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Table - 1: Physiomarkers derived from the Electrocardiogram (ECG) waveform categorized by time domain and frequency domain.
	Category
	Features
	Description
	Statistical Significance

	Time
	HR_bpm
	Heart rate in beats per minute, calculated as the inverse of the average RR interval duration
	A large meta-analysis found that each 10 bp increase → ~9% higher all cause death risk [1].

	
	pr_interval_ms
	The time duration from the onset of the P wave to the onset of the QRS complex, measured in milliseconds
	Prolonged PR (≥200 ms, 1st-degree AV block) signals conduction delay and higher risk of arrythmia/death [2]

	
	pr_segment_ms
	The time duration from the end of the P wave to the onset of the QRS complex, measured in milliseconds
	PR segment depression indicates the ischaemia/pericarditis. PR↓≥1.2 mm gave 44.4% vs 11.7% mortality (P=0.015) [3]

	
	qt_interval_ms
	The time duration from the onset of the QRS complex to the end of the T wave, measured in milliseconds
	QT extremes predict arrythmias/ sudden death. In NHANEX-III, QT ≥ 95th percentile doubled total mortality risk [4].

	
	qtc_interval_ms
	The corrected QT interval, adjusted for heart rate, measured in milliseconds
	Prolonged QTc likewise predicts risk.: e.g. QTc ≥ 95th percentile had ~2x all-cause mortality [4].

	
	st_interval_ms
	The time duration from the end of the QRS complex to the end of the T wave, measured in milliseconds
	ST interval indicates ischemia. In STEMI, 30-day mortality was ~6% vs 0.2% in general controls [5].

	
	st_segment_ms
	The time duration from the end of the QRS complex to the onset of the T wave, measured in milliseconds
	ST depression indicates subendocardial ischemia. 1 year mortality was 10.3% with ST↓ vs 5.6% without (p=0.002) [6].

	
	ventSys_phase
	The phase of ventricular systole within the cardiac cycle, typically measured in milliseconds
	No study found

	
	atrialSys_phase
	The phase of atrial systole within the cardiac cycle, measured in milliseconds
	No study found

	
	P_duration
	The duration of the P wave, measured in milliseconds
	Both abnormally short and long P predict AF. In one cohort, P ≥ 130 ms had hazard ratio (HR) ≈ 2.06 for incident AF [7].

	
	QRS_duration
	The duration of the QRS complex, measured in milliseconds
	Prolonged QRS (≥120 ms) indicates conduction block. QRS ≥ 120ms had 49.3% vs 34% mortality (P<0.001) [8].

	
	T_duration
	The duration of the T wave, measured in milliseconds
	No association was seen between T duration and arrythmia events [9].

	
	T_rr_ms
	The RR interval, the time between consecutive R peaks in the QRS complex, measured in milliseconds
	Meta analysis: lowest HRV quartile had HR ≈ 1.56 for all cause death [10].

	
	ecgInterbeat_eigval1
	The first eigenvalue from the analysis of interbeat intervals
	No specific references found

	
	ecgInterbeat_eigval2
	The second eigenvalue from the analysis of interbeat intervals
	No specific references found

	
	ecgInterbeat_eigval3
	The third eigenvalue from the analysis of interbeat intervals
	No specific references found

	Frequency
	ecgBeatCenterFreq
	The dominant frequency of ECG beats, derived from spectral analysis
	No specific references found

	
	edr_rate_Bpm
	ECG-derived respiration rate in breaths per minute.
	One QRS based algorithm achieved Pearson r≈0.88 with true respiratory rate [11].


Table – 2: Physiomarkers derived from the Photoplethysmographic (PPG) waveform categorized by time domain, frequency domain, class, statistical, and hybrid.
	Category
	Features
	Definition
	Statistical Significance

	Time
	AUC_dias_nu
	Normalized area under the curve for the diastolic phase of the PPG waveform
	No specific references found

	
	AUC_pulse_nu
	Normalized area under the curve for the entire PPG pulse
	No specific references found

	
	AUC_sys_nu
	Normalized area under the curve for the systolic phase of the PPG waveform
	No specific references found

	
	AUCos_nu
	Normalized area under the curve from onset to systolic peak
	No specific references found

	
	AUCow_nu
	Normalized area under the curve from onset to wave peak
	No specific references found

	
	AUCso_nu
	Normalized area under the curve from systolic peak to offset
	No specific references found

	
	AUCwo_nu
	Normalized area under the curve from wave peak to offset
	No specific references found

	
	A_AC
	Amplitude of the alternating current (pulsatile) component of the PPG signal
	AC component is strongly correlated with stroke volume [12].

	
	A_dn
	Amplitude at the diastolic notch in the PPG waveform
	No specific references found

	
	A_off
	Amplitude at the offset point of the PPG waveform
	No specific references found

	
	A_sp
	Amplitude at the systolic peak of the PPG waveform
	Correlated with stroke volume [12]

	
	Augmentation_index
	Ratio of the reflected wave amplitude to the systolic peak amplitude, indicating arterial stiffness
	It increases with age and vascular diseases [12].

	
	DN_exists
	Binary indicator (0 or 1) of whether a diastolic notch is present in the waveform
	Absence of a diastolic notch is strongly linked to vascular aging.  In large study, absent -notch cases had ~4x higher myocardial infraction prevalence (p<0.001) compared to distinct notch cases [13].

	
	Delta_A_dn_dp
	Difference in amplitude between the diastolic notch and diastolic peak
	No specific references found

	
	Delta_A_sp_sp
	Difference in amplitude between two systolic peaks (if multiple peaks exist)
	No specific references found

	
	Delta_T_sd
	Time difference between the systolic peak and diastolic peak
	It correlates with vascular stiffness, age and pulse wave velocity (PWV) (r≈0.69,  p<0.0001) [14]

	
	PR
	Pulse rate, calculated as the inverse of the time interval between consecutive pulses
	A UK Biobank study found higher heart rate in absent-notch subjects versus others (p<0.001) [13].

