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Supplementary Methods
Subjective difficulty assessment
After the reproduction stage of each trial, participants were asked:

"Please indicate how difficult it was to choose a lottery in the experiment round you just completed"
Participants responded on a 5-point Likert scale with the following options:

□ Very easy

□ Easy

□ Medium

□ Hard

□ Very hard

Instruction comprehension checks
Every participant had to complete the following comprehension check after receiving the instructions and before starting the
experiment. Participants had 3 attempts to answer each question correctly and they could always read the relevant instruction
section again before answering. The correct answers are indicated with a green check mark.

Question 1
Imagine that you choose the Left lottery in the example shown in the image below. Imagine as well that this lottery is drawn
from the bag of selected lotteries at the end of the experiment. If you play the lottery, what is the probability of earning Ghentian
dollars? And how many Ghentian dollars could you potentially earn?

□ I could earn 40 Ghentian dollars with a probability of 60%

□ I could earn 60 Ghentian dollars with a probability of 40%
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□ I could earn 80 Ghentian dollars with a probability of 20% ✓

□ I could earn 20 Ghentian dollars with a probability of 80%

Question 2
Imagine that you choose the Right lottery in the example shown in the image below. Imagine as well that this lottery is drawn
from the bag of selected lotteries at the end of the experiment. If you play the lottery, what is the probability of getting 0
Ghentian dollars?

□ 60%

□ 70%

□ 30%

□ 40% ✓

Question 3
For a given round, if you have not selected a lottery before the deadline, then:

□ You can still pick a lottery in that round. However, if that lottery is one of the 8 selected lotteries at the end of the
experiment, you will only obtain half of the lottery’s outcome that you would have obtained, had you not missed the
deadline ✓

□ You cannot pick a lottery in that round

□ You can still pick a lottery in that round and there are no consequences for missing the deadline

Question 4
What time interval should you reproduce after each round?

□ Regardless of whether I miss the deadline or not, from the moment the lotteries appear until the moment I choose a
lottery (which is equal to the decision time)

□ Regardless of whether I miss the deadline or not, the amount of time that the lotteries were displayed. If I don’t miss the
deadline, then it will be equal to decision time + waiting time. If I miss the deadline, then it will only be equal to the
decision time ✓

□ Regardless of whether I miss the deadline or not, from the moment I choose a lottery until the moment the lotteries
disappear (which is equal to the waiting time)

□ Regardless of whether I miss the deadline or not, from the moment the lotteries appear until the moment the black cross
disappears
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Gambles used in the duak-task stage

Figure S1. Gamble attributes. (a) Distribution of gambles in the dX-dP space, where dX represents the payoff difference and
dP the probability difference between the safer and riskier lotteries. The safer lottery is defined as the option with the higher
probability, while the riskier lottery has the lower probability. Colours correspond to the deadline conditions assigned to each
gamble (6, 8, or 10 seconds). (b) Histogram of gambles based on the difference in expected value (dEV) between the safer and
riskier lotteries, separated by deadline condition. An optimal decision-maker should select the option with the highest expected
value; therefore, gambles with dEV values near zero are expected to be harder.

Drift-diffusion model
The drift-diffusion model and its priors were specified as follows:

𝑎ddm ∼U(0.5,3.5)
𝑡ddm ∼HN(0, .3)
𝑣x ∼HN(0,3)
𝑣p ∼HN(0,3)
𝑣ev ∼HN(0,3)
𝑣ddm,𝑡 = 𝑣𝑥 dX𝑡 + 𝑣𝑝 dP𝑡 + 𝑣𝑒𝑣 dEV𝑡

RT𝑡 ∼ WFPT(𝑣ddm,𝑡 , 𝑎ddm, 𝑡ddm, .5)

Where RT𝑡 is the reaction time at trial 𝑡 and dX𝑡 , dP𝑡 and dEV𝑡 , are the differences in payoff, probability and expected
value of the lotteries in trial 𝑡, respectively. The function WFPT(·) denotes the Wiener First Passage Time distribution. The
prior distributions were chosen to match the range of parameter estimates reported in a previous study that employed the same
DDM for a similar task26.
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Hierarchical Bayesian Wald models
A graphical representation of the full Wald model can be seen in Fig. S2. The full model and its priors were specified as
follows:

