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I. MAGNETIZATION AT SATURATION

Ta(5)|Pt(8)|Co(tCo)|Al(1.4)|Pt(3) multilayers Ms (MA/m) He f f
k (T)

Co(0.55) 0.96 1.78

Co(0.7) 0.97 1.68

Co(0.9) 1.05 1.5

Co(1.2) 1.22 0.89

Co(1.4) 1.13 0.58

Ta(5)|Pt(8)|Co(tCo)|Al(3)|Pt(3) multilayers

Co(0.7) 1.14 1.72

Co(0.9) 1.18 1.7

Co(1.2) 1.19 1.0

Co(1.4) 1.14 0.70

Ta(5)|Pt(8)|Co(0.9)|Pt(3) 1.27 0.72

Ta(5)|Pt(8)|Co(0.9)|PtPt|Al(3)|Pt(3) multilayers

Pt(0.25) 1.04 1.35

Pt(0.5) 1.06 1.25

Pt(0.75) 1.12 1.05

Pt(1) 1.28 0.95

Pt(2) 1.39 0.78

Pt(3) 1.44 0.79

TABLE I. Saturation magnetization (Ms) measured via SQUID and perpendicular

anisotropy field (Ks) acquired by AHE in our magnetic thin films (300 K).
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II. AHE DATA - PHYSICAL PARAMETERS EXTRACTED FROM OUR CIP FITTING

PROCEDURE.

The following table gathers the main physical parameters extracted from our

fitting procedure applied to AHE data.

Parameters Symbols spin ↑ spin ↓

Co conductivity (S/m) σCo
σCo

2(1−βCo)
= 7.4±1.0×106 σCo

2(1+βCo)
= 1.6±0.3×106

Pt conductivity (S/m) σPt 2.5±0.5×106 2.5±0.5×106

Al conductivity (S/m) σAl 7.0±2×106 7.0±2×106

Co mean free path (nm) λCo 7.0±1 2.0±0.3

Pt mean free path (nm) λPt 2.0±0.5 2.0±0.5

Al mean free path (nm) λAl 6.0±1.5 6.0±1.5

Co Bulk asymmetry coefficient βCo 0.65±0.05

Co Spin Hall angle θCo 0.02±0.005 −0.02±0.005

Pt Spin Hall angle θPt 0.22±0.03 −0.22±0.03

Pt|Co int. transmission TPt/Co
TPt/Co

1−γPt/Co
= 0.9±0.1

TPt/Co
1+γPt/Co

= 0.4±0.1

Co|Al int. transmission TCo/Al
TCo/Al

1−γCo/Al
= 0.1±0.05

TCo/Al
1+γCo/Al

= 0.1±0.05

Al|Pt Interface transmission TAl/Pt TAl/Pt = 0.2±0.1 TAl/Pt = 0.2±0.1

Pt|Co Interface asymmetry coefficient γPt/Co 0.4±0.1

Co|Al Interface asymmetry coefficient γCo/Al 0

Pt|Co specularity in reflection spPt/Co 0.2±0.1

Co|Al specularity in reflection spCo/Al 0.15±0.1

Pt|Co spin-memory loss δPt/Co 0.4±0.1

Co|Cu spin-memory loss δCo/Cu 0.25±0.1

Cu|Pt spin-memory loss δCu/Pt 0.4±0.1

Co|Al spin-memory loss δCo/Al negligible

TABLE II. Physical parameters for bulk Pt, Co, Cu and Al and their interfaces extracted

from our AHE fitting procedure. The conductivities σ are given in the unit of S.cm−1 and

the electronic mean free path (λ ) in the unit of nm.
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III. TRANSVERSE SPIN-TRANSPORT MODEL FOR SOT INVOLVING SHE AND SPIN

AND ORBITAL RASHBA INTERACTIONS.

In this appendix, we describe in details our model used for qualifying the trans-

verse angular momentum accumulations and spin-currents in the multilayered

structure originating from SHE and Rashba interfacial interactions. This model

adapts the drift-precession-diffusion theory framework. This approach is com-

plemented by introducing complex spin diffusion lengths accounting for spin

precession in a ferromagnetic layer of finite thickness [1, 2]. This simplification

for the treatment of the specific spin degree of freedom is possible in the limit

of vanishing SOC (case of 3d ferromagnet). The same qualitative conclusion in

favor of a generalized diffusion scheme for the transverse spin component is also

deduced from the Keldysh formalism [3].