	
	PW_10
	Pulse width at 10% of the pulse height
	No specific references found

	
	PW_25
	Pulse width at 25% of the pulse height
	No specific references found

	
	PW_33
	Pulse width at 33% of the pulse height
	No specific references found

	
	PW_50
	Pulse width at 50% of the pulse height
	Correlates with systematic vascular resistance [12].

	
	PW_66
	Pulse width at 66% of the pulse height
	No specific references found

	
	PW_75
	Pulse width at 75% of the pulse height
	No specific references found

	
	RI
	Reflection index, the ratio of the diastolic peak amplitude to the systolic peak amplitude
	higher arterial stiffness yields lower RI [15]. 

	
	SI
	Stiffness index, derived from the time delay between systolic and diastolic peaks divided by the subject’s height
	Strongly correlates with aortic PWV and age. In one study SI correlated with PWV (r=0.65, p<0.0001) and age (r=0.69, p<0.0001) [14].

	
	T_dn_dp_ms
	Time interval between the diastolic notch and diastolic peak, in milliseconds
	No specific references found

	
	T_os_ms
	Time from waveform onset to systolic peak, in milliseconds
	It is longer in vascular disease [12].

	
	T_ow_ms
	Time from waveform onset to wave peak (e.g., dicrotic wave), in milliseconds
	No specific references found

	
	T_so_cd_ms
	Time from systolic peak to the dicrotic notch, in milliseconds
	Decreased in stiffer arteries [14].

	
	T_so_ms
	Time from systolic peak to waveform offset, in milliseconds
	It is a part of the pulse width (PW). PW correlates with systematic vascular resistance [12].

	
	T_wo_ms
	Time from wave peak to waveform offset, in milliseconds
	No specific references found

	
	Tdias_ms
	Duration of the diastolic phase of the PPG waveform, in milliseconds
	In a study, It has been noted as an important feature for blood pressure (BP) and hypertension prediction [16].

	
	Ton_off_ms
	Time from waveform onset to offset (pulse duration), in milliseconds
	Full pulse duration (“pulse width”) correlates with vascular resistance [12].

	
	Tsp_sp_ms
	Time between two systolic peaks (if applicable), in milliseconds
	It strongly correlates with ECG heart-rate variability (r≈0.9) [12].

	
	Tsys_ms
	Duration of the systolic phase of the PPG waveform, in milliseconds
	It reflects cardiac ejection: longer it indicates robust systolic function [16].

	
	dpat_ms
	Consecutive pulse arrival time difference, in ms
	No specific references found

	
	pat_ms
	Pulse arrival time, in ms
	Pulse arrival time (ECG R-wave to PPG foot) is strongly inversely correlated with BP (e.g. SBP; r≈−0.9, p<0.01 in ICU patients [17].

	
	max_upslope
	Maximum slope of the rising edge of the PPG waveform, indicating the rate of blood volume change
	The slope transit time correlates with BP. Addison (2016) showed a single PPG upslope feature is strongly BP-related [18].

	
	mean_slope_os
	Mean slope from waveform onset to systolic peak, reflecting the average rate of rise
	No specific references found

	
	mean_slope_so
	Mean slope from systolic peak to waveform offset, reflecting the average rate of fall
	No specific references found

	Frequency
	center_freq_ppg_Hz
	Center frequency of the PPG signal’s power spectrum, in Hertz
	No specific references found

	
	energy_ppg
	Total energy in the PPG signal’s frequency spectrum, indicating signal power
	No specific references found

	
	ppgBeatCenterFreq
	Center frequency of the power spectrum for individual PPG beats, in Hertz
	No specific references found

	
	ppgInterbeat_eigval1
	The first eigenvalues from spectral decomposition of interbeat interval frequency components
	No specific references found

	
	ppgInterbeat_eigval2
	The second eigenvalues from spectral decomposition of interbeat interval frequency components
	No specific references found

	
	ppgInterbeat_eigval3
	The third eigenvalues from spectral decomposition of interbeat interval frequency components
	No specific references found

	Statistical
	entropy_ppg
	Entropy of the PPG signal, measuring its complexity or randomness
	It has been used to detect motion/noise artifacts with very high accuracy (~99%) [19].

	
	kurtosis_ppg
	Kurtosis of the PPG signal amplitude distribution, indicating the “tailedness” of the distribution
	It distinguishes clean vs. artifact PPG; combining kurtosis and entropy yielded artifact-detection accuracies >93% [19].

	
	mean_ppg
	Mean amplitude of the PPG signal over a given time window
	No specific references found

	
	median_ppg
	Median amplitude of the PPG signal over a given time window
	No specific references found

	
	skewness_ppg
	Skewness of the PPG signal amplitude distribution, indicating asymmetry
	It (with kurtosis and entropy) has been proposed for artifact detection [19].

	
	std_ppg
	Standard deviation of the PPG signal amplitude, measuring variability
	No specific references found

	
	variance_ppg
	Variance of the PPG signal amplitude, quantifying the spread of values
	No specific references found

	Class
	ppg_class
	Categorical label for the PPG waveform
	Distinct PPG waveform classes correlate with age and cardiovascular pathology [18].

	Hybrid
	IPA
	Inflection Point Area, likely the area around an inflection point in the waveform
	It correlates with total peripheral resistance [12].