𝜇𝛽0 ∼ N(0, .5) ; 𝜎𝛽0 ∼HN(0, .5)
𝜇𝛽1 ∼ N(0, .5) ; 𝜎𝛽1 ∼HN(0, .5)
𝜇𝛽2 ∼ N(0, .5) ; 𝜎𝛽2 ∼HN(0, .5)
𝜇𝑣wm ∼ N(0, .5) ; 𝜎𝑣wm ∼HN(0, .5)
𝛽𝑖0 ∼ exp(N (𝜇𝛽0 ,𝜎𝛽0 ))
𝛽𝑖1 ∼ exp(N (𝜇𝛽1 ,𝜎𝛽1 ))
𝛽𝑖2 ∼ exp(N (𝜇𝛽2 ,𝜎𝛽2 ))
𝑣𝑖wm ∼ exp(N (𝜇𝑣wm ,𝜎𝑣wm ))
𝑎𝑖wm,𝑡 = 𝛽𝑖0 + 𝛽𝑖1 RT𝑖

𝑡 + 𝛽𝑖2 IT𝑖
𝑡

ReproT𝑖
𝑡 ∼ Wald(𝜇 =

𝑎𝑖
wm,𝑡

𝑣𝑖wm
,𝜆 = (𝑎𝑖wm,𝑡 )2, 𝛼 = 𝑡wm)

Where 𝑖 indexes participants and 𝑡, indexes trials. The function Wald(·) denotes the Wald (or Inverse Gaussian) distribution,
which in PyMC is parameterized by three parameters: 𝜇, the mean; 𝜆, which controls the spread of the distribution; and 𝛼, a
shift parameter representing the non-decision time (i.e., 𝛼 = 𝑡wm). We fixed the non-decision time to 250 ms, so 𝑡wm was not
treated as a free parameter.

The prior distributions were specified to be weakly informative while constraining reproduced times to positive values. The
priors encode plausible assumptions, as demonstrated in Fig. S3.

We also fitted a version of the Wald model (the simple Wald model) where the pulse-transfer rate (𝛽𝑡 ) is the same during the
decision-making and the idle phases. The simple Wald model was specified as follows:

𝜇𝛽0 ∼ N(0, .5) ; 𝜎𝛽0 ∼HN(0, .5)
𝜇𝛽𝑡 ∼ N(0, .5) ; 𝜎𝛽𝑡 ∼HN(0, .5)
𝜇𝑣wm ∼ N(0, .5) ; 𝜎𝑣wm ∼HN(0, .5)
𝛽𝑖0 ∼ exp(N (𝜇𝛽0 ,𝜎𝛽0 ))
𝛽𝑖𝑡 ∼ exp(N (𝜇𝛽𝑡 ,𝜎𝛽𝑡 ))
𝑣𝑖wm ∼ exp(N (𝜇𝑣wm ,𝜎𝑣wm ))
𝑎𝑖wm,𝑡 = 𝛽𝑖0 + 𝛽𝑖𝑡 TT𝑖

𝑡

ReproT𝑖
𝑡 ∼ Wald(𝜇 =

𝑎𝑖
wm,𝑡

𝑣𝑖wm
,𝜆 = (𝑎𝑖wm,𝑡 )2, 𝛼 = 𝑡wm)

Where TT𝑖
𝑡 is the target time of trial 𝑡 for subject 𝑖.

Finally, we fitted a version of the Wald model (the Null Wald model) where there is no information about the experienced
target time. The Null Wald model was specified as follows:

𝜇𝛽0 ∼ N(2, .5) ; 𝜎𝛽0 ∼HN(0, .5)
𝜇𝑣wm ∼ N(0, .5) ; 𝜎𝑣wm ∼HN(0, .5)
𝛽𝑖0 ∼ exp(N (𝜇𝛽0 ,𝜎𝛽0 ))
𝑣𝑖wm ∼ exp(N (𝜇𝑣wm ,𝜎𝑣wm ))
𝑎𝑖wm,𝑡 = 𝛽𝑖0

ReproT𝑖
𝑡 ∼ Wald(𝜇 =

𝑎𝑖
wm,𝑡

𝑣𝑖wm
,𝜆 = (𝑎𝑖wm,𝑡 )2, 𝛼 = 𝑡wm)
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Figure S2. Graphical representation of the hierarchical (full) Wald model. Shaded nodes represent observed variables,
whereas unshaded nodes represent latent variables. Square nodes indicate variables derived from deterministic operations.
Here, a “subject” refers to a participant.
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Hierarchical Bayesian Regression models
The full regression model and its priors were specified as follows:

𝜇𝛽0 ∼ N(−.5, .5) ; 𝜎𝛽0 ∼HN(0, .5)
𝜇𝛽1 ∼ N(−.5, .5) ; 𝜎𝛽1 ∼HN(0, .5)
𝜇𝛽2 ∼ N(−.5, .5) ; 𝜎𝛽2 ∼HN(0, .5)
𝜇𝜎 ∼ N(−.5, .5) ; 𝜎𝜎 ∼HN(0, .5)
𝛽𝑖0 ∼ exp(N (𝜇𝛽0 ,𝜎𝛽0 ))
𝛽𝑖1 ∼ exp(N (𝜇𝛽1 ,𝜎𝛽1 ))
𝛽𝑖2 ∼ exp(N (𝜇𝛽2 ,𝜎𝛽2 ))
𝜎𝑖

ReproT ∼ exp(N (𝜇𝜎 ,𝜎𝜎))
𝜇𝑖ReproT,𝑡 = 𝛽𝑖0 + 𝛽𝑖1 RT𝑖

𝑡 + 𝛽𝑖2 IT𝑖
𝑡

ReproT𝑖
𝑡 ∼ N(𝜇𝑖ReproT,𝑡 ,𝜎

𝑖
ReproT)

As for the Wald model, a version of the regression model (that we termed the simple regression model) was also fitted, where
the pulse-transfer rate is the same during decision-making and idleness. The simple regression model was specified as follows:

𝜇𝛽0 ∼ N(−.5, .5) ; 𝜎𝛽0 ∼HN(0, .5)
𝜇𝛽𝑡 ∼ N(−.5, .5) ; 𝜎𝛽𝑡 ∼HN(0, .5)
𝜇𝜎 ∼ N(−.5, .5) ; 𝜎𝜎 ∼HN(0, .5)
𝛽𝑖0 ∼ exp(N (𝜇𝛽0 ,𝜎𝛽0 ))
𝛽𝑖𝑡 ∼ exp(N (𝜇𝛽𝑡 ,𝜎𝛽𝑡 ))
𝜎𝑖

ReproT ∼ exp(N (𝜇𝜎 ,𝜎𝜎))
𝜇𝑖ReproT,𝑡 = 𝛽𝑖0 + 𝛽𝑖𝑡 TT𝑖

𝑡

ReproT𝑖
𝑡 ∼ N(𝜇𝑖ReproT,𝑡 ,𝜎

𝑖
ReproT)

The prior distributions were once again specified to be weakly informative while constraining reproduced times to positive
values. Figure S3 shows the prior predictive distributions of the regression models compared to the observed distribution of
reproduced times.
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Prior predictive distributions

Figure S3. Prior predictive distributions compared to observed distributions of reproduced times. Histograms for the Wald
and regression models were generated by drawing 500 samples from their prior predictive distributions.
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Wald model Posterior Predictive Check
The posterior predictive check consists of comparing the observed distribution of reproduced times with a distribution of
simulated reproduced times (known as the posterior predictive distribution) generated using parameter values drawn from the
posterior distribution. As shown in Fig. S4, the posterior predictive and observed distributions match closely, indicating a good
fit.

Figure S4. Wald model posterior predictive check. The observed distribution of reproduced times (black) is compared with
500 posterior predictive draws (blue). The orange dashed line represents their mean posterior predictive density.
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Quantile-Quantile analysis of reproduced times
To evaluate the goodness-of-fit of the WM, we extracted the best-fitting parameters for each participant (posterior means)
from both the DDM and the WM and simulated the entire experiment once. Specifically, for each trial, we first simulated the
drift-diffusion process underlying the choice between the two lotteries presented in that trial. The resulting RT and IT were
then used as inputs to the WM to simulate the reproduced time. For each participant, we computed the 10th, 30th, 50th, 70th,
and 90th quantiles of the simulated reproduced times and plotted them against the corresponding observed quantiles. As shown
in Fig. S5, the WM provides a good fit to the observed data.