A. Complex decoherence length and SOT

We assume that in the Co ferromagnetic layer, besides the transverse momen-

tum relaxation time τp, the spin-relaxation is described by: a longitudinal re-

laxation (spin-flip) time τs f (generally quite long), a transverse decoherence term

(e.g. from magnon emission/absorption) τ∆ (generally short), and a certain Lar-

mor time τJ due to precession. Noting µ̃ = Tr ⟨Ψkn|σ̂ |Ψkn⟩, the-out-of equilibrium

spin density and Jσ the spin current, their coupled dynamics are given by [4] :

∂ µ̃

∂ t
=− µ̂

τ∆

− µ̂

τs f
− µ̂ × êm

τJ
− ∂ Ĵσ (z)

∂ z
(1)

∂ Ĵσ

∂ t
=− Ĵσ

τ∆

− Ĵσ

τp
− Ĵσ × êm

τJ
− D⊥

τp

∂ µ̂

∂ z
(2)

where êm is the unit vector of the local magnetization m̂. For the following

calculations, it is useful to note the reduced complex spin accumulation µ̂ =

vF (µ̂x + iµ̂y) and complex transverse spin-current Ĵσ = Ĵσx + iĴσy. The correspon-

dence between a characteristic time time τi and the characteristic length λi is:
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λi = vFτi. In the steady state regime, ∂

∂ t = 0. We then define λ̃µ =
(

1
λ∆

+ 1
λs f

− i
λJ

)−1

and λ̃J =
(

1
λ∆

+ 1
λp

− i
λJ

)−1
two complex scaling length. Noting D⊥ =

(
v2

F τp
3

)
the dif-

fusion constant, the combination of these two equations yields in fine:

∂ 2µ̂

∂ z2 =
µ̂

λ̃ 2
p

and
∂ 2Ĵσ

∂ z2 =
Ĵσ

λ̃ 2
p

(3)

where λ̃p is the common propagation scaling length. It is defined by λ̃ 2
p = λ̃µ λ̃J.

Its real part represents the decay of the transverse spin components (accumu-

lation and current) in the ferromagnet while its imaginary part represents its

precession feature.

1. Generalized complex spin-resistance

The characteristic lengths described above are specific to each layer. In order

to accurately model diffusion between different layers, it is needed to include in

the model the different electrical resistivity. This is dealt with by introducing

a selective layer spin-resistance rs. Generalizing the approach used to describe

non-collinear spin transport, we define rs as :

rs =

(
1

Gsh

)√
λ̃µ

λ̃J
(4)

Regarding non magnetic materials, where λ∆ and λJ are zero, this writes:

(Gshrs) =
√

τs f
τp

. For instance, in Pt, (Gshrs) ≃ 2 as obtained from THz emission

experiment [5]. It is greater than 1 as in all materials where τs f > τp. Notably,

in low SOC materials as Cu or Al, it is typically larger than 10. In non collinear

ferromagnets, the spin-resistance is complex, rendering spin precession.

2. Relation between SOT and spin currents

Spin-orbit torques Γ̂SOT are defined as the time variations of the magnetization

vector m̂ when an out-of-equilibrium spin current occurs which is opposite to the

torque generated on the spin-accumulation µ̂ (in the limit of small SOC). From
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total angular momentum conservation, the sign of the cross product term has

then to be opposite to that of Eqn. [1]:

Γ̂SOT =
∫
V

∂m̂
∂ t

dV =−
∫
V

êm × µ̂

τJ
dV (5)

From Eqn. [1], we have:

µ̂ =−τJ

 i+ τJ

(
1
τ∆
+ 1

τs f

)
1+

[
τJ

(
1
τ∆
+ 1

τs f

)]2

 ∂ Ĵσ

∂ z

and µ̂ × êm =−iµ̂ leading to:

∫
V

µ̂ × êm

τJ
dV =−

∫
V

1+ iτJ

(
1
τ∆
+ 1

τs f

)
1+

[
τJ

(
1
τ∆
+ 1

τs f

)]2

(
∂ Ĵσ

∂ z

)
dz

The integral over the volume of ∂Jσ

∂ z yields the integrated torque ΓSOT in the FM

thickness we are searching for:

Γ̂SOT =

 1+ iτJ

(
1
τ∆
+ 1

τs f

)
1+

[
τJ

(
1
τ∆
+ 1

τs f

)]2

(
Ĵin

σ − Ĵout
σ

)
(6)