Table 3: Physiomarkers derived from the respiratory (RESP) waveform categorized by time domain and frequency domain.
	Category
	Feature
	Description
	Statistical Significance

	Time
	exp_time
	Directly measures the duration of expiration in seconds
	A randomized controlled trial found exp_time rose significantly while respiratory rate fell (p<0.05), suggesting longer exhalation improves breathing pattern in chronic obstructive pulmonary disease (COPD) [20].

	
	insp_time
	Directly measures the duration of inspiration in seconds
	Yamauchi et al. found that breath-to-breath variability (coefficient of variation) of inspiratory time (Ti) was significantly higher in mixed-apnea–dominant OSA patients than in pure obstructive OSA (p<0.05) [21].

	
	insp_exp_ratio
	Ratio of inspiratory time to expiratory time, derived from insp_time and exp_time
	In a murine ARDS model, increasing I:E from 1:2 to 1:1 (longer inspiratory time) significantly worsened lung injury and survival [22]. High I:E (1:1) caused marked increases in inflammation and mortality (p<0.001) compared to 1:2, demonstrating that shortened expiration (higher I:E) can critically aggravate ventilator-induced lung injury.

	
	resp_width_PPresp_s
	Duration of a pressure-related event in the respiratory cycle, measured in seconds
	No specific references found

	Frequency
	resp_rate_Bpm
	Respiratory rate, measured as the number of breaths per minute (Bpm)
	RR >27/min strongly predicted in-hospital cardiopulmonary arrest (significantly higher arrest risk) [23]. In one large study, patients with RR>25–29/min had >20% in-hospital mortality. 



Table - 4: Physiomarkers derived from the arterial blood pressure (ABP) waveform categorized by time domain, temporal periodicity, and hemodynamic.
	Category
	Features
	Description
	Statistical Significance

	Time Domain
	SBP
	Systolic blood pressure, the peak of the ABP waveform
	Large cohort studies show a linear increase in cardiovascular risk as SBP [24].

	
	DBP
	Diastolic blood pressure, the trough of the ABP waveform
	An extensive cohort (n>1.2M) found a J-curve: DBP <60 mmHg was associated with significantly higher mortality. Compared to DBP 70–79 mmHg, those with DBP<60 had ~1.23× all-cause and ~1.37× cardiovascular mortality [25].

	
	MAP
	Mean arterial pressure, the time-averaged ABP over a cardiac cycle
	89% accuracy in predicting hypertension-related vascular change, higher than SBP/DBP [26].

	
	PP_ABP
	Pulse pressure, the difference between systolic and diastolic pressures
	In a large ACS cohort, both low (<30 mmHg) and high (>80 mmHg) PP were linked to worse prognosis. Compared to ~50 mmHg, PP<30 had ~2.0× and PP>80 had ~1.6× higher 1-yr mortality [27]

	Temporal Periodicity
	HR_ABP
	Heart rate derived from ABP, extracted from the timing of ABP pulses
	In septic shock patient, HR > 85 bpm was associated with ~1.8 fold higher 28 day mortality than HR ≤ 85 bpm, indicating tachycardia as a risk factor [28]

	
	ShockIndex (SI)
	The ratio of heart rate to systolic blood pressure (HR/SBP)
	A meta-analysis (35 studies, ~670k patients) found SI alone poorly predicted mortality (AUC ≈ 0.55) in trauma patients. It might predict low-risk patients [29].

	Hemodynamic
	CO
	Cardiac output, related to ABP via MAP ≈ CO × TPR
	In septic shock, patients with low cardiac innex (CI) (< 1.85) or very high CI (>2.8) had significantly higher mortality [30]. CI = CO / BSA. BSA is “body surface area”

	
	TPR
	Total peripheral resistance, inversely related to CO
	In acute heart failure, a higher TRP index at admission strongly predicted 30-day mortality and rehospitalization [31]


Table - 5: Physiomarkers derived from the heart rate variability (HRV) categorized by time domain, frequency domain, non-linear, entropy-based, geometric, and statistical.
	 Category
	Features
	Description
	Statistical Significance

	Time
	HRV_CVNN
	Coefficient of variation of NN intervals (standard deviation divided by mean)
	No specific references found

	
	HRV_CVSD
	Coefficient of variation of successive differences of NN intervals
	No specific references found

	
	HRV_IQRNN
	Interquartile range of NN intervals
	No specific references found

	
	HRV_MCVNN
	Modified coefficient of variation of NN intervals
	No specific references found

	
	HRV_MadNN
	Median absolute deviation of NN intervals
	No specific references found

	
	HRV_MaxNN
	Maximum NN interval
	No specific references found

	
	HRV_MeanNN
	Mean of NN intervals
	Significant difference in MeanNN between mild cognitive impairment (MCI) and control groups (p = 0.0021). [32]

	
	HRV_MedianNN
	Median of NN intervals
	No specific references found

	
	HRV_MinNN
	Minimum NN interval
	No specific references found

	
	HRV_Prc20NN
	20th percentile of NN intervals
	No specific references found

	
	HRV_Prc80NN
	80th percentile of NN intervals
	No specific references found

	
	HRV_SDANN1
	Standard deviation of the average NN intervals over 1 minutes
	No specific references found

	
	HRV_SDANN2
	Standard deviation of the average NN intervals over 2 minutes
	No specific references found

	
	HRV_SDANN5
	Standard deviation of the average NN intervals over 5 minutes
	Significantly lower in poor-prognosis acute decompensated heart failure group (t = 4.520, p < 0.001). [33]

	
	HRV_SDNN
	Standard deviation of NN intervals
	- Significant in MCI vs controls (p = 0.0192). [32]
- Significant predictor of prognosis in acute decompensated heart failure (p < 0.001). [33]
- Lower SDNN associated with increased mortality post-MI (p < 0.01). [34]

	
	HRV_SDNNI1
	Standard deviation of NN intervals over 1 minutes
	No specific references found

	
	HRV_SDNNI2
	Standard deviation of NN intervals over 2 minutes
	No specific references found

	
	HRV_SDNNI5
	Standard deviation of NN intervals over 5 minutes
	No specific references found

	
	HRV_RMSSD
	Root mean square of successive differences of NN intervals
	- Significant in MCI vs controls (p = 0.0206). [32]
- Significant in acute decompensated heart failure prognosis (p < 0.001). [33]