Figure S5. Quantile–quantile plot of observed versus simulated reproduced times for the Wald model. All axes are in seconds.
The grey diagonal line indicates a perfect fit between observed and simulated values.
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Group-level parameter estimates of the Wald model

Figure S6. Group-level parameter estimates of the Wald model. (a, b) Posterior distributions and corresponding MCMC
traces (after tuning) of the group-level means (𝜇𝛽0 , 𝜇𝛽1 , 𝜇𝛽2 , and 𝜇𝑣wm ). (c, d) Posterior distributions and corresponding
MCMC traces (after tuning) of the group-level standard deviations (𝜎𝛽0 , 𝜎𝛽1 , 𝜎𝛽2 , and 𝜎𝑣wm ). All parameters showed good
convergence, with 𝑅̂ = 1.

Table S1. Transformed group-level parameter estimates of the Wald model. For better interpretability, the group-level
parameter estimates of the Wald model are reported after applying an exponential transformation (𝜇′ = exp(𝜇) and
𝜎′ = exp(𝜎)).

Parameter M SD HDI 3% HDI 97% 𝑅̂

𝜇′
𝛽0

3.80 0.64 2.60 5.00 1
𝜎′
𝛽0

2.08 0.31 1.56 2.63 1
𝜇′
𝛽1

0.36 0.06 0.25 0.47 1
𝜎′
𝛽1

1.74 0.28 1.26 2.27 1
𝜇′
𝛽2

0.51 0.09 0.34 0.68 1
𝜎′
𝛽2

2.27 0.35 1.71 2.91 1
𝜇′𝑣wm

1.50 0.13 1.26 1.74 1
𝜎′
𝑣wm

1.47 0.01 1.31 1.66 1

10/21



Individual-level parameter estimates of the Wald model

Figure S7. Individual-level parameter estimates of the Wald model. The plots on the left show the posterior distributions of
the individual-level parameters of the Wald model. The plots on the right display the corresponding MCMC traces (after
tuning). Each colour represents a different participant. All parameters showed good convergence, with 𝑅̂ = 1.

11/21



Parameter estimates of the Drift-Diffusion model

Figure S8. Posterior mean estimates of the parameters of the Drift Diffusion Model (DDM). The drift rate component
associated with probability (𝑣𝑝) tends to be larger than that associated with payoff (𝑣𝑥), reflecting the greater proportion of
participants who are risk-averse compared to risk-seeking, typically reported in the literature 26.

Model comparison results

Table S2. Model comparison results. The table reports the best-fitting model rank, the estimated leave-one-out
cross-validation score (elpd_loo) along with the standard error of this estimate (se), the difference in the score (elpd_diff) with
respect to the score of the best-fitting model (i.e., the full Wald model), and the standard deviation of this difference (dse).

Model rank elpd_loo se elpd_diff dse

Full_wald 1 -6061.52 51.86 0.00 0.00
Simple_wald 2 -6147.52 51.69 86.00 14.43

Full_reg 3 -6236.57 58.48 175.05 21.41
Simple_reg 4 -6331.29 58.37 269.78 25.26
Null_wald 5 -6416.08 49.27 354.44 26.39
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Parameter recovery analysis
A parameter recovery analysis was conducted for the Hierarchical Bayesian Wald model and the Drift-Diffusion Model.

We first sampled 30 group-level Wald model parameter sets from the posterior distributions. For each group-level parameter
set, 21 individual-level Wald model parameter sets were then sampled (equal to the number of participants in the study) from
normal distributions parameterized by the means and standard deviations of the respective group-level parameters. In addition,
for each individual-level parameter set, we included a corresponding DDM parameter set, sampled from uniform distributions
with ranges approximately matching those of the estimated DDM parameters. Specifically, the DDM parameters were sampled
from: 𝑎ddm ∼U(0.5,3.5), 𝑡ddm ∼U(0.2,2), 𝑣𝑥 ∼U(0,4), 𝑣𝑝 ∼U(0,4) and 𝑣𝑒𝑣 ∼U(0,4).

For each combination of group- and individual-level parameters, we simulated the entire experiment using the same number
of trials and stimuli as in the behavioural data, generating 30 synthetic datasets in total. Both models were then fitted to each of
these datasets to recover both group- and individual-level parameters.

