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Figure S1. Cyclic voltammetry of the applied Cu electrode in different electrolytes. CVs were recorded in the EC-MS set-up.



Table S1. Standard reduction potentials of several CO2 and NO3- electroreduction reactions.
	Reaction
	E0 vs RHE

	Standard reduction potentials of NO3- 1

	       
       
       
       
       
       
       
       
	0.77
0.94
0.96
1.12
1.25
0.73
0.82
0.88

	Standard reduction potentials of CO2 2

	       
       
       
       
	-0.25
-0.11
0.06
0.17
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[bookmark: _Ref74844024]Figure S2. In situ SERS of a Cu surface in CO2 saturated 0.1 M KHCO3 at variable potential. Recorded during (a) a reductive scan and (b) an oxidative scan. 

SERS experiments performed with Cu electrodes in CO2 saturated 0.1 M KHCO3 (Figure S2) show typical signals related to CO2 reduction on a rough Cu surface in agreement with literature3,4. Signals related to Cu2O are discussed in the main article. The bands at 350 and 1540 cm-1 indicate adsorbed carbonate – the asymmetric C-O stretching mode of strongly adsorbed bidentate carbonate3,5,6. Other species such as carboxylate4 or a (CO)2-dimer7 were also proposed to be responsible for those signals, but are less likely6. Below 0.3 V vs RHE, the C-O symmetric stretching modes of chemisorbed CO32- can be observed at 1072 cm-1 4. This signal is growing with potential, disappears at -0.7 V and shows up again (low intensity) in an oxidative scan. At negative potentials, starting from -0.3 V, a broad, weak signal at ~2070 cm-1 appears, which corresponds to the C≡O stretching mode of adsorbed CO on Cu3,4. More sharp signals at 360 and 275 cm-1, starting at -0.7 V in the reductive scan, can also be assigned to CO adsorbed on Cu (Cu-CO), and are in agreement with other studies3,8. In the oxidative scan at around -0.4 V all CO signals disappear. 
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[bookmark: _Ref76995595]Figure S3. In situ SERS of a Cu surface in Ar saturated 0.1 M KNO3. Recorded during (a) a reductive scan and (b) an oxidative scan of cyclic voltammetry. Magnification into (c) the 1048 cm-1 peak and (d) the 2080 cm-1 peak in the reductive scan.

SERS experiments performed with Cu electrodes in Ar saturated 0.1 M NO3- show the spectral fingerprint of copper oxidation and reduction and the H2O signal at 1640 cm-1 (Figure S3a and b), in agreement with previous experiments. In addition a signal at 1048 cm-1 is present which is assigned to the symmetric NO3- stretch vibration 9,10,11. Considering that a stark shift was not observed (Figure S3c) the signal likely originates from NO3- in solution rather than from any adsorbed form on the Cu surface12. No reduction products of NO3- were detected by SERS. Only a very weak band at 2080 cm-1 can be observed (Figure S3d). Although such band has been assigned to N2O, a potential reduction product of NO3-, such interpretation is based on conversion of NO in the gas phase in ultra-high vacuum13, and therefore this assignment is not very likely in the conditions applied here (note that  N2 and N2O were not observed in EC-MS experiments). 
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[bookmark: _Ref76995763]Figure S4. Comparison of selected signals in different electrolytes. In the region of 
(a) 250 – 450 cm-1 and (b) 950 – 1150 cm-1.

In Figure S4a Cu-CO signals in 0.1 M KHCO3 can be observed at more negative potentials, which are absent when NO3- is present. Interestingly, a signal at ~300 cm-1 is observed in 0.1 M KHCO3 with 50 mM KNO3 electrolyte. Based on similar signals detected at 290 cm-1 on Au electrodes in presence of CN- 14, the position of the band suggests a Cu-CN bending mode. In Figure S4b comparison of the 1070 cm-1 peak in different electrolytes is shown. 
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Figure S5. Stark effect of the ~2080cm-1 and 2150cm-1 peaks. Recorded during (a) a reductive and (b) an oxidative scan of cyclic voltammetry (magnification in relevant potential region).
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Figure S6. In situ SERS of a Cu surface in Ar saturated 0.1 M KClO4. Recorded during (a) a reductive scan and (b) an oxidative scan of cyclic voltammtery.
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[bookmark: _Ref76995955]Figure S7. In situ SERS of a Cu surface in CO2 saturated 0.1 M KHCO3 in the presence of 50 mM urea. (a) at OCV and 0 V vs RHE; (b) during a reductive scan with (c) magnification into the ~710 cm-1 signal; (d) during an oxidative scan. 

