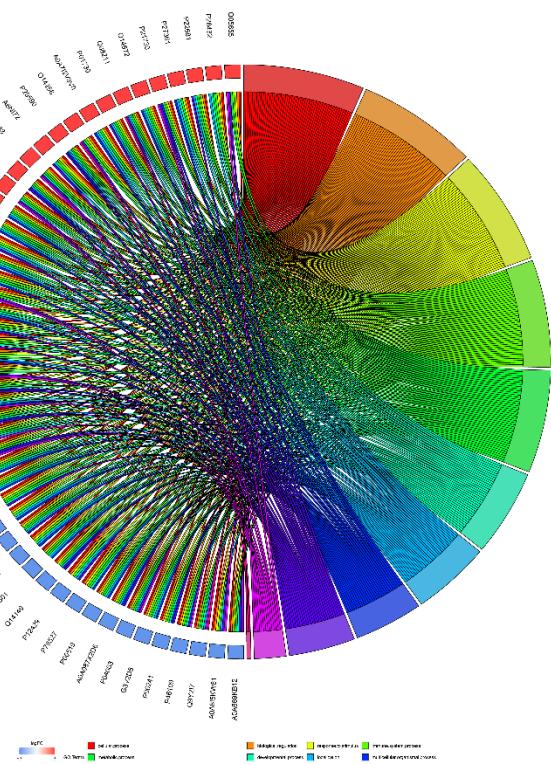
54

55

56


57

58


A

B

C

59

60 **Figure S4. Lack of upregulated NINJ1 phosphorylation upon PMA stimulation.**

61 A) To predict potential phosphorylation sites, Bioinformatic analysis with CSSPalm suggested that NINJ1
 62 contains several putative phosphorylation sites, notably at Thr18, Ser25, Ser46, and Ser50. B)
 63 Phosphoproteomic profiling of PMA-treated neutrophils identified 2303 upregulated phosphoproteins, none
 64 of which corresponded to NINJ1. C) Phosphoproteomic profiling of PMA-treated neutrophils did not detect
 65 any upregulated phosphorylation at the predicted sites on NINJ1. $n = 3$.