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Abstract:  29 

Mounting evidence suggests that geographic ranges of tree species worldwide are shifting under 30 

global environmental change, but little is known about forest migration—the shift in the 31 

geographic ranges of forest types—and how it differs from individual tree species migration. 32 

Here, based on in situ records of more than 9 million trees from 596,282 sample plots, we 33 

quantified and compared the migration patterns of forests and tree species across North America 34 

between 1970 and 2019. On average, forests migrated at a mean velocity of 205.2 km·decade-1, 35 

which is twice as fast as species-level migration (95.6 km·decade-1), and 12 times faster than the 36 

average of previous estimates (16.3 km·decade-1). Our findings suggest that as subtle 37 

perturbations in species abundance can aggregate to change an entire forest from one type to 38 

another, failing to see the forest for the trees may result in a gross underestimation of the impacts 39 

of global change on forest ecosystem functioning and services. With the first forest classification 40 

and quantification of forest migration patterns at a continental level, this study provides an 41 

urgently needed scientific basis for a new paradigm of adaptive forest management and 42 

conservation under a rapid forest migration. 43 

 44 

Main text 45 

Trees are immobile organisms, but tree species worldwide are found to undergo 46 

substantial changes in geographic distributions under global environmental change. Some tree 47 

species move to higher latitudes, tracking warming climate1–4, while some move towards lower 48 

latitudes4,5, longitudinally6, or altitudinally7,8. Collectively, these changes can alter the relative 49 

abundance and dominance of tree species, causing a complete change in the type of local forest 50 
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communities. To differentiate from the term tree species migration which refers to the shift of 51 

tree species ranges3–6, we call the shift in the geographic range of a forest type forest migration. 52 

Quantifying forest migration is crucial for the understanding of the impacts of global 53 

change on forest ecosystem functioning and services. A forest constitutes a foundational entity 54 

supporting most ecosystem services as well as human culture, customs, economies, and identity9–
55 

12. In addition, a forest is a fundamental unit of sustainable forest management11. By shifting 56 

local forest types, forest migration can extensively change ecosystem functioning and services13–
57 

17, causing massive ecological and socioeconomic impacts worldwide18. For instance, in the 58 

central United States, a diminishing supply of Quercus alba, Q. macrocarpa, and other white oak 59 

species caused by the shifting and shrinking ranges of oak-dominated forests is threatening the 60 

bourbon industry19, a staple of American culture and tradition. Meanwhile, the migration of 61 

maple-dominated forests has raised concerns over the sustainability of the maple syrup industry 62 

in North America20.  63 

To see the forest for the trees is a major challenge in quantifying forest migration. 64 

Previous studies found that the geographic ranges of some tree species in North America shifted 65 

at a mean velocity of 16.3 km·decade-1, with a range of 0.03 –100.20 km·decade-1 (see 66 

Supplementary Table 1). However, because these studies were limited to a local or regional scale 67 

with inconsistent migration measurements (e.g., some use marginal shifts, but some use centroid 68 

or latitudinal shifts), the patterns of forest migration at a continental scale still remain largely 69 

unknown21. Moreover, as most reported migration velocities were calculated from species-level 70 

shifts, how forest migration differs from tree species migration also remains largely unknown.  71 

Here, we systematically quantified, for the first time, forest and tree species migration 72 

patterns at a continental scale, based on more than 9 million ground-surveyed tree records from 73 
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596,282 sample plots. Using these in situ data, we classified North American forests into a 74 

hierarchical system consisting of eight forest biomes and 51 underlying forest types (Table 1, 75 

sans forests in Mexico, Central America, and the Caribbean due to a lack of data). We then 76 

quantified the azimuth and velocity of forest migration between 1970–1999 and 2000–2019. 77 

Similarly, we quantified the azimuth and velocity of tree species migration across the continent 78 

during the same time periods. 79 

To quantify forest migration, we first used an established machine learning algorithm to 80 

consistently classify all forested areas across the study region into 51 forest types (Table 1, see 81 

§Forest Classification in Methods). There are 49 forest types in eight biomes in the 82 

conterminous United States and Alaska, and 35 forest types in six biomes throughout Canada 83 

(Fig. 1, Extended Data Figs. 1, 2). The two countries share a total of six forest biomes. The 84 

Boreal Forest (total area 2,462,924 km2) is the largest forest biome shared by the two countries, 85 

followed by the Eastern Mixed Forest (644,011 km2). Mediterranean California (59,849 km2) 86 

and Southern Plains (547,118 km2) are only distributed in the United States. At the forest type 87 

level, black spruce–balsam fir (B-E, 750,121 km2) is the largest forest type shared by the United 88 

States and Canada, followed by quaking aspen–balsam fir–paper birch (B-A, 349,949 km2) and 89 

jack pine—black spruce (B-C, 294,291 km2). The largest non-boreal forest types shared by the 90 

two countries are balsam fir–maple–yellow birch (E-I, 229,088 km2) and subalpine fir—91 

Engelmann spruce (W-K, 203,700 km2). 92 

Based on the temporal differences of the range of forest types classified above, we 93 

quantified the patterns of forest migration in terms of the velocity and azimuth. Among the 43 94 

forest types in eight forest biomes that were present in both periods 1970–1999 and 2000–2019 95 

across the continent (Table 1), quaking aspen—balsam fir—paper birch forest (B-A) migrated 96 
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with the highest velocity at 683.3 km·decade-1, moving eastward (Table 1, Supplementary Table 97 

2). Among the twelve forest types that migrated at a speed between 100 and 440 km·decade-1, 98 

five are in the Eastern Mixed Forest biome (E-A, E-C, E-H, E-J, and E-K), three in the Pacific 99 

Coastal Forest biome (W-A, W-B, and W-D), and one in the Western Cordillera (W-J), 100 

Mediterranean California (W-Q), Central Forest (E-M), and Boreal Forest biome (B-E), 101 

respectively (Fig. 1). The remaining forest types migrated at less than 100 km·decade-1. In terms 102 

of the direction of migration, 16 out of 43 forest types migrated westward, 11 eastward, nine 103 

southward, and seven northward in the past 50 years (Table 1). Across the continent, forests 104 

migrated at a mean velocity of 205.2 km·decade-1 (Fig. 2a). 105 

At the tree species level, we estimated the geographic range of 150 tree species in North 106 