At OCV there is only one signal which could be assigned to urea which is the symmetric stretching vibration of C-N at 1005 cm-1 (Figure S7a)15. Surprisingly, at 0 V vs RHE additional Raman signals appear which could be related to adsorption of urea on the Cu surface. It is known that urea can adsorb on metallic electrodes such as Pt16, Au17, Ag18 or Cu19 under reductive potentials and is therefore frequently studied as inhibitor of Cu corrosion in neutral and alkaline media20. Most of the signals can be assigned to urea and bicarbonate3,15. The most intense band at ~709 cm-1 can’t be assigned according to existing literature. As a Stark effect in the CV cycle (Figure S7c) is observed, this band originates from an adsorbed species, likely adsorbed urea on the Cu surface. When the system goes back to OCV, all signals disappear and only urea in solution is observed, which is explained by a reversible adsorption of urea on metallic electrodes, and oxidation of the adsorbed CN species.
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Figure S8. In situ SERS of a Cu surface in CO2 saturated 0.1 M KHCO3 with increasing concentration of KCN. Spectra were recorded at open circuit potential.
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Figure S9. In situ SERS of a Cu surface in CO2 saturated 0.1 M KHCO3 with 10mM KCN. Recorded during (a) a reductive scan and (b) an oxidative scan of cyclic voltammetry.
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Figure S10. In situ SERS of a Cu surface in CO2 saturated 0.1 M KHCO3 with 50 mM KNO3 with isotopically labelled carbon (13C) and nitrogen (15N). Recorded during (a) a reductive scan at -1 V vs RHE and (b) an oxidative scan at 0.5 V vs RHE.

[bookmark: _Hlk74932325]With both 13C and 15N-labeled compounds in solution, the Raman signal observed in the reductive scan shifts by approx. 10 cm-1 to lower wavenumbers. According to literature, the expected peak shift for CN- in aqueous solution for 13C or 15N-labeled compounds is 43 cm-1 and 32 cm-1, respectively21. Here, the observed peak is rather broad and likely consists of 2 or 3 overlapping signals which makes it difficult to indicate the exact peak position. Moreover, calculated theoretical shift likely deviate from experimental observations considering the simplifications used in the harmonic oscillator model.
In the oxidative scan, the peak at ~2150 cm-1 also seems to shift. However, it is difficult to identify the exact value of the peak shift, due to the fact that position of this peak can depend on the concentration of CN- in solution. In case of experiments with 12C + 15N the peak appears to have slightly higher intensity. Considering that it is still shifted to lower wavelengths this observation confirms the response of the peak to a 14N/15N exchange. In case of  13C + 14N experiments, the peak intensity is lower than observed during blank experiments.
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[bookmark: _Ref76996092]Figure S11. Surface change after 30 min of chronoamperometry at -0.3 V vs RHE. (a) ECSA before and after as well as (b) XRD patterns of the Cu surface.
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[bookmark: _Ref76996126]Figure S12. SEM images of the Cu surface after 30 min chronoamperometry at -0.3 V vs RHE. (a) blank electrode; after chronoamperometry in (b) 0.1 M KHCO3, (c) 0.1 M KNO3, and (d) 0.1 M KHCO3 + 50 mM KNO3.
Formation of cyanide complexes can be furthermore confirmed by a change of the Cu surface upon attack of CN-. Chronoamperometry at -0.3 V vs RHE was performed in all electrolytes tested. ECSA before and after each experiment was measured and in fact a significant increase in surface area was observed after electrolysis in 0.1 M KHCO3 with 50 mM KNO3 (Figure S11a) which could be related to surface roughening in the presence of cyanide. Moreover, the corresponding XRD pattern shows an increase of the Cu (220) facet which also indicates a surface change (Figure S11b). In addition, SEM images (Figure S12) reveal a change in morphology of the Cu surface after chronoamperometry.
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[bookmark: _Ref76996192]Figure S13. In situ SERS of a Cu surface in Ar saturated 50 mM HCOOK with 50 mM KNO3. Recorded during (a) a reductive scan and (b) an oxidative scan of cyclic voltammetry.