This equation teaches us that the torques applied on the ferromagnetic layer

are proportional to the balance between spin current entering through one in-

terface Ĵin
σ and outgoing through the other interface Ĵout

σ . The proportionality

constant is complex, accounting for precession of the spin current around the

magnetization. The real part of the resulting Γ̂SOT is the damping like torque com-

ponent while the imaginary part is the field like torque. In the following, we will

propagate the spin currents between the different layers of our samples. From

the latter equation, we can observe that the ratio between the Field-like and the

Damping-like torques are closely dependent on the ratio between τJ and τ∆. For

thick FM layers, thicker than the decoherence length, an increase of the deco-

herence rate τ
−1
∆

enhances the Field-like term (from almost zero) and reduces the

Damping-like component.
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B. Multiple scattering approach (case of ultrathin layers)

FIG. 1. Definition of the different spin currents terms, either incoming spin-current

source ∆ĴΣ
σ or out-going out-of-equilibrium spin-current ∆Ĵσ at one single interface

From now on, we note the spin-polarized current by ∆Ĵσ =
(
J↑− J↓

)
.

Estimating the spin currents Ĵin
σ and Ĵout

σ in the ferromagnetic layer of Pt|Co|Al|Pt

is challenging due to the presence of different spin current sources and multiple

interfaces scattering. We have to consider multiple scattering processes at sev-

eral interfaces and boundaries. Our approach consists in a multiple-scattering

formalism that enables to write a super-scattering matrix S from each individual

interface scattering matrix S̃.

Let’s consider a single interface between layers l and l +1 (figure 1). The pur-

pose of a scattering matrix is to write a linear relationship between the two out-

going spin-accumulation flow (spin-currents) to the left and to the right, respec-

tively ∆Ĵ(l)−σ and ∆Ĵ(l+1)+
σ , connected to the two ingoing spin-current ∆Ĵ(l)+σ and

∆Ĵ(l+1)−
σ . This also may involve two sources terms (SHE) generated from either
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side materials ∆ĴΣ(l)+
σ and ∆ĴΣ(l+1)−

σ . Because the source term imposes different

boundary conditions, we need to consider two different scattering matrices, re-

spectively S and S̃:

∣∣∣∣∣∣ ∆Ĵ(l)−σ

∆Ĵ(l+1)+
σ

= S̃

∣∣∣∣∣∣ ∆Ĵ(l)+σ

∆Ĵ(l+1)−
σ

+S

∣∣∣∣∣∣ ∆ĴΣ(l)+
σ

∆ĴΣ(l+1)−
σ

or equivalently:

∣∣∣∣∣∣ ∆Ĵ(l)−σ

∆Ĵ(l+1)+
σ

= S̃

∣∣∣∣∣∣ ∆Ĵ(l)+σ

∆Ĵ(l+1)−
σ

+ S̃−1S

∣∣∣∣∣∣ ∆ĴΣ(l)+
σ

∆ĴΣ(l+1)−
σ



thus defining S̃−1S

∣∣∣∣∣∣ ∆ĴΣ(l)+
σ

∆ĴΣ(l+1)−
σ

as the effective spin-current source terms. Such

formulation is able to treat the multiple diffusion character of the spin-transport

within the multilayer.

1. Single interface scattering matrix

It turns out that each single scattering matrix at a given interface between two

semi-infinite materials is written as:

S̃l =

 R̃l T̃ ′
l

T̃l R̃′
l

 and Sl =

 Rl T ′
l

Tl R′
l

 (7)

where R̃l (resp. Rl) is the reflection coefficient for a spin-current (resp. for a source

term) arriving from layer l to the interface between l and l+1; whereas T̃l (resp. Tl)

is the corresponding transmission coefficient for a spin current (resp. for a source

term) arriving from layer l to the interface between l and l + 1. The coefficients

noted with ′ are the equivalent coefficients for the opposite flow direction on the

same interface. We have derived those coefficients from the boundary conditions

that we impose on the interface. The general self-consistent solutions can then

be solved by using either ∆Ĵ(l)±σ or ∆µ̂
(l)±
σ as relevant physical quantities. We chose

the ∆Ĵ(l)±σ basis able to treat both SHE and REE. Those are:
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(i) the continuity of the total current when the spin-memory loss is zero giving:

ĴΣ(l)+
σ −∆Ĵ(l)−σ +∆Ĵ(l)+σ =−ĴΣ(l+1)+

σ +∆Ĵ(l+1)+
σ −∆Ĵ(l+1)−

σ (8)

(ii) equality between diffusive spin-current and interfacial spin-current param-

eterized by the spin-mixing conductance (G↑↓ = T GSh) according to:

ĴΣ(l)+
σ −∆Ĵ(l)−σ +∆Ĵ(l)+σ =

= G↑↓

[
rs(l)

(
∆Ĵ(l)−σ +∆Ĵ(l)+σ

)
− rs(l+1)

(
∆Ĵ(l+1)−

σ +∆Ĵ(l+1)+
σ

)]
(9)

when the spin-memory loss is absent.