America for the same time period to quantify tree species migration. We found that tree species 107 

on average migrated at 95.6±1.7 km·decade-1 (Fig. 2b). Picea sitchensis had the greatest 108 

migration velocity of all the tree species (504.8 km·decade-1), followed by Abies balsamea 109 

(502.0 km·decade-1) and Alnus incana (359.4 km·decade-1). In contrast, Platanus occidentalis 110 

had the lowest migration velocity (4.3 km·decade-1), followed by Quercus macrocarpa (4.9 111 

km·decade-1) and Celtis laevigata (5.3 km·decade-1) (Supplementary Table 3). Across the 112 

continent, we found that tree species migrated at a mean velocity five times greater than the 113 

average of previous estimates (16.3 km·decade-1, with a range of 0.03 –100.20 km·decade-1, see 114 

Supplementary Table 1). This difference in species-level migration velocity between current and 115 

previous studies can be mainly attributed to the fact that very few boreal species have been 116 

covered in previous studies. Because boreal tree species were found here to migrate faster in 117 

general, and boreal region constitutes the largest forest biome in North America, a lack of boreal 118 

tree species coverage in previous studies has resulted in an underestimation of species-level 119 
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migration velocity at a continental scale. Nevertheless, for temperate biomes, the species 120 

migration velocity estimated here is generally consistent with previous estimates. For instance, 121 

we estimated that tree species on average migrated at 81.1±1.1 km·decade-1 in the eastern region 122 

(Fig. 2b), which is consistent with the previous estimates for eastern United States and Quebec, 123 

Canada (Supplementary Table 1).      124 

Overall across the continent, forest migrated (205.2 km·decade-1, Fig. 2a) more than 125 

twice as fast as tree species migration (95.6 km·decade-1, Fig. 2b). The velocity was the highest 126 

for the Boreal Forest biome, where forest migrated almost three times faster than tree species 127 

migration (335.4 km·decade-1 vs. 113.4 km·decade-1) (Fig. 2). We further examined potential 128 

drivers behind this geographic trend (Fig. 3a) from among three species diversity measures and 129 

15 bioclimate variables. Precipitation seasonality, mean temperature of driest quarter, mean 130 

temperature of coldest quarter, and tree species evenness were identified as the most important 131 

variables (Extended Data Fig. 3). The ratio of forest migration velocity to tree species migration 132 

velocity was positively associated with climate change, an aggregated indicator of temporal 133 

changes in the top nine bioclimate variables. In contrast, the ratio was negatively associated with 134 

tree species evenness (Fig. 3b). 135 

The substantial difference in the velocity of migration between forest type and individual 136 

tree species therein can also be attributed to the high sensitivity of forest type classification to 137 

changes in the abundance and dominance of underlying tree species. A small, local perturbation 138 

in species abundance and/or dominance, which has little impact on the overall shift of the species 139 

range, can potentially alter the local forest type and the overall forest migration pattern.  140 

Our findings suggest that the impacts of global environmental change on forest 141 

ecosystem functioning and services may have been grossly underestimated. Since the mean 142 
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velocity of forest migration (205.2 km·decade-1) estimated here is more than 12 times greater 143 

than the average of previous estimates (16.3 km·decade-1), the associated impacts of on forest 144 

ecosystem functioning and services can be much more profound than previously thought. 145 

Because forest ecosystem functioning22,23, productivity24, as well as phenology and population 146 

turnover25,26 are very sensitive to tree species composition and tree species diversity, subtle 147 

changes in relative abundance or relative dominance of tree species can aggregate to affect 148 

ecosystem services22–24,27 in a snowball effect. For example, in the eastern region, our results 149 

show that oak–hickory forest (E-M) and Appalachian oak–pine forest (E-N) migrated at 101.6 150 

and 36.8 km·decade-1, respectively, despite a mere 0.02–0.1% reduction in their ranges (Table 1, 151 

Supplementary Table 2). Suppressed fire, land-use change, forest fragmentation, and climate 152 

change in this region have increased the proportion of competitive, late-successional mesophytic 153 

hardwood species (e.g., Acer and Fagus spp.), while suppressing fire-dependent xerophytic 154 

species (e.g., Quercus and Pinus spp.)28. This “mesophication” of the central eastern forests has 155 

already rendered profound ecological and economic impacts on soil processes, nutrient cycling, 156 

wildlife food and habitat, and local timber industry29. Moreover, since existing adaptive forest 157 

management regimes are based primarily on individual species range projections and associated 158 

environmental and social aspects30,31, it would be difficult for these regimes to fully address the 159 

consequences of rapid forest migration. To this end, the quantification of forest classification and 160 

associated forest migration patterns provided here can inform decision-making to better support 161 

assisted species migration strategies in balancing the deleterious effects of rapid forest 162 

migration32. 163 

Rapid forest migration at the continental scale has profound economic and social 164 

implications. Changes in species mix would affect biophysical and environmental factors that 165 
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directly or indirectly affect timber supply33, such as forest productivity24, as well as frequency 166 

and severity of forest fires and pest infestations34–36. Forest migration could potentially widen the 167 

breadth of timber baskets (i.e., timber procurement radii) associated with wood processing 168 

plants, hence increasing transportation costs with downstream financial implications regarding 169 

finished forest product prices. Such impacts have significant distributive (welfare) and economy-170 

wide consequences through intersectoral linkages, making local forest industry less self-171 

sustainable and more vulnerable to timber price fluctuations37. Furthermore, the collective 172 

human experience (e.g., culture, customs, and identities) of rural communities embedded within 173 

these forested landscapes have a strong tie to surrounding forest types. From the Sitka spruce—174 

western hemlock forests in the Pacific Coast to the oak–pine forests along the Appalachians 175 