SERS of a Cu surface in Ar saturated 0.1 M HCOOK with 50 mM KNO3 during CV (Figure S13) does not show signals associated with cyanide. The only signals observed are the ones from Cu2O, NO3-, H2O and HCOO- at 1353 cm-1 3. This result suggests that CO32- adsorbed on the surface is necessary for cyanide formation.
[image: ]
[bookmark: _Ref76996235]Figure S14. In situ SERS of a Cu surface in CO2 saturated 0.1 M KHCO3 with 20 mM (NH4)HCO3. Recorded during (a) a reductive scan and (b) an oxidative scan of cyclic voltammetry.

SERS of a Cu surface in CO2 saturated 0.1 M KHCO3 with 20 mM (NH4)HCO3 (Figure S14) does not show signals associated with cyanide. A weak signal at 410 to 383 cm-1 can be observed when metallic Cu is formed, which can be assigned to Cu-N from adsorbed ammonia. However further experiments are necessary to convincingly prove this hypothesis. On a Ag electrode, Ag-N formation was reported at 325 cm-1 but only at high concentrations22. Relatively strong signals of NH3 can be found above 3000 cm-1 23 being out of the range of wavenumbers detectable with our Raman system.







In-situ EC-MS
All measured m/z signals are shown in Figure S15, Figure S16 and Figure S17. The potential range for the CV experiments conducted with the EC-MS does not match the SERS experiments completely, due to the intrinsic limitations of the small-volume cell used. However, SERS signals are observed already at 0.3 V vs RHE in a reductive scan, thus the selected potential range is sufficient to correlate conclusions of various experiments. 2 cyclic voltammetry cycles are shown in each case. 
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[bookmark: _Ref76996314]Figure S15. EC-MS analysis of desorbed products from the Cu surface during cyclic voltammetry in CO2 saturated 0.1 M KHCO3.  
The only gas product detected in CO2 saturated 0.1M KHCO3 (Figure S15) was H2 at potentials below -0.4 V. MS fragments from CO2 overlap with the signals of the most common CO2 reduction products (CO). Therefore it is difficult to detect products using MS. However, a dip in the m/z signals related to CO2 confirm its conversion.
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[bookmark: _Ref76996315]Figure S16. EC-MS analysis of desorbed products from the Cu surface during cyclic voltammetry in Ar saturated 0.1 M KNO3.  
In Ar saturated 0.1 M KNO3 electrolyte electroreduction of nitrate is detected in a reductive scan starting at 0.8 V (Figure S16) by an increase in the m/z: 30 signal (nitric oxide). Since no signals are observed in the first cycle, the 2nd and 3rd cycles are shown. Other gas products are not detected, which suggests formation of non-volatile compounds at more negative potentials, likely NH4+. NO formation was not observed in the oxidative scan, which suggests that copper oxide is necessary to reduce NO3- to NO. Previous reports did not show gas products on Cu electrodes in NO3- electroreduction. However, in the potential range (0.25 V to -1 V) of that study, copper oxide is not expected to be present24.
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[bookmark: _Ref76996316]Figure S17. EC-MS analysis of desorbed products from the Cu surface during cyclic voltammetry in CO2 saturated 0.1 M KHCO3 with 50 mM KNO3.

In CO2 saturated KHCO3 with 50mM KNO3 (Figure S17), other gas products than NO were not detected. Since were absent in a reductive scan of the first CV cycle, the 2nd and 3rd cycles are shown, which show an increased signal of NO at the beginning, resulting from NO formed in the oxidative scan of previous cycles).   
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Figure S18. EC-MS analysis of m/z: 30 and m/z: 31 desorbed from the Cu surface during cyclic voltammetry in CO2 saturated 0.1 M KHCO3 with 50 mM K15NO3.
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Figure S 19. MS analysis of nitric oxide (m/z: 30) desorbed from the Cu surface during chronoamperometry at -0.3 V vs RHE and subsequent OCV in Ar saturated 0.1 M KNO3.
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Figure S20. Photograph of the Cu electrode used in the SERS experiments.
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Figure S21. Schematic representation of techniques used in this study. (a) The SERS set-up and (b) the EC-MS principles.
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Figure S22. SEM of the Cu electrode used in the SERS experiments. (a) Before and (b) after electrochemical activation.
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