	
	HRV_SDSD
	Standard deviation of successive differences of NN intervals
	No specific references found

	
	HRV_TINN
	Triangular interpolation of NN interval histogram
	No specific references found

	
	HRV_pNN20
	Percentage of NN intervals differing by more than 20 ms
	No specific references found

	
	HRV_pNN50
	Percentage of NN intervals differing by more than 50 ms
	Significantly lower in poor prognosis ADHF patients (p = 0.035). [33]

	Frequency
	HRV_HF
	High-frequency power, associated with parasympathetic activity
	In the MyoVasc heart failure cohort, LF/HF and HR (per SD) and total power (TP) were significant predictors of mortality; HF itself is part of that model. In particular, HR per SD: HR = 1.21 (95% CI 1.01–1.45), p = 0.04; LF/HF: HR = 0.71 (95% CI 0.58–0.86), p = 0.0005; TP: HR = 0.84 (95% CI 0.71–0.98), p = 0.03. [35]

	
	HRV_HFn
	Normalized high-frequency power
	The same study (MyoVasc) emphasizes normalized indices (LF/HF, normalized units) as part of their model. But the paper reports specifically LF/HF rather than “HFn.” [35]

	
	HRV_LF
	Low-frequency power, associated with both sympathetic and parasympathetic activity
	In the CHF patient study, LF power was a strong predictor of cardiac events (univariate) and significant along with VLF and TP. [36]

	
	HRV_LFn
	Normalized low-frequency power
	Similar to HFn: normalization is used in spectral analysis literature, but I did not find a paper explicitly reporting “LF normalized (LFn)” with its own p-value or hazard ratio. Many studies report LF in normalized units or ratios (e.g. LF/(LF+HF)) implicitly. [37]

	
	HRV_LFHF
	Ratio of low-frequency to high-frequency power
	In the MyoVasc study: LF/HF ratio was independently prognostic in Cox regression (HR = 0.71, 95% CI 0.58–0.86, p = 0.0005) for mortality in HF patients. [35]

	
	HRV_LnHF
	Natural logarithm of high-frequency power
	No specific references found

	
	HRV_TP
	Total power across all frequency bands
	In the MyoVasc heart failure cohort, total power (TP) was independently prognostic: HR = 0.84 (95% CI 0.71–0.98), p = 0.03. [35]

	
	HRV_ULF
	Ultra-low-frequency power, relevant in long-term recordings
	No specific references found

	
	HRV_VHF
	Very-high-frequency power, less commonly used
	No specific references found

	
	HRV_VLF
	Very-low-frequency power, associated with long-term regulatory mechanisms
	In the 2004 CHF study by Hadase et al.: VLF power was a strong independent predictor of cardiac events (multivariate chi-square = 6.24, p = 0.01) after adjusting for other factors. [36]

	Non-Linear
	HRV_C1a
	Heart rate accelerations to short-term HRV
	No specific references found

	
	HRV_C1d
	Heart rate decelerations to short-term HRV
	No specific references found

	
	HRV_C2a
	Heart rate accelerations to long-term HRV
	No specific references found

	
	HRV_C2d
	Heart rate decelerations to long-term HRV
	No specific references found

	
	HRV_CSI
	Cardiac sympathetic index
	Beniczky et al. used CSI (from Lorenz plot) and Modified CSI (L²/T) in short-term windows in epilepsy patients. They showed that during seizures, the maximum CSI (30/50/100 windows) was higher by 121–296 % compared to non-seizure/exercise periods in 4/5 patients. This is a within-subject comparative effect (not prognostic hazard ratio) but does show detectable statistical shift. [38]

	
	HRV_CSI_Modified
	Modified cardiac sympathetic index
	The “Modified CSI” was defined (L²/T) and compared similarly in the epilepsy context; authors report that Modified CSI had pronounced peaks during seizure periods vs control periods. [38]

	
	HRV_CVI
	Cardiac vagal index
	No specific references found

	
	HRV_Ca
	Total contributions of heart rate accelerations
	No specific references found

	
	HRV_Cd
	Total contributions of heart rate decelerations
	No specific references found

	
	HRV_DFA_alpha1
	Detrended fluctuation analysis, short-term fractal scaling exponent
	The short-term fractal exponent DFA α₁ has prognostic and discriminative utility. For example, in patients after MI / in heart failure, lower α₁ in acute phase is associated with worse prognosis. [39]

	
	HRV_DFA_alpha2
	Detrended fluctuation analysis, long-term fractal scaling exponent
	No specific references found

	
	HRV_HFD
	Higuchi fractal dimension, measuring signal complexity
	No specific references found

	
	HRV_KFD
	Katz fractal dimension, another fractal complexity measure
	No specific references found

	
	HRV_MFDFA_alpha1_Asymmetry
	Multifractal detrended fluctuation analysis asymmetry metrics for short-term scaling
	No specific references found

	
	HRV_MFDFA_alpha1_Delta
	Multifractal detrended fluctuation analysis delta metrics for short-term scaling
	No specific references found

	
	HRV_MFDFA_alpha1_Fluctuation
	Multifractal detrended fluctuation analysis fluctuation metrics for short-term scaling
	No specific references found

	
	HRV_MFDFA_alpha1_Increment
	Multifractal detrended fluctuation analysis increment metrics for short-term scaling
	No specific references found

	
	HRV_MFDFA_alpha1_Max
	Multifractal detrended fluctuation analysis maximum metrics for short-term scaling
	No specific references found

	
	HRV_MFDFA_alpha1_Mean
	Multifractal detrended fluctuation analysis mean metrics for short-term scaling
	No specific references found

	
	HRV_MFDFA_alpha1_Peak
	Multifractal detrended fluctuation analysis peak metrics for short-term scaling
	No specific references found

	
	HRV_MFDFA_alpha1_Width
	Multifractal detrended fluctuation analysis width metrics for short-term scaling
	No specific references found