(Table 1), the substantial decline of native forests can threaten the customs, identities, and 176 

culture of indigenous38 and other local communities, while jeopardizing the non-timber forest 177 

products supply and environmental justice overall39. Rapid forest migration places an urgent call 178 

upon human communities, especially rural populations, to adapt their cultural norms and 179 

relationships with surrounding forests. 180 

Our finding that on average forest migration outpaces tree species range shift by 115% 181 

across North America can be attributed to two main factors, namely climate change and tree 182 

species evenness (Fig. 3b, Extended Data Fig. 3). Climate change is considered the top driver of 183 

forest migration, which impacts the movement, persistence, and competition within and between 184 

plant communities3,39-41. In addition to a worldwide temperature increase by about 0.2°C per 185 

decade42, alterations in precipitation patterns, diurnal timing, seasonal intensity, and season 186 

length are also evident across the globe42. Consistent with previous studies of smaller geographic 187 

scales6, we found that climate change accelerates forest migration more than it accelerates tree 188 
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species migration. In contrast, tree species evenness was found to reduce the difference between 189 

forest migration velocity and tree species migration velocity. This complements previous 190 

findings that biodiversity and species evenness in particular make forest communities more 191 

resilient to climate change43,44. 192 

The differed migration patterns between forests and tree species observed here represent 193 

a snapshot of a more prominent trend seen across the geological time scale. Forests, because of a 194 

high sensitivity to tree species composition changes, have over the millennia exhibited shorter 195 

life spans than individual species40. While most tree species migrated at relatively low velocities 196 

across the continent, others went through substantial fluctuations, such as an 8% reduction in the 197 

species range of the hemlocks between 5,400 and 4,800 BP41. These sudden onsets of species-198 

level range shifts have triggered forest migration across North America over the millennia. 199 

Besides climate forcing which is generally seen as the main cause of these changes, 200 

anthropocentric disturbances, land use change, invasive species, and associated insect/diseases 201 

outbreaks are emerging as a suite of drivers that have permanently changed forest landscapes. 202 

For instance, the massive monospecific white pine (Pinus strobus) forests that once dominated 203 

the northern forests have been replaced by mixed hardwoods, due to extensive logging since the 204 

European colonization. During the 20th century, an outbreak of Cryphonectria parasitica has 205 

destroyed nearly four billion American chestnut (Castanea dentata) trees, and completely 206 

changed eastern hardwood forests of which American chestnut was a keystone species. This 207 

study supports the hypothesis that global environmental change is disrupting forests’ adaptive 208 

responses to climate change formed since the late Quaternary, and is pushing forests to migrate 209 

at an unprecedented rate41. 210 
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Our findings depict the first continentally consistent and locally relevant record of forest 211 

classification and forest migration patterns. These results contribute fundamental insights into the 212 

rapid shifts in tree species assemblage distribution under global environmental change, and their 213 

underlying drivers. Our machine-learning analyses reveal strong effects of climate change and 214 

species evenness on forest migration patterns, and pinpointed forest communities with an 215 

extreme migration velocity, where assisted migration and other adaptive forest management 216 

efforts17 are critical in mitigating biodiversity loss, climate change, and associated socioeconomic 217 

impacts. Overall, this study provides an urgently needed scientific basis for a new paradigm of 218 

adaptive forest management and conservation, so that effective mitigation and intervention 219 

efforts can be developed in response to the rapid forest migration.  220 

 221 
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Table 1. Summary of forest types and biomes classified based on the present (2000–2019) and past (1970–1999) forest 

inventories. Only the top dominant species for each forest type are listed to save space. Forest types with “W-“ belongs to West 

region, “E-“ to East region, and “B-“ to Boreal region. 

Forest biome 

(present area 

km2) 

Forest 

type 
Forest type name Time 

Area 

(km2) 

Mean 

centroid shift 

± se 

(km·decade-1) 

Direction 

of shift 
Key species (importance value) 

Pacific 
Coastal Forest 

(249,806) 

W-A 
Sitka spruce—western 
hemlock 

present 12,959 
432.6±0.5 W 

Picea sitchensis (155), Tsuga heterophylla (21), Populus balsamifera (7) 

past 28,469 Picea sitchensis (169), Tsuga heterophylla (19), Tsuga mertensiana (4) 

W-B 
mountain hemlock—cedar—
spruce 

present 49,228 
270.7±0.2 N 

Tsuga mertensiana (123), Chamaecyparis nootkatensis (23), Tsuga heterophylla (9) 

past 54,883 Tsuga mertensiana (151), Picea sitchensis (16), Tsuga heterophylla (15) 

W-C 
western hemlock—cedar—
spruce 

present 120,070 
18.2±0.1 S 

Tsuga heterophylla (115), Pseudotsuga menziesii (29), Thuja plicata (14) 

past 124,151 Tsuga heterophylla (141), Picea sitchensis (22), Chamaecyparis nootkatensis (8) 

W-D red alder—Douglas-fir 
present 41,085 

156.8±0.2 N 
Alnus rubra (72), Pseudotsuga menziesii (50), Acer macrophyllum (23) 

past 30,329 Alnus rubra (96), Pseudotsuga menziesii (53), Tsuga heterophylla (15) 

W-E fir—hemlock present 26,463   Abies amabilis (111), Tsuga heterophylla (27), Tsuga mertensiana (18) 

W-F yellow-cedar—hemlock past 10,522   Chamaecyparis nootkatensis (90), Tsuga heterophylla (40), Tsuga mertensiana (34) 

Western 
Cordillera 
(502,547) 

W-G 
pure and mixed lodgepole 
pine forest 

present 124,573 
40.0±0.1 S 

Pinus contorta (152), Abies lasiocarpa (10), Pseudotsuga menziesii (9) 

past 100,961 Pinus contorta (158), Pseudotsuga menziesii (12), Abies lasiocarpa (9) 

W-H 
Northern Rocky Mountains 
cedar—larch—hemlock 

present 33,435 
36.6±0.1 N 

Thuja plicata (66), Pseudotsuga menziesii (36), Larix occidentalis (28) 

past 24,925 Thuja plicata (89), Abies grandis (26), Tsuga heterophylla (25) 

W-I grand fir—Douglas-fir 
present 47,490 

15.4±0.0 N 
Abies grandis (98), Pseudotsuga menziesii (40), Larix occidentalis (13) 

past 40,029 Abies grandis (106), Pseudotsuga menziesii (36), Larix occidentalis (15) 

W-J aspen-mixed conifer 
present 31,435 

199.7±0.4 W 
Populus tremuloides (139), Abies lasiocarpa (13), Pseudotsuga menziesii (10) 

past 25,466 Populus tremuloides (152), Abies lasiocarpa (12), Pseudotsuga menziesii (11) 