All individual-level parameters of the Wald and Drift-diffusion models were successfully recovered (Figs. S9 and S11,
respectively). The group-level Wald model parameters were moderately recovered (Fig. S10), with stronger correlations
for the means (𝜇𝛽0 , 𝜇𝛽1 , 𝜇𝛽2 and 𝜇𝑣wm ; Pearson’s r = 0.68− 0.76) compared to the standard deviations (𝜎𝛽0 , 𝜎𝛽1 , 𝜎𝛽2 and
𝜎𝑣wm ; Pearson’s r = 0.54− 0.67). The analysis also revealed that 𝜇𝛽0 tends to be underestimated, whereas 𝜇𝛽1 tends to be
overestimated.

To examine potential trade-offs among Wald model parameters, we generated pairplots for all combinations of group- and
individual-level parameter posterior means. Visual inspection of these plots (Figs. S12 and S13) suggests that the recovered
parameters are not correlated and, therefore, that there are no evident trade-offs.

Figure S9. Individual-level parameter recovery for the Wald model. The plots show the estimated individual parameters
(posterior means) plotted against the true generating parameters. The plots show the recovered parameters from 30 synthetic
dataset simulations, each corresponding to a different group-level parameter set. The grey diagonal line indicates a perfect fit
between true and recovered parameters. Pearson correlation coefficients (𝑟) and their associated 𝑝-values
(Bonferroni-corrected) are reported in the top-left corner of each plot. Bonferroni correction was applied by multiplying each
original p-value by the number of Wald model parameters (12 in total, comprising both individual- and group-level parameters),
which also corresponds to the number of statistical tests conducted.
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Figure S10. Group-level parameter recovery for the Wald model. The plots show the estimated group-level parameters
(posterior means) with their corresponding posterior standard deviations, plotted against the true generating parameters. The
grey diagonal line indicates a perfect fit between true and recovered parameters. Pearson correlation coefficients (𝑟) and their
associated 𝑝-values (Bonferroni-corrected) are reported in the top-left corner of each plot. Bonferroni correction was applied
by multiplying each original p-value by the number of Wald model parameters (12 in total, comprising both individual- and
group-level parameters), which also corresponds to the number of statistical tests conducted.
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Figure S11. Parameter recovery for the Drift-diffusion model. The plots show the estimated parameters (posterior means),
plotted against the true generating parameters. The plots show the recovered parameters from 30 synthetic dataset simulations.
The black diagonal line indicates a perfect fit between true and recovered parameters. Pearson correlation coefficients (𝑟) and
their associated 𝑝-values (Bonferroni-corrected) are reported in the top-left corner of each plot. As for the Wald model recovery
analysis, Bonferroni correction was applied by multiplying each original p-value by the number of DDM parameters (5 in total),
which also corresponds to the number of statistical tests conducted.
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Figure S12. Pairwise scatter plots of recovered group-level Wald model parameters. No correlations were observed among
any parameter combinations, suggesting that there are no trade-offs among the group-level parameters.
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Figure S13. Pairwise scatter plots and posterior mean distributions of recovered individual-level Wald model parameters. The
plots show the recovered parameters from 30 synthetic dataset simulations, each corresponding to a different group-level
parameter set. As for the group-level parameters, no correlations were observed among any parameter combinations,
suggesting that there are no trade-offs among the individual-level parameters.
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Mixed-effects models

Table S3. Summarised results of mixed-effects models. For the linear mixed-effects models (lme_1, lme_2, lme_3, and
lme_4), p-values for fixed effects were obtained using two-tailed t-tests of the null hypothesis that the corresponding regression
coefficients equal zero, with Satterthwaite-approximated denominator degrees of freedom as implemented in the lme442

package. For the cumulative link mixed models (clm_null, clm, clm_s), p-values for fixed effects were obtained using
likelihood ratio tests (LRTs) comparing the full model containing the fixed effect to the same model without that effect. Models
marked with (*) were fitted on the same data used to fit the DDM; all other models used the same data as the rest of the
analyses of the study, as described in the Data Pre-processing section. Categorical fixed-effects are denoted with c(). Here,
"Subj" refers to participants, and "SubjDiff3" to the participants’ subjective difficulty ratings, where the categories "Very easy"
and "Easy" were binned together into a single "Easy" category and "Very hard" and "Hard" were binned together into a single
"Hard" category, resulting in three levels of subjective difficulty. The coefficients of all the fixed effects are reported with
standard errors in brackets.