(iii) When necessary, the introduction of a fictitious layer interface of evanes-

cent thickness tloss with spin-diffusion length λloss taking into account the previ-

ously defined spin-memory loss parameter δ owing to δ =
(

tloss
λloss

)
. This yields the

formulae of R̃l and T̃l as a function of material and interface parameters according

to:

T̃l =
2 T↑↓ r̃(l)s

(
δ

sinhδ

)
1+δ coth(δ )T↑↓

(
r̃(l)s + r̃(l+1)

s

)
+δ 2T 2

↑↓r̃(l)s r̃(l+1)
s

(10)

R̃l =
1+δ coth(δ ) T↑↓

(
r̃(l+1)

s − r̃(l)s

)
1+δ coth(δ )T↑↓

(
r̃(l)s + r̃(l+1)

s

)
+δ 2T 2

↑↓r̃(l+1)
s r̃(l+1)

s

(11)

Regarding S matrices dealing with the scattering of the source terms, the cur-

rent discontinuity equation remains unchanged. However, contrary to the pre-

vious case, the source term does not solely derive from a spin accumulation. Rl

and Tl then become:

Tl =
T↑↓ r̃(l)s

(
δ

sinhδ

)
1+δ coth(δ )T↑↓

(
r̃(l)s + r̃(l+1)

s

)
+δ 2T 2

↑↓r̃(l)s r̃(l+1)
s

(12)

Rl =
1+δ coth(δ ) T↑↓ r̃(l+1)

s

1+δ coth(δ )T↑↓
(

r̃(l)s + r̃(l+1)
s

)
+δ 2T 2

↑↓r̃(l)s r̃(l+1)
s

(13)
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From these expression, one can extract the total spin-loss Al at the interface

l according to : Tl +Rl +Al = 1 (an equivalent expression exists for the tilde equa-

tions).

2. Multiple interfaces: the scattering path approach and overall scattering matrix

The self-consistent treatment describing the multiple scattering process within

the multilayer is performed in the so-called scattering path formalism. We then

employ a "superscattering" approach to propagate this single interface equation to

a whole multilayer. Following this approach , we derive a superscattering matrix

S such that:

Si j = S̃iδi j +SilG0,l jS̃ j

or:

Sµν =
[
S̃−1 ⊗δ −G0

]−1
µν

with δ the N ×N unity matrix (N is the number of interfaces) and Gl j
0 the prop-

agation matrices from the two neighboring interfaces l and j (l = j± 1) defining

thus two different 2× 2 matrices Gl (l+1)
0 and G(l+1) l

0 , the so-called propaga-

tor or Green’s function of the out-of-equilibrium spin accumulation and currents

between two neighboring interfaces (l) to the interface (l+1) (or vice versa).

The two different (complex) propagation matrix required for n= l+1 (Gn,n+1
0 ) and

n = l −1 (Gn+1,n
0 ) write respectively:

Gn,n+1
0 =

 0 0

exp
(
− tn+1

λ̃s,n+1

)
0

 ;Gn+1,n
0 =

 0 exp
(
− tn+1

λ̃s,n+1

)
0 0

 (14)

(15)

We remind that the previous equations for S describing the multiple scatter-

ing approach and obeys the scheme of a perturbation potential V̂ leading to the

definition of the transition matrix T̂ with:
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T̂ = V̂ +V̂G0T̂ (16)

together with

G=G0 +G0V̂G (17)

We remind that S̃l are the single interface scattering matrix of the interface (l)

entering as a diagonal block matrix in such ’supermatrix’. The supermatrix Sµν

describes the scattering properties of the spin-current at the level of the interface

µ we are searching for from an injection of an effective spin current source (SHE

or Rashba) occurring at the interface ν.