	
	HRV_MFDFA_alpha2_Asymmetry
	Multifractal detrended fluctuation analysis metrics asymmetry for long-term scaling
	No specific references found

	
	HRV_MFDFA_alpha2_Delta
	Multifractal detrended fluctuation analysis delta metrics for long-term scaling
	No specific references found

	
	HRV_MFDFA_alpha2_Fluctuation
	Multifractal detrended fluctuation analysis fluctuation metrics for long-term scaling
	No specific references found

	
	HRV_MFDFA_alpha2_Increment
	Multifractal detrended fluctuation analysis metrics for long-term scaling
	No specific references found

	
	HRV_MFDFA_alpha2_Max
	Multifractal detrended fluctuation analysis max metrics for long-term scaling
	No specific references found

	
	HRV_MFDFA_alpha2_Mean
	Multifractal detrended fluctuation analysis mean metrics for long-term scaling
	No specific references found

	
	HRV_MFDFA_alpha2_Peak
	Multifractal detrended fluctuation analysis peak metrics for long-term scaling
	No specific references found

	
	HRV_MFDFA_alpha2_Width
	Multifractal detrended fluctuation analysis width metrics for long-term scaling
	No specific references found

	
	HRV_S
	Area of the ellipse in the Poincaré plot
	No specific references found

	
	HRV_SD1
	Standard deviation of short-term variability in Poincaré plot
	No specific references found

	
	HRV_SD1SD2
	Ratio of SD1 to SD2 in Poincaré plot
	No specific references found

	
	HRV_SD1a
	Components of SD1, accelerating segments
	No specific references found

	
	HRV_SD1d
	Components of SD1, decelerating segments
	No specific references found

	
	HRV_SD2
	Standard deviation of long-term variability in Poincaré plot
	No specific references found

	
	HRV_SD2a
	Components of SD2, accelerating segments
	No specific references found

	
	HRV_SD2d
	Components of SD2, decelerating segments
	No specific references found

	
	HRV_SDNNa
	Standard deviation of NN intervals for accelerating segments
	No specific references found

	
	HRV_SDNNd
	Standard deviation of NN intervals for decelerating segments
	No specific references found

	
	HRV_rqa_DET
	Recurrence quantification analysis, determinism
	No specific references found

	
	HRV_rqa_LAM
	Recurrence quantification analysis, laminarity
	No specific references found

	
	HRV_rqa_REC
	Recurrence quantification analysis, recurrence rate
	No specific references found

	Entropy Based
	HRV_AI
	Approximate entropy index
	No specific references found

	
	HRV_ApEn
	Approximate entropy, measuring signal irregularity
	No specific references found

	
	HRV_CMSEn
	Composite multiscale entropy
	No specific references found

	
	HRV_FuzzyEn
	Fuzzy entropy, a refined entropy measure
	No specific references found

	
	HRV_LZC
	Lempel-Ziv complexity, measuring pattern diversity
	No specific references found

	
	HRV_MSEn
	Multiscale entropy (general measure)
	No specific references found

	
	MSE_0
	Multiscale entropy at scales 0
	No specific references found

	
	MSE_1
	Multiscale entropy at scales 1
	No specific references found

	
	MSE_2
	Multiscale entropy at scales 2
	No specific references found

	
	MSE_3
	Multiscale entropy at scales 3
	No specific references found

	
	MSE_4
	Multiscale entropy at scales 4
	No specific references found

	
	MSE_5
	Multiscale entropy at scales 5
	No specific references found

	
	MSE_6
	Multiscale entropy at scales 6
	No specific references found

	
	MSE_7
	Multiscale entropy at scales 7
	No specific references found

	
	MSE_8
	Multiscale entropy at scales 8
	No specific references found

	
	MSE_9
	Multiscale entropy at scales 9
	No specific references found

	
	MSE_10
	Multiscale entropy at scales 10
	No specific references found

	
	MSE_11
	Multiscale entropy at scales 11
	No specific references found

	
	MSE_12
	Multiscale entropy at scales 12
	No specific references found

	
	MSE_13
	Multiscale entropy at scales 13
	No specific references found

	
	MSE_14
	Multiscale entropy at scales 14
	No specific references found

	
	MSE_15
	Multiscale entropy at scales 15
	No specific references found

	
	MSE_16
	Multiscale entropy at scales 16
	No specific references found

	
	MSE_17
	Multiscale entropy at scales 17
	No specific references found

	
	MSE_18
	Multiscale entropy at scales 18
	No specific references found

	
	MSE_19
	Multiscale entropy at scales 19
	No specific references found

	
	HRV_RCMSEn
	Refined composite multiscale entropy
	No specific references found

	
	HRV_SampEn
	Sample entropy, a robust entropy measure
	No specific references found

	
	HRV_ShanEn
	Shannon entropy, measuring information content
	No specific references found

	Geometric and Statistical
	HRV_CD
	Correlation dimension
	No specific references found

	
	HRV_GI
	Geometric index
	No specific references found

	
	HRV_HTI
	HRV triangular index
	A strong piece of evidence: “Heart Rate Variability Triangular Index as a Predictor of Cardiovascular Mortality in Patients With Atrial Fibrillation” — lower HRV triangular index (≤ median) was an independent predictor of cardiovascular death (HR = 1.7, 95% CI 1.1–2.6, p = 0.01) and all-cause death (HR = 1.42, 95% CI 1.02–1.98, p = 0.04) in a Cox model with covariates. [40]

	
	HRV_IALS
	Index of average length of segments
	No specific references found

	
	HRV_PAS
	Percentage of alternating segments
	No specific references found

	
	HRV_PI
	Parasympathetic index
	No specific references found

	
	HRV_PIP
	Percentage of inflection points
	No specific references found

	
	HRV_PSS
	Percentage of stable segments
	No specific references found

	
	HRV_SDRMSSD
	Ratio of SDNN to RMSSD
	No specific references found

	
	HRV_SI
	Sympathetic index
	No specific references found
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Section -1: Prompts used for LLM-based analysis and interpretation of physiomarkers.

prompt = f"""
You are a medical data analyst specializing in physiological markers. Produce a concise, structured clinical interpretation using the supplied feature context and patient data summary. 