Name Formula Fixed-effect coefficients (𝛽) Significance R2
m

lme_1∗
log(RT)∼ (1 | Subj)
+ dXz +dPz +dXz ∗dPz

dXz: −0.099 (0.006)
dPz: −0.072 (0.006)
dXz ∗dP𝑧: −0.046 (0.006)

t(3270) = −16.486, 𝑝 < 0.001
t(3270) = −12.884, 𝑝 < 0.001
t(3270) = −7.836, 𝑝 < 0.001

0.037

clm_null∗ SubjDiff3 ∼ 1 + (1 | Subj)

clm∗ SubjDiff3 ∼ (1 | Subj)
+ log(RT) log(RT): 2.578 (0.135)

LRT(clm, clm_null):
𝜒2 (1) = 418.121, 𝑝 < 0.001

clm_s∗
SubjDiff3 ∼ (1 | Subj)
+ log(RT)
(scale = ∼ log(RT))

log(RT): 2.302 (0.158)
log(RT) (scale): −0.148 (0.059)

LRT(clm, clm_s):
𝜒2 (1) = 6.165, 𝑝 = 0.013

lme_2
log(DJR) ∼ (1 | Subj)
+ RT

TT + c(TT)

RT
TT : −0.294 (0.037)
c(TT) (8 s): −0.177 (0.013)
c(TT) (10 s): −0.312 (0.014)

t(3254.640) = −7.892, 𝑝 < 0.001
t(3237.862) = −13.560, 𝑝 < 0.001
t(3241.583) = −22.669, 𝑝 < 0.001

0.066

lme_3
log(DJR) ∼ (1 + RT

TT | Subj)
+ RT

TT + c(TT)

RT
TT : −0.254 (0.141)
c(TT) (8 s): −0.169 (0.013)
c(TT) (10 s): −0.300 (0.014)

t(18.781) = −1.801, 𝑝 = 0.088
t(3232.281) = −13.205, 𝑝 < 0.001
t(3237.206) = −21.930, 𝑝 < 0.001

0.066

lme_4
log(ReproT) ∼
(1 + TT | Subj) + TT TT: 0.060 (0.009) t(20.057) = 6.589, 𝑝 < 0.001 0.039

Table S3 summarises the results of the fitted cumulative link mixed models (clm_null, clm, and clm_s) and linear mixed-
effects models (lme_1, lme_2, lme_3, and lme_4).

To simplify the analysis of how subjective difficulty ratings depended on reaction times (RTs), we recoded the original
Likert scale by binning the categories “Very easy” and “Easy” into a single "Easy" category, and “Very hard” and “Hard”
into a single "Hard" category, resulting in three levels of subjective difficulty. This recoded variable (SubjDiff3) served as the
dependent variable in all cumulative link mixed models. In addition, we found that using log-transformed RT as a fixed effect,
rather than raw RT, provided a better fit to the data. In terms of AIC, comparing the clm model with log(RT) to the same model
with raw RT as a fixed effect resulted in ΔAIC = −25.115, in favour of the log(RT) model.

For the cumulative link models, the proportional odds assumption48 was tested with a likelihood ratio test (LRT) comparing
the clm model to the same model including nominal effects for log(RT) (in the ordinal47 package, setting nominal = ∼ log(RT)).
The result suggested that the proportional odds assumption holds (𝜒2 (2) = 0.999, 𝑝 = 0.607). We also tested whether including
scale effects dependent on log(RT) improved model fit. This was done via an LRT comparing the clm model to the same
model including scale effects for log(RT) (in the ordinal package, setting scale = ∼ log(RT)). The result (reported in Table
S3) indicated that including scale effects led to a better fit (𝜒2 (1) = 6.165, 𝑝 = 0.013). The coefficient of the scale effect was
negative (𝛽 = −0.148 (SE = 0.059)), indicating that when log(RT) is higher (i.e., decisions are slower), participants are more
consistent in how difficult they perceive those trials to be (i.e., there is less variability in their difficulty ratings).