W-K 
subalpine fir—Engelmann 
spruce 

present 203,700 
19.0±0.1 E 

Abies lasiocarpa (107), Picea engelmannii (33), Pinus contorta (18) 

past 155,666 Abies lasiocarpa (125), Picea engelmannii (25), Pinus contorta (17) 

W-L 
white fir—Douglas-fir—
ponderosa pine 

present 27,668 
40.6±0.2 W 

Abies concolor (111), Pseudotsuga menziesii (19), Abies magnifica (13) 

past 35,361 Abies concolor (109), Pseudotsuga menziesii (28), Pinus ponderosa (14) 

W-M 
Engelmann spruce—
subalpine fir 

present 34,246 
75.9±0.2 S 

Picea engelmannii (109), Abies lasiocarpa (42), Pinus contorta (13) 

past 62,889 Picea engelmannii (111), Abies lasiocarpa (41), Pinus contorta (12) 

W-N 
whitebark—lodgepole 

pine—subalpine fir 
past 12,349   Pinus albicaulis (120), Abies lasiocarpa (42), Pinus contorta (19) 

W-O western larch—Douglas-fir past 40,745   Larix occidentalis (44), Pseudotsuga menziesii (43), Pinus contorta (23) 

Mediterranean 
California 
(59,849) 

W-P coastal redwood—tanoak 
present 23,266 

6.8±0.1 N 
Lithocarpus densiflorus (77), Pseudotsuga menziesii (44), Sequoia sempervirens (35) 

past 18,271 Lithocarpus densiflorus (89), Sequoia sempervirens (49), Pseudotsuga menziesii (33) 

W-Q 
California mixed oak 
woodland 

present 36,583 
123.0±0.1 S 

Pseudotsuga menziesii (42), Quercus chrysolepis (31), Calocedrus decurrens (25) 

past 52,385 Pseudotsuga menziesii (45), Quercus kelloggii (21), Calocedrus decurrens (17) 

Coastal-
Interior Range 

(65,438) 

W-R Douglas-fir mixed forest 
present 34,915 

48.0±0.1 W 
Pseudotsuga menziesii (150), Tsuga heterophylla (8), Pinus ponderosa (6) 

past 32,276 Pseudotsuga menziesii (158), Pinus ponderosa (7), Pinus contorta (5) 

W-S ponderosa pine—fir present 30,524 21.2±0.3 N Pinus ponderosa (149), Pseudotsuga menziesii (24), Pinus contorta (4) 
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past 27,961 Pinus ponderosa (174), Pseudotsuga menziesii (14), Abies concolor (2) 

Eastern 

Mixed Forest 
(644,011) 

E-A 
red oak mixed hardwood 
forest 

present 56,652 
229.5±0.1 E 

Quercus rubra (26), Acer rubrum (23), Populus grandidentata (16) 

past 46,698 Quercus rubra (32), Populus grandidentata (26), Acer rubrum (21) 

E-B 
Great Lakes tamarack—
spruce 

present 10,091 
80.4±0.3 W 

Larix laricina (135), Picea mariana (27), Thuja occidentalis (7) 

past 7,987 Larix laricina (128), Picea mariana (27), Abies balsamea (8) 

E-C North-central maple forest 
present 80,059 

155.0±0.1 E 
Acer saccharum (92), Acer rubrum (13), Betula alleghaniensis (11) 

past 49,747 Acer saccharum (107), Acer rubrum (12), Tilia americana (9) 

E-D beech—maple 
present 50,902 

73.6±0.1 W 
Fagus grandifolia (80), Acer saccharum (27), Acer rubrum (19) 

past 104,869 Fagus grandifolia (60), Acer saccharum (26), Tsuga canadensis (22) 

E-E Great Lakes pine forest 
present 22,786 

86.7±0.2 W 
Pinus resinosa (89), Pinus banksiana (33), Quercus ellipsoidalis (10) 

past 10,353 Pinus resinosa (119), Pinus banksiana (15), Populus tremuloides (12) 

E-F red maple—hardwood 
present 46,720 

12.5±0.1 W 
Acer rubrum (101), Quercus rubra (7), Acer saccharum (6) 

past 61,350 Acer rubrum (98), Populus tremuloides (9), Quercus rubra (8), Acer saccharum (8) 

E-G eastern hemlock—maple 
present 49,452 

37.6±0.1 E 
Tsuga canadensis (79), Acer rubrum (25), Fagus grandifolia (11) 

past 27,402 Tsuga canadensis (69), Acer rubrum (27), Acer saccharum (13) 

E-H 
northern white-cedar—
balsam fir 

present 28,370 
213.4±0.2 W 

Thuja occidentalis (101), Abies balsamea (33), Picea mariana (9) 

past 37,928 Thuja occidentalis (99), Abies balsamea (31), Picea mariana (10) 

E-I 
balsam fir—maple—yellow 
birch 

present 229,088 
17.7±0.1 W 

Abies balsamea (40), Betula alleghaniensis (30), Acer rubrum (24) 

past 264,717 Acer saccharum (35), Abies balsamea (32), Betula alleghaniensis (24) 

E-J eastern white pine—maple 
present 37,905 

108.8±0.1 W 
Pinus strobus (87), Acer rubrum (24), Quercus rubra (10) 

past 38,080 Pinus strobus (92), Acer rubrum (23), Quercus rubra (9) 

E-K 
Great Lakes black ash—

poplar 

present 9,842 
104.5±0.1 E 

Fraxinus nigra (77), Populus tremuloides (15), Abies balsamea (14), Acer rubrum (12) 

past 17,210 Fraxinus nigra (62), Populus balsamifera (29), Populus tremuloides (23) 

E-L black cherry—maple present 22,143   Prunus serotina (78), Acer rubrum (20), Fraxinus americana (8) 

Central Forest 
(414,850) 

E-M oak—hickory 
present 58,484 

100.6±0.1 E 
Quercus alba (49), Acer rubrum (15), Quercus velutina (14), Nyssa sylvatica (10) 

past 62,119 Quercus alba (49), Carya spp. (25), Quercus velutina (25), Cornus florida (13) 