PHYSIOMARKER CONTEXT:
{self.meaning_context}

PATIENT DATA SUMMARY:
{data_summary}

INSTRUCTIONS:
- Keep the report short: aim for 8-16 bullet lines total.
- Use the emoji legend below. Begin section headers with the appropriate emoji.
- For each reported metric include: observed value (or summary), brief comparison to typical range (if available), and one-line clinical significance.
- Accurately classify deviations: Values below range = 'decreased/shortened/low'; above = 'increased/elevated/prolonged/high'. **Do NOT assume "higher = worse". Use the PHYSIOMARKER CONTEXT above to interpret directionality correctly.** 
- If the data is limited or ranges are uncertain, append "(uncertain)".
- Prioritize clinically actionable findings and top 2-3 concerns.

SECTIONS (use emojis and short headings):
1. ❤️ Cardiovascular Health — heart rate, rhythm, cardiac phases, ECG timing, HRV, blood pressure, qSOFA_sbp
2. 🫁 Respiratory Function — respiratory rate, patterns, coupling, qSOFA_rr
3. 🩸 Vascular Health — pulse rate, arterial stiffness, pulse wave morphology
4. 🩺 Key Clinical Insights — top 2-3 bullet findings (use ⚠️ for concerns, ✅ for normal)

Emoji legend:
{emoji_legend}

Produce the report now.
"""


meaning_context = f"""
# Physiomarkers Feature Reference

## Key Feature Categories (short descriptions + typical adult resting ranges / significance)

### ECG Features:
- ECG_HR_bpm_*: Heart Rate (bpm). Significance: overall heart rate; higher → tachycardia, lower → bradycardia. Typical resting range: ~60-100 bpm.
- ECG_atrialSys_phase_*: Phase of atrial systole (ms). Typical: ~100-150 ms.
- ECG_ventSys_phase_*: Phase of ventricular systole (ms). Typical: ~250-350 ms. 
- ECG_P_duration_*: Duration of P wave (ms). Typical: ~80-120 ms.
- ECG_T_duration_*: Duration of T wave (ms). Typical: ~160-200 ms.
- ECG_pr_interval_ms_*: PR interval (ms). Typical: ~120-200 ms.
- ECG_st_interval_ms_*: ST interval (ms). Typical: ~300-400 ms.
- ECG_st_segment_ms_*: ST segment (ms). Typical: ~80-120 ms.
- ECG_qt_interval_ms_*: QT interval (ms). Significance: QT interval; higher (>450 ms) → prolonged, lower (<350 ms) → shortened. Typical: ~350-450 ms (varies with HR; corrected QT below).
- ECG_qtc_interval_ms_*: Corrected QT interval (ms). Significance: QTc interval; higher (>450 ms) → prolonged, lower (<350 ms) → shortened. Typical: ~350-450 ms (varies with HR; Bazett's formula).

### Heart Rate Variability (HRV) Features:
- HRV_HRV_MeanNN: Mean NN (ms). Significance: central tendency of beat-to-beat intervals.
- HRV_HRV_SDNN: SDNN (ms). Significance: overall HRV; lower values may indicate reduced autonomic variability. Typical: >50 ms often seen in healthy adults (population dependent).
- HRV_HRV_RMSSD: RMSSD (ms). Significance: short-term vagal activity. Typical: ~20-50 ms (varies with age/fitness).
- HRV_HRV_LF / HRV_HRV_HF: Spectral power (ms²). Significance: markers of sympathetic/parasympathetic balance; interpret with caution.
- HRV_HRV_LFHF: LF/HF ratio. Significance: sympathovagal balance. Typical (very approximate): ~0.5-3 (context dependent).
- HRV_HRV_pNN50: Proportion of NN intervals differing by >50 ms (%). Significance: parasympathetic activity; higher → more variability. Typical: ~20-30% in young healthy adults; ~10-20% in middle-aged; often <5% in elderly or in autonomic dysfunction.
- HRV_HRV_CSI: Cardiac Sympathetic Index (dimensionless).
- HRV_HRV_CVI: Cardiac Vagal Index (dimensionless).
- HRV_HRV_MSEn: Mean Multiscale Entropy of scales (dimensionless).

### PPG (Photoplethysmography) Features:
- PPG_PR_*: Pulse rate (bpm). Compare with ECG_HR_bpm_*.
- PPG_A_AC_*: Amplitude of AC/pulsatile component of PPG. Significance: Reflects blood volume changes; higher values often seen in better peripheral perfusion.
- PPG_SI_*: Stiffness Index. Significance: surrogate of arterial stiffness; higher → stiffer arteries.
- PPG_pat_ms_*: Pulse Arrival Time (ms). Significance: Time delay from ECG R-peak to PPG onset; Shorter time (<150 ms) → faster pulse wave → increased arterial stiffness, Longer time (>250 ms) → slower propagation → more compliant arteries (often normal in young/healthy individuals). Typical: ~150-250 ms (age- and BP-dependent).
- PPG_RI_*: Reflection Index. Significance: ratio of the PPG diastolic peak amplitude to the systolic peak amplitude; higher → increased peripheral resistance, decreased arterial stiffness.

### Respiratory Features:
- RESP_resp_rate_Bpm_*: Respiratory rate (breaths/min). Typical resting: ~12-20 breaths/min. Significane: tachypnea (>20) or bradypnea (<12) may indicate distress.
- RESP_insp_time_*, RESP_exp_time_*: Inspiratory/expiratory time (s).
- ECG_edr_rate_Bpm_*: Respiratory rate estimated from ECG (breaths/min), a fallback for RESP_insp_time_*. Typical resting: ~12-20 bpm.
- PPG_pdr_rate_Bpm_*: Respiratory rate estimated from PPG (breaths/min), a fallback for RESP_insp_time_* and ECG_edr_rate_Bpm_*. Typical resting: ~12-20 bpm.