To report effect sizes for the clm_s model (which was the best-fitting), we could not rely on the marginal R2
m, since it cannot

be computed for cumulative link mixed models. Although it is possible to calculate pseudo-R2 through various methods, we
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opted for a more interpretable test, namely calculating the odds ratio48 for the log(RT) effect. The odds ratio can be interpreted
as the ratio of the odds of being in a given category or greater given a specific value of the independent variable (𝑥1) and the
odds of being in a given category or greater given another particular value of the independent variable (𝑥2). The odds ratio (OR)
is then given by:

OR = exp[(𝑥2 − 𝑥1)𝛽]

Where 𝛽 is the (mean estimate) coefficient of the fixed effect of interest obtained when fitting the cumulative link mixed
model, and as mentioned earlier 𝑥1 and 𝑥2 are two values of the independent variable that we want to compare. In our case, we
are interested in the odds ratio associated with doubling the RT. Hence, setting 𝑥1 = log(RT) and 𝑥2 = log(2 RT) (i.e., doubling
the RT) results in:

OR = exp{[log(2RT) − log(RT)]𝛽} = exp[log(2)𝛽]

Plugging in the mean estimated coefficient (𝛽 = 2.302), the resulting odds ratio is equal to OR ≈ 4.931. To calculate the
confidence intervals, we assume a normal distribution for the parameter estimate such that the confidence interval is given by
CI = 𝛽±1.96 ·SE𝛽 (where SE𝛽 is the standard error of the parameter estimation). Hence, we can estimate CIs for the OR as
follows:

OR = exp{log(2) (𝛽±1.96 ·SE𝛽)} = [3.981,6.112]

For all linear mixed-effect models, we compared each tested model to simpler nested models with fewer fixed effects using
AIC scores. All tested models (lme_1, lme_2, lme_3, and lme_4), achieved lower AIC values than their simpler versions. In
addition, visual inspection of residuals and random intercepts indicated approximate normality, minor to no heteroscedasticity
in the residuals, and no evidence of multicollinearity among the fixed effects. All these analyses can be reproduced using the
code we have made publicly available.
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Supplementary Table S4

Table S4. Per-participant Bayesian Credible Intervals (BCIs) for 𝛽′1 < 𝛽′2. For each participant, we computed the posterior
distribution of 𝛽′1 − 𝛽′2 and estimated the posterior probability mass below zero (corresponding to 𝛽′1 < 𝛽′2.) Rows with a BCI
greater than 95% are shown in green.

Participant ID 𝛽′1 < 𝛽′2 BCI

1 99.95%
2 7.93 %
3 84.88 %
4 100.00 %
5 17.23 %
6 100.00 %
7 100.00 %
8 99.22 %
9 80.02 %

10 99.47 %
11 42.28 %
12 99.78 %
13 14.76 %
15 0.38 %
16 91.36 %
17 40.58 %
18 100.00 %
20 83.15 %
21 99.54 %
22 6.49%
23 46.86 %

Relationship between 𝛽′0 and the central tendency bias

Figure S14. Participant-specific estimated 𝛽′0 plotted against the participant-specific slopes from the lme_4 linear
mixed-effects model. A smaller slope is associated with a greater central tendency bias. Spearman’s rank correlation, along
with the p-value, is shown in the upper-right corner.
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Evolution of the Coefficient of Variation as a function of target time for the Wald model
For simplification, assuming that the pulse accumulation rates are equal during decision-making and idle phases (i.e. 𝛽1 = 𝛽2),
then the mean (𝜇), and standard deviation (𝜎) of the reproduced times for the WM are given by the following equations:

𝜇 =
𝛼

𝑣wm
=
𝛽0 + 𝛽timeTT

𝑣wm
(1)

𝜎 =

√︂
𝛼

𝑣3
wm

=

√︄
𝛽0 + 𝛽timeTT

𝑣3
wm

(2)

Where 𝛽time := 2𝛽1 = 2𝛽2 and TT = RT+ IT is the target time to be reproduced.

Given equations (1) and (2), we can show that the coefficient of variation (CV) decreases with target time following this
relationship:

CV =
𝜎

𝜇
=

1√︁
𝑣wm (𝛽0 + 𝛽timeTT)

∝ 1
√

TT
(3)

Interestingly, if we no longer assume that pulse-transfer rates are the same during decision-making as during idleness (i.e.,
𝛽1 ≠ 𝛽2), then the WM also predicts that participants with a higher central tendency bias will show less variation in CV as the
deadline increases, since their "time representations" are more constant across deadlines, when compared to the rest of the
participants. However, we found no evidence supporting this prediction.
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