E-N Appalachian oak–pine 
present 93,250 

36.8±0.1 S 
Quercus prinus (46), Acer rubrum (26), Nyssa sylvatica (16), Quercus coccinea (11) 

past 120,228 Quercus prinus (45), Acer rubrum (24), Nyssa sylvatica (13), Quercus coccinea (12) 

E-O mixed oak—hickory 
present 78,024 

9.6±0.1 S 
Quercus stellata (33), Pinus echinata (32), Quercus velutina (16), Quercus alba (12) 

past 49,986 Quercus stellata (57), Carya spp. (27), Quercus velutina (20) 

E-P yellow-poplar—maple 
present 112,098 

35.0±0.0 E 
Liriodendron tulipifera (46), Acer rubrum (21), Acer saccharum (11), Betula lenta (11) 

past 112,147 Liriodendron tulipifera (30), Carya spp. (15), Cornus florida (15), Acer rubrum (14) 

E-Q 
eastern redcedar—white 
ash—American elm 

present 72,994 
89.2±0.1 W 

Juniperus virginiana (25), Fraxinus americana (13), Ulmus americana (13) 

past 68,975 Carya spp. (18), Juniperus virginiana (18), Fraxinus americana (15) 

Southeastern 
Plains 

(547,118) 

E-R slash pine mixed 
present 49,073 

13.6±0.0 S 
Pinus elliottii (154), Pinus taeda (6), Taxodium ascendens (4) 

past 44,838 Pinus elliottii (155), Pinus palustris (7), Pinus taeda (5) 

E-S loblolly pine—sweetgum 
present 118,746 

41.2±0.1 W 
Pinus taeda (152), Liquidambar styraciflua (10), Quercus nigra (4) 

past 150,713 Pinus taeda (123), Liquidambar styraciflua (14), Pinus echinata (8) 

E-T 
green ash-mixed floodplain 
forest 

present 47,788 
28.2±0.1 N 

Fraxinus pennsylvanica (26), Celtis laevigata (14), Acer negundo (13) 

past 54,381 Fraxinus pennsylvanica (17), Liquidambar styraciflua (15), Carya spp. (12) 

E-U longleaf mixed pine 
present 18,482 

29.8±0.1 E 
Pinus palustris (98), Pinus clausa (18), Quercus laevis (11), Pinus taeda (11) 

past 20,539 Pinus palustris (106), Pinus clausa (14), Pinus elliottii (11), Pinus taeda (10) 

E-V present 57,916 23.9±0.1 W Nyssa biflora (30), Acer rubrum (15), Magnolia virginiana (15), Pinus elliottii (13) 
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southern lowland mixed 
forest 

past 70,701 Nyssa biflora (27), Magnolia virginiana (17), Taxodium ascendens (16) 

E-W 
sweetgum—water oak—

loblolly pine 

present 131,721 
22.2±0.1 E 

Liquidambar styraciflua (48), Quercus nigra (21), Pinus taeda (21), Acer rubrum (12) 

past 134,061 Liquidambar styraciflua (43), Pinus taeda (28), Quercus nigra (11), Acer rubrum (11) 

E-X Virginia pine—maple 
present 38,640 

13.4±0.0 S 
Pinus virginiana (50), Acer rubrum (17), Oxydendrum arboreum (11) 

past 43,042 Pinus virginiana (76), Acer rubrum (11), Quercus alba (8) 

E-Y 
loblolly pine—sweetgum 
mixed 

present 84,752   Pinus taeda (86), Liquidambar styraciflua (25), Quercus nigra (10) 

E-Z shortleaf–loblolly pine past 55,820   Pinus echinata (87), Pinus taeda (18), Quercus stellata (11), Carya spp. (10) 

Boreal Forest 
(2,462,924) 

B-A 
quaking aspen—balsam fir—
paper birch 

present 349,949 
683.3±0.1 E 

Populus tremuloides (105), Abies balsamea (17), Betula papyrifera (13) 

past 1,104,633 Populus tremuloides (106), Betula papyrifera (16), Abies balsamea (13) 

B-B paper birch—balsam fir 
present 153,236 

84.9±0.1 E 
Betula papyrifera (59), Abies balsamea (42), Picea mariana (20), Picea glauca (18) 

past 123,495 Betula papyrifera (74), Abies balsamea (30), Picea mariana (25) 

B-C jack pine—black spruce 
present 294,291 

72.3±0.1 W 
Pinus banksiana (118), Picea mariana (40), Populus tremuloides (10) 

past 527,541 Pinus banksiana (123), Picea mariana (34), Populus tremuloides (12) 

B-D balsam fir—black spruce 
present 200,950 

51.6±0.0 S 
Abies balsamea (113), Picea mariana (22), Betula papyrifera (17), Picea glauca (11) 

past 222,889 Abies balsamea (109), Picea mariana (24), Betula papyrifera (20), Picea glauca (12) 

B-E black spruce—balsam fir 
present 750,121 

313.3±0.1 W 
Picea mariana (150), Abies balsamea (20), Betula papyrifera (7) 

past 436,470 Picea mariana (150), Abies balsamea (18), Betula papyrifera (9) 

B-F 
white spruce—lodgepole 
pine 

present 714,379   Picea glauca (105), Pinus contorta (22), Betula neoalaskana (14), Picea mariana (12) 
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Fig. 1. Map of present (2000–2019) forest type classification, as well as the azimuth and velocity of each forest type. Forest 

migration was quantified based on the movement of weighted geographic centroids of each forest type. Forest type code corresponds 

to Table 1. 
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Fig. 2. Comparison of migration velocity (km·decade-1) between forest types (a) and tree species (b), assessed at the 0.025° grid 

level. Migration velocity was measured by distance shift in kilometers per decade. Violin plots show the distribution of grid-level 

velocity by region and type (left: forest migration, right: tree species migration). Solid lines and surrounding bands represent the mean 

and 95% confidence interval, respectively (red represents forest migration velocity, and blue tree species migration velocity). 
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Fig. 3. Geographic distribution and main contributing factors of the ratio of forest 

migration velocity to tree species migration velocity. In the continental map (a), different 

colors represent different levels of the ratio and are consistent with background colors of the 

partial dependence plot (b) which shows the estimated relationship between the ratio and two top 

contributing variables: climate change and species evenness. Climate change is an aggregated 

indicator—normalized between 0 and 1—of changes in top nine bioclimate variables ranked by 

variable importance. Tree species evenness is the average of past (1970-1999) and present (2000-