### Blood Pressure Features:
- ABP_SBP_*, ABP_DBP_*, ABP_MAP_*: Systolic/Diastolic/Mean Arterial Pressure (mmHg). Typical adult resting SBP: ~90-140 mmHg; DBP: ~60-90 mmHg, MAP: ~70-105 mmHg.
- ABP_PP_ABP_*: Pulse Pressure (mmHg). Typical: ~30-50 mmHg.
- ABP_CO_*: Cardiac Output (L/min). Typical resting: ~4-8 L/min.

### PPG Pulse Morphology & Timing:
- PPG_AUC_*, PPG_Tsys_ms_*, PPG_Tdias_ms_*: Areas, systolic duration (ms), and diastolic duration (ms) — used for waveform morphology and arterial stiffness insights.
- PPG_DN_exists, PPG_A_dn_*: Dicrotic notch exists (binary), Amplitude at dicrotic notch.
- PPG_max_upslope_*: Maximum slope in rising edge of PPG.
- PPG_Delta_T_sd_*: Time difference between systolic and diastolic peaks (ms). Significance: It correlates with vascular stiffness, age and pulse wave velocity.

### qSOFA Score Features (if exist):
- qSOFA_rr: qSOFA (Quick Sequential Organ Failure Assessment) respiratory rate. Significance: 1 indicates respiratory dysfunction. 
- qSOFA_sbp: qSOFA systolic blood pressure. Significance: 1 indicates hemodynamic instability.
- qSOFA_gcs: qSOFA Glasgow Coma Scale. Significance: 1 indicates neurologic dysfunction.
- qSOFA_total: Total qSOFA score. Significance: 0-3 scale; higher scores indicate greater risk of poor outcomes in sepsis.

### Statistical Suffixes:
- _mean, _std, _min/_max, _valid_n, _median, _p25, _p75: summary statistics.
- (no suffix): single value (e.g., binary/categorical or single measurement).
- valid_n: number of valid samples used in summary stats.

### Guidance for LLM use:
- Use these descriptions to map feature IDs to clinical meaning.
- When possible, compare observed values to the typical ranges above. If a precise range is absent, state relative deviation (e.g., "elevated vs typical resting range") and mark uncertainty.
- Prefer concise, actionable statements. Flag uncertain interpretations with "(uncertain)".
- Provide short one-line clinical significance for abnormal findings.
"""

















Figures: MPT-Web App Extended Figures

A. MPT Web Application Interface:  
[image: ]

Figure - 1: The interface of the MPT web application. The web-based application interface displays the file upload (File extension: hea, dat, csv, txt, mat, npy) functionality for processing physiological waveforms.  
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Figure - 2: The interface shows the uploaded file in an interactive way after loading it as an interactive table. 
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Figure - 3: The MPT web application shows the signal info of the loaded file. The user can select the channel index to identify the ECG, PPG, RESP, and ABP signals. It also shows the signal’s existence information. 
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Figure - 4: The user can plot the signals by varying the x-axis value in time (seconds) or sampling points. The user can select a single or multiple signals for the plot. 
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Figure - 5: The user can select the segment in the signal by varying the time in seconds. The user can also see the segment info, including the starting and ending points, number of samples, and duration of the segment. After clicking the ‘Extract features’ button, around 200 physiological features are extracted and displayed in an interactive way. 
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Figure - 6: The user can see the feature table after extracting it. The total execution time is displayed in the MPT web application. The user can also download the extracted features in CSV format. 
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Figure - 7: The selected segment of all the raw waveforms is displayed in the MPT web application. 
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Figure - 8: User-interactive figure panel for signals with detected fiducial points. Due to the rendering issue, the MPT web application uses the maximum 20s segment for visualization. But the user can see all the signals with fiducial points by selecting the segment. 
 
 
 



 
 
 
 
B. Feature Visualization: 
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Figure – 9: It represents the distribution of RR intervals (in milliseconds), overlaid with a kernel density estimate for visualization of the underlying probability density. 
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Figure – 10: It displays the power spectral density (PSD) of heart rate variability across frequency bands. It segments into standard frequency domains: Ultra-Low Frequency (ULF), Very Low Frequency (VLF), Low Frequency (LF), High Frequency (HF), and Very High Frequency (VHF). Each frequency band component shows prominent spectral peaks, reflecting autonomic nervous system contributions to heart rate modulation. 
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Figure - 11: The Poincaré plot of RR intervals with SD1 and SD2 metrics. It presents a scatter of consecutive RR intervals (RRₙ vs. RRₙ₊₁), providing a nonlinear visualization of heart rate variability (HRV). The central cluster is highlighted with a fitted ellipse, capturing short-term (SD1) and long-term (SD2) variability components. Density contours and marginal histograms further illustrate the distribution of intervals. It reveals beat-to-beat variability and can help identify arrhythmic patterns, autonomic regulation, and signal quality anomalies. 
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Figure – 12: It represents the cleaned ECG signal with annotated fiducial points (P, Q, R, S, T) extracted from the ECG signal for the first 6 cycles. 
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Figure - 13: Peak-to-peak signal feature analysis under variable conditions. It represents the peak-to-peak time domain features (in milliseconds) extracted from the ECG signal 
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Figure – 14: It represents the morphology of the ECG (Left) and PPG (Right) waveform through the three eigenvalues of the ECG (Left) and PPG (Right) intrabeat. These features are related to the shape of the ECG and PPG waveform, respectively, components that occur within one beat. 
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Figure – 15: Illustration of normalized area under the curve (AUC) values for the selected pulsatile region in the PPG waveform. 