C. Semi-classical modeling of SHE and REE

We choose to model Pt|Co||Al*, Pt|Co||Al|Pt and Pt|Co||P̃t|Al systems as

a stacking of four/five different layers Pt|Co|R|Ãl characterized by their own

effective propagation length and their own spin-resistance, and four different

interfaces where ||= |R| stands for the effective interfacial confined orbital Rashba

layer to consider. Ãl represents either Al|Pt or Pt|Al of respective effective spin-

resistance rAl + rPt
s (rAl is the Al layer resistance here) and rPt

s

(
rAl

s +rPt
s tanh(tPt)

rPt
s +rAl

s tanh(tPt)

)
=
(

1
Gs f

)
which are clearly not identical in reversing the order of the Al|Pt bilayer.

The SHE layer(s) are representing by Pt (of spin resistance rs
Pt ), the Co ferromag-

netic layer is represented by a complex relaxation length (complex spin resistance

rs∗
Co) whereas the Al layer is the light metal characterized by a large spin-resistance

rAl
s .

Note that the Rashba interface is then represented by a virtual "interfacial"

layer possibly having small transmission coefficients toward the neighbouring

metallic layers (case of a confined interfacial state). In the case where such trans-

mission is non zero, it stands for a small coupling existing between the interfacial

evanescent Rashba states, which are evanescent wave functions, and bulk Bloch

states. Since those two types of quantum electronic states are in principal or-

thogonal, this transmission coefficient remain in any case small compared to 1.

This tiny transmission results in a pretty large spin accumulation inside this
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virtual layer representing the Rashba-Edelstein effect, described more in details

hereafter.

The overall SOT/OT in Co is the sum of three different terms: (i) the SOT

emerging from the SHE of Pt, either from both side, and integrated over the

ferromagnet thickness tCo (Eqn. 6), (ii) the SOT due to the angular momentum

accumulation in the virtual interface layer, and (iii) the SOT due to diffusion of

this interfacial accumulation inside the ’bulk’ Co, also integrated over tCo. The

damping like component is given by the real part of the SOT while the field-like

torque is given by the imaginary part.

1. Spin-Hall Currents

The spin-Hall current generated by outward Pt layers can be generally de-

scribed by a spin-current source ∆JΣ
σ = θSHEJC incoming from the leftward (case of

Fig. 2(b)) or from the rightward boundary. Our multiple scattering approach al-

lows to satisfy the interfacial conditions described in the previous section. More

generally, a SHE layer inside a multilayer may be modeled by sharing the spin-

current source ∆JΣ
σ into two sub spin-current sources of weight 1

2 impinging the

respective left and right interfaces (case of Fig. 2(a)). That way, one can be easily

be convinced that the interfacial conditions at both sides. As the spin-Hall effect

in Pt admits Time-reversal symmetry properties (TRS), the resulting calculation

is independent on the application of TRS (changing angular momentum flow and

direction at the same time). It results that SHE applying to an infinitely thin layer

is accompanied with zero angular momentum angular moment injection current.

2. Rashba-Edelstein effect: introduction of a virtual interfacial layer

We now discuss the modeling of Rashba contributions via the consideration

of a virtual interfacial layer. The spin accumulation generated via the Rashba-

Edelstein effect at a given interface ’i’ can be modeled by considering an in-

finitely thin layer ’i’ location of two opposite spin-up current sources ∆ĴΣL
σ and

∆ĴΣR
σ impinging the two interfaces (Fig. 2(c)). The separation into two opposite
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FIG. 2. Scheme of both SHE and Rashba-Edelstein process in a multiple scattering

picture with the definition of the corresponding spin-current sources. (a) Case of SHE

current within the layer ’i’ described by a spin-current source JΣ
σ . The spin-current can

be decomposed into a spin-up propagating spin-current towards the right and a spin-

down current towards the left (b) Case of SHE current injected from the outward left

boundary. (c) Case of Rashba-Edelstein effect occurring at the interface layer ’i’ which is

composed of two opposite propagating currents of the same spin.
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spin flow, as exploited in the scattering path formalism, generates a spin accu-

mulation although the overall spin-current is zero in this case. The 2D orbital

or spin accumulation ˇ̂µ then writes ˇ̂µ ≃ eN 2D
DOS

(
r∗Lr∗R

r∗L+r∗R

)
∆JΣ

σ ≃
(
eθREEN 2D

DOSr∗Lσxx
)

E ≃(
eθREEλs f N

2D
DOS

)
E =

(
eλREEN 2D

DOS
)

E (θREE and λs f are respectively the equivalent

REE theta angle and effective spin-flip time whereas their product equals the

REE length λREE scaling