2019) surveys.  
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Methods 

Data and data integration  

For this study, we compiled and integrated in situ forest-tree data from independent and 

standard forest inventories. Data for the United States came from the Forest Inventory and 

Analysis (FIA)46 and the Cooperative Alaska Forest Inventory (CAFI)47. Data for Canada came 

from two independent sources: permanent sample plot networks48,49 and Canada’s National 

Forest Inventory ground plot network50. FIA is a nation-wide survey of the extent and status of 

forests46. The plots are permanent sample plots from which data were collected periodically. The 

FIA plots are approximately 0.1 ha in size and are placed on a hexagonal grid so that there is one 

plot for every 2,428 ha (6,000 acres) of forested land. In order to maintain the privacy of 

landowners, all plot coordinates are fuzzed under the passage of the Food Security Act of 1985. 

However, true coordinates are within 0.80 to 1.61 km of the fuzzed coordinates, so the impact is 

negligible46. CAFI provides a collection of permanent sample plots in southeast Alaska, and the 

plot size is 0.04 ha in a square shape47. The data from permanent sample plot networks of 

Canada is distributed across eight provinces – British Columbia, Alberta, Saskatchewan, 

Manitoba, Ontario, Quebec, Nova Scotia, and Newfoundland and Labrador. These plots are 0.04 

ha in size, and their distribution over forested areas and re-measurement frequency vary slightly 

among provinces48. The data from Canada’s National Forest Inventory ground plot network is 

distributed across the forested areas in Canada, and plot size differs (125–500 m2)50. 

We derived the following data integration protocol to harmonize the different forest 

inventory datasets described above into consistent continental data frames. From each dataset, 

we obtained tree-level information for all the trees with a minimum diameter at breast height 

(DBH) of 1 cm. We grouped these tree-level records by the year of inventory, and compiled one 
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data frame for 2000–2019 and another data frame for 1970–1999. For each period, we then 

summarized tree-level information into a plot-level species abundance matrix, which contained 

the percentage of the number of stems by species (i.e., relative abundance), as well as the percent 

basal area by species (i.e., relative dominance). Based on the species abundance matrix, we 

calculated the importance value of each tree species present on a sample plot, which equally 

weights relative abundance and relative dominance of a particular species51–53. 

The final continental data frames consisted of plot identification number and coordinates, 

as well as the importance values of all tree species present on each plot. The plots were 

uniformly distributed in the sampled areas across the continent (Extended Data Fig. 4). For the 

1970-1999 data frame, because some trees in the genera of Aesculus, Amelanchier, Carya, 

Crataegus, Halesia, Malus, and Salix were recorded only to the genus level, we also calculated 

the importance values of these genera (Supplementary Table 3). Based on the continental data 

frames, we aggregated plot-level species importance values into a grid-based forest range map to 

harmonize the past and present survey data. The grid map consisted of 0.025 by 0.025-degree 

(approximately 3 by 3 km) grids with a minimum 10% canopy cover, in accordance with FAO’s 

definition of ‘forest’54. Based on the global forest range map55, our study region encompassed 

1,004,358 grids of forested area across North America, with a total of ~5 million km2. The 

tropical regions of North America, i.e. Mexico, Central America, and the Caribbean, were not 

included in this analysis due to a lack of remeasured in situ data. Our study region covered 92 

terrestrial ecoregions56 across the United States and Canada. These ecoregions were grouped into 

three distinct regions: West (39 ecoregions), East (33 ecoregions), and Boreal (20 ecoregions, 

Extended Data Fig. 4). 

Forest classification 
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A lack of consistent classification of forest communities at a continental scale has been a 

major obstacle to the understanding of the patterns of forest migration. For over a century, 

forests have been classified based on tree species composition and structural 

characteristics21,51,52,57–59. Conventional forest classification is manually defined by experts based 

on the similarity of forest communities in terms of species dominance57–59. With the recent 

advancement of forest data availability60 and computational capacity, new data-driven forest 

classification schemes minimize subjective biases and exhibit greater accuracy than conventional 

approaches21,51,52. To this date, however, little has been done to map forest types at a continental 

scale using a consistent classification scheme. 

Our forest classification consists of two steps: defining forest types and mapping them. 

The definition of forest types was determined by the combination of autoencoder neural network 

and K-means cluster analysis. Autoencoder neural networks create a compressed representation 

of the original data, which is more suitable for K-means cluster analysis than the original data. 

Then, we mapped forest types determined by the K-means cluster analysis to the forested area 

using machine learning imputation models. Due to the random nature of K-means cluster 

analysis, we repeated the whole process 20 times to derive the final classification results. 

For each region, based on the continental data frame and aggregated grid data described 

above, we first used an autoencoder neural network to calculate a latent space representation of 

the original input features61. Autoencoder neural networks are unsupervised deep learning 

models, which use the nonlinear generalization of principal component analysis used to reduce 

dimensions in data61,62. Autoencoders learn to decompose input data into alternate 

representations using an encoding function, !: #$ → #& , and then reconstruct an approximation 

of the input using a decoding function, ':#& → #$63, where the parameters of ! and ' are 
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simultaneously optimized. Both the encoding and decoding functions are comprised of one layer 

or more to perform ( operations between the input and model parameters, where ( is the number 

of units in each layer. The result of all ( operations in each layer can then be transformed using a 

non-linear activation function, )(⋅), to reveal characteristics of the data distribution in an 

alternate dimensional space61. This approach provides a more informative data distribution along 

with the data’s reduced dimensionality for efficient data transformations. 