[image: A screenshot of a graph

AI-generated content may be incorrect.] 
Figure - 16: Represents the systolic blood pressure percentage decline and diastolic blood pressure percentage decline extracted from the atrial blood pressure signals. 
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Figure - 17: The MPT offers LLM-based clinical interpretation. The user can select the available LLM models. Users must use the API keys and mention the model name. 
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Figure – 18: The MPT webapp generates a medical report based on the LLM feedback that leverages the extracted features. The report typically consists of patient’s vital signs, signal plots with their spectrograms, physiological interpretation narrative texts in three sections, followed by key clinical insights and disclaimer.



Section - 2: Details on Our Physiological Report Validator Pipeline 

To evaluate the performance of LLM-generated physiological summary reports, we developed an automated validation framework for assessing the physiomarker accuracy, physiological consistency, and clinical reasoning quality using paired raw ground-truth data and narrative reports. Our validation pipeline comprises two key modules: (A) the Physiomarker Accuracy and Consistency Evaluator, and (B) the LLM-Based Physiological Significance Validator Agent, powered by the GPT-4o model. This pipeline addresses three critical aspects: (1) Physiomarker Correctness, which ensures value accuracy within a tolerance of 0.1 by comparing against ground-truth data; (2) Consistency Rate, which evaluates the stability of physiomarker values using min-max deviation and occurrence consistency through the Jaccard Index or Intersection over Union (IoU) metric; and (3) Physiological Significance Correctness, which assesses the reasoning accuracy of LLM-generated clinical insights across individual sections and overall.

Physiomarker Accuracy: Initially, physiomarkers values from reports were parsed using a custom parser. Then, module A compares extracted values against raw ground-truth data using absolute differences. A tolerance threshold (0.1) was used to classify values as correct or incorrect. Physiomarker accuracy was computed as:

Consistency Evaluation: Module A further assesses consistency across multiple LLM-generated reports for the same patient with two metrics, (i) Physiomarker Occurrence Consistency: Jaccard Index or Intersection-over-Union (IoU) of reported physiomarkers, and (ii) Value Parsing Accuracy Consistency: Variability in parsing accuracy across runs through min-max deviation.
Physiological Reasoning Validation: A structured-prompt guided LLM-based agent was developed to validate clinical reasoning in reports. Input prompt was engineered for the model to provide the reasoning accuracy with detailed rationale and suggested corrections for each bullet line across health sections: Cardiovascular Health, Respiratory Function, Vascular Health, and Key Clinical Insights. Thus, it evaluates correctness for each section and overall, on bullet lines with three scores: 1-correct, 0-incorrect, 0.5-partial correct.
Prompts used for LLM-Based Physiological Significance Validator Agent:

validation_prompt = f"""
You are a clinical validation expert. Using the physiomarker reference context below, evaluate the correctness of each bullet point in the {section_name} section.

PHYSIOMARKER REFERENCE CONTEXT:
{self.meaning_context}

REPORT SECTION TO VALIDATE:
{report_text}

For EACH bullet point in the {section_name} section, evaluate:
1. Is the stated physiomarker value interpretation medically correct based on typical ranges?
2. Is the clinical reasoning/logic sound?
3. Are there any incorrect assumptions or misinterpretations?

Format your response as:
- Bullet Point: [exact text]
- Correctness: [Correct/Partially Correct/Incorrect]
- Rationale: [brief explanation]
- Suggested Correction: [if applicable]

Focus only on the bullet points in the specified section.
"""

Final Metrics: Finally, validation results were aggregated with mean summary statistics, evaluating three major metrics, including overall physiomarker accuracy, consistency score, and LLM-reasoning accuracy.
Validation Results: Our experimental workflow involved the following steps: (1) Collecting 53 BIDMC data records, each with first 5-minute physiological data; (2) Generating physiomarker tables using the median summary statistic method and producing five multiple-run reports for each record using GPT-4o (large model, ~200B parameters) and GPT-4o-mini (smaller model, ~8B parameters); (3) Developing the automated validation pipeline with integrated modules for physiomarker accuracy, consistency evaluation, and LLM-based reasoning validation; (4) Applying the pipeline to evaluate the generated reports; and (5) Analyzing the decisions and rationales provided by the validator agent to critique and refine the evaluations. Final validation results are listed in Supplemental Table 6. The results demonstrate that LLM-generated physiomarker reports under the MPT framework are highly reliable, stable, and reproducible. GPT-4o and GPT-4o-mini both achieve strong value-level accuracy, with GPT-4o providing markedly superior physiological reasoning quality and GPT-4o-mini offering exceptionally high cross-run consistency. Together, these findings confirm that the MPT pipeline can generate clinically coherent, internally consistent, and physiologically meaningful reports, supporting its generalizability and potential clinical applicability across diverse patient records.


Table - 6: Performance results of clinical summary reports generated by two different-sized LLM models on the BIDMC dataset using our proposed automated validation pipeline.

	Metric
	GPT-4o-mini (~8B)
	GPT-4o (~200B)

	Total Reports
	265 (53×5)
	265 (53×5)

	Total Patients
	53
	53

	(1) Accuracy of Reported Physiomarker Values (%)
	94.83%
	95.38%

	(2) Overall Consistency Score (Across Multi-Run Reports)
	0.962
	0.906

	• Physiomarker Occurrence Consistency (IoU criteria)
	0.962
	0.943

	• Value Parsing Accuracy Consistency
	0.981
	0.943

	(3) Overall Accuracy of LLM Physiological Reasoning
	0.779
	0.849

	• Cardiovascular Health Reasoning Accuracy
	0.821
	0.965

	• Respiratory Function Reasoning Accuracy
	0.799
	0.915

	• Vascular Health Reasoning Accuracy
	0.701
	0.708

	• Key Clinical Insights Reasoning Accuracy
	0.796
	0.810
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