In this work, we used the autoencoders’ encoding function, !: #$ → #& , where - < / , to 

transform the input data into a reduced dimensional representation to conduct K-means cluster 

analysis. The reduced dimensional representation of the input information improves robust 

clustering results, and mitigates the computational complexity of the K-means algorithm 

(0(/1)). We began by constructing a fully connected autoencoder comprised of an input layer 

(with / units) followed by three fully-connected layers (consisting of 150, 0.75 ∗ /, and 150 

units, respectively) and the /-dimensional output layer. The output of each fully-connected layer 

was given by )(7 ⋅ 8 + :), where 7,8 ∈ 	#> and : ∈ # denote the layer’s input, the number of 

units in each layer, and the threshold bias value, respectively. Note that ? represents an arbitrary 

dimensionality of any given layer. The three hidden layers used a linear activation function and 

the output layer utilized a sigmoid activation function, which is given by 
@

@AB(C⋅DEF). This sigmoid 

activation function in the output layer made the overall network non-linear while all the three 

hidden layers utilized a linear activation function. The encoder, !, and the decoder, ', were 

simultaneously optimized according to minB,J KL@$∑ (7N − '(!(7N))$NP@ LK
1
using the Adam 

optimizer62. After training the autoencoder, the output of the second hidden layer was used to 
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encode the input into its reduced dimensional representation, which was then inputted into the K-

means clustering algorithm. 

To avoid potential bias caused by insufficient sample sizes, we excluded the species that 

are present in less than 60 grids (Supplementary Table 3). Based on the reduced dimensional 

representation, we conducted a K-means cluster analysis to classify forests across North 

America. We conducted K-means cluster analysis in R (version 4.0.4) using the built-in function 

“kmeans”64. We set the number of starts to 50 and the maximum iterations to 100. Choosing the 

number of dimensions from the autoencoder neural network and the number of clusters, as well 

as the evaluation methods are described in §Model evaluation below. 

With the defined forest types (i.e., clusters) from the 20 repetitions, we manually matched 

the same forest type by calculating the Euclidean distance in terms of species importance value 

between all the combinations of forest types generated from the 20 repetitions. When 10 or more 

repetitions identified the given forest type, we recognized the forest type as a final forest type. 

Since we classified forest types for three regions separately (West, East, and Boreal), there were 

potential overlaps of forest types between regions. To identify and merge potential overlaps, we 

calculated the Euclidean distance of all combinations of the final forest types in terms of species 

importance value. If a Euclidean distance was less than 60, across-region forest types were 

merged. One exception was that western aspen-mixed conifer (W-J) and boreal quaking aspen—

balsam fir—paper birch (B-A) remained separated due to the large expanse of Populus 

tremuloides. 

Mapping of forest types 

To map the distribution of forest types across the 4.9 million-km2 study region, we 

considered two candidate imputation models to estimate the underlying forest type of unsampled 
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grids based on 38 predictor variables. The two candidate models were random forests and 

support-vector machines. Random forests are a non-parametric ensemble learning approach65, 

which combines a variant of classification trees and an additional level of randomness by 

bootstrapping sub-data and different sets of predictor variables to mitigate the multicollinearity 

issues that most statistical models face66. We used the “randomForest” package in R with the 

default hyperparameter setting67. Support-vector machines are supervised learning models which 

construct a hyperplane or set of hyperplanes in a high- or infinite-dimensional space to help 

analyze data for classification and regression analysis68. We used the “e1071” package in R with 

the default hyperparameter setting69. We compared the performance of these two candidate 

models and selected random forests as the final imputation model (see §Model evaluation; 

Extended Data Fig. 5). 

To train candidate models to predict forest type based on local environmental and 

biophysical conditions, we compiled a total of 38 predictor variables. The predictor variables we 

compiled consisted of 17 climate variables70–72, 13 topographic variables73, seven soil 

variables74, and human footprint75. These predictor variables were derived from open access 

satellite-based remote sensing and ground-based survey data layers, all of which have a nominal 

resolution of 1-km. Detailed information of the predictor variables is available in Extended Data 

Table 1 and Extended Data Fig. 6. We used “Hmisc” package in R to impute missing data in 

those predictor variables76. 

Model evaluation 

To maximize the clustering performance, we calculated the silhouette width to determine 

the number of dimensions from the autoencoder neural network and the number of clusters. 

Silhouette width is an indicator of between-cluster heterogeneity77. With a range between -1 and 
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1, positive silhouette width values indicate that a given member of a cluster is closer to its own 

cluster’s centroid than to the nearest cluster’s centroid. Negative values indicate that a given 

member is closer to the nearest cluster’s centroid than to the centroid of its own cluster. 

Generally, higher silhouette width values indicate greater between-cluster heterogeneity. We 

used the silhouette width to fine-tune hyperparameters for the autoencoder (the number of 

dimensions) (Extended Data Fig. 7) and K-means cluster analysis (the number of clusters). We 

calculated silhouette width using the “cluster” package in R77. The mean silhouette widths from 

our K-means cluster analyses were significantly greater than zero for all forest types (p < 0.001) 

in the West for the present dataset. Eighteen out of 19 forest types in the West, 22 out of 26 in 

the East, and all six forest types in the Boreal region were significantly greater than zero in the 

mean silhouette width. In summary, 90% of the forest types classified here were significantly 

distinct from one another in terms of species composition (Supplementary Table 2). 

To assess the performance of the imputation model in mapping forest types across the 

continent, we conducted a rigorous 80/20 cross-validation using bootstrapping. In each iteration, 

we used stratified sampling to split the entire dataset into the training (80%) and testing (20%) 

set, and conducted the combination of under-sampling and oversampling of the training set for 

both random forests and support-vector machines. Stratified sampling was conducted using the 

“caret” package in R78, and under-sampling and oversampling were conducted using the “UBL” 

package79. Based on five random iterations with sample replacement in each of the 20 

repetitions, we calculated the 95% confidence interval of classification accuracy, the Kappa 

statistic, and elements of confusion matrix, as well as predictor variable importance. For each 

candidate imputation model, the output was a matrix of class probability from five iterations. We 
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chose the forest type of majority vote from the five iterations, and thus, our final output was a 

matrix of class probability from the 20 repetitions. 

The classification accuracy, Kappa statistic, and elements of confusion matrices were 

calculated based on the prediction on the testing set in each iteration. Compared with the support 

vector machine model, random forests model was 10–17% more accurate in terms of overall 

accuracy and 11–20% more precise in terms of the Kappa statistic (Extended Data Fig. 5). 

Therefore, we selected random forests as the final imputation model. The confusion matrices 

based on random forests models were based on the number of cases in class prediction, 

standardized in percentage (Extended Data Figs. 8, 9). For the present dataset, the coastal 

redwood—tanoak forest (W-P) had the highest classification accuracy (88%, Extended Data Fig. 

8), and the red maple—hardwood forest (E-F) had the lowest accuracy (18%, Extended Data Fig. 

8) among all the classes (i.e., forest types). 

Quantifying forest migration patterns 

We quantified migration patterns of forest type in terms of velocity (km·decade-1) and 

azimuth (°) of the mean geographic movement, as well as changes in area, based on in situ forest 

inventory data aggregated into 0.025 by 0.025-degree grids. The first inventory was conducted 

between 1970 and 1999 (past inventory), whereas the second inventory was conducted between 

2000 and 2019 (present inventory). We ensured past and present forest types matched so that 

forest migration can be quantified. To do this, we calculated the Euclidean distance of all 

combinations between past and present forest types in terms of species importance value. Pairs 

were considered matching when the forest type of minimum distance was the same between the 

past-and-present pair. For example, if and only if present forest type X’s closest past forest type 
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is Y, and past forest type Y’s closest present forest type is also X, they were considered 

matching. 

For each matching pair of past and present forest types, we determined its mean 

geographic movement and associated 95% confidence interval using a bootstrapping approach 

with 1,000 iterations. In each iteration, we randomly sampled 80% of past and present data with 

replacement and quantified the velocity and azimuth of forest migration, based on the past and 

present centroids of the geographic range of that forest type. The geographic centroid was 

calculated by weighting the grid geographic coordinates with percent forest type. After mapping 

forest types across the continent using the imputation random forest models, all the 1,004,358 

grids contain a percentage for each forest type as well as the geographic coordinates (latitude and 

longitude) of that grid’s centroid. Percent forest type was determined by how many repetitions, 

out of 20 repetitions, returned the particular forest type. Geographic centroids for each forest 

type were then calculated by weighting the geographic coordinates and percentage in that grid 

with the following equations: 

QRS = ∑ UVWXVYVZ[
∑ UVWYVZ[

, \RS = ∑ UVW]VYVZ[
∑ UVWYVZ[

,       (1) 

where QRS is the weighted mean longitude of forest type j, \RS is the weighted mean latitude of 

forest type j, QN and \N are the longitude and latitude for the centroid of grid i, and 8NS  is the grid 

cell level percentage of forest type j. 

This geographic distance was calculated using the “sp” package in R80, while the 

associated azimuth was determined using the “sfsmisc” package81. The velocity of forest 

migration (km·decade-1) was then calculated as the average distance of movement for each forest 

type (Table 1) per decade. We also determined area coverage of each forest type by weighting 
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grid area by percent presence of the forest type. Grid area was estimated using the “raster” 

package in R82. 

Comparison of forest migration and tree species migration 

 To directly compare the geographic shift of forest types and tree species, we calculated 

grid-level velocity for each entity. For forest type, we quantified grid-level velocity of forest 

migration by weighting the forest type velocity by percent presence of the forest type in each 

grid. Percent presence of the forest type here was based on how many models, out of five 

models, returned the given forest type. Therefore, the output was a matrix of grid-level velocity 

from the 20 repetitions. 

We estimated tree species migration in a similar manner, using the same grid-level forest-

tree data for identical time periods. For each tree species and each time period, we estimated tree 

species distribution range based on random forests models and the 38 predictor variables 

(Extended Data Table 1). For each region (West, East, and Boreal), only species with sufficient 

sample size (≥ 60 grids) in both time periods were included (Supplementary Table 3). Following 

Iverson et al. (2019), we reported the mean predicted importance value for each species or zero 

for species with zero median and a coefficient of variation no less than 2.75 among all predicted 

values53. We calculated weighted mean geographic centroids using predicted importance value, 

and determined the species’ mean geographic shift using the identical method to the one stated 

above. We then repeated this process 20 times to derive the mean and 95% confidence interval of 

tree species migration velocity. To maximize the model performance while minimizing 

computational time, we selected the number of trees = 100 after fine-tuning using the West 

present dataset as an example. Specifically, we calculated root mean square error (RMSE) for 
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different number of trees with 10 iterations, and chose the number of trees where RMSE values 

converged. 

Modeling the ratio of forest migration velocity to tree species migration velocity 

Based on the grid-level velocities of forest types and tree species, we took the ratio of 

forest migration velocity to tree species migration velocity for each grid. We then trained a 

random forests regression model with the ratio being the response variables, and 18 predictor 

variables (Extended Data Fig. 3). Based on grid-level tree species abundance data, we calculated 

three biodiversity measures: species richness, Shannon’s index, and species evenness. Species 

richness (S) represents the total number of tree species present in the grid. Shannon’s diversity 

index (H)83 was calculated using the formula: 

_ = −∑ ?N ln?NaNP@ ,         (2) 

where pi is the proportion of importance value of species i relative to the sum of importance 

value of all species present in that grid. Species evenness (E) was calculated using the measure 

proposed by Chao and Ricotta84: 

b = Bcd@
ad@ .          (3) 

In addition, we calculated the temporal changes of 15 bioclimate variables (C1-C15, 

Extended Data Table 1) between the past and present surveys, and added these variables (∆C1, 

∆C2,…, ∆C15) as predictor variables. With the total of 18 predictor variables, we conducted a 

bootstrapping of 100 random forests regression models, each trained with a random 80% subset 

of the full dataset with replacement. Variable importance was determined based on the Gini 

impurity, a measure that represents the probability of incorrect classification of randomly 

selected sample due to its distribution.  
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Finally, we assessed the partial dependence of the ratio on the predictors with the highest 

variable importance values, by plotting the predicted ratio values over the range of the predictor 

variable, holding other variables constant at their sample mean. For all temporal change-related 

bioclimate variables, we developed climate change as an aggregated indicator, which was 

calculated as the mean of the top nine most important bioclimate variables normalized to a 

common range between 0 and 1. We chose to calculate the climate change indicator based on the 

top nine most important bioclimate variables, because this subset of variables accounted for 

68.4% of the total importance values of all the 21 bioclimate variables studied here.  

 

Data and Code availability 

All data, code, and materials used in the analysis will be deposited to Figshare and Purdue 

University Research Repository (PURR) upon the publishing of this paper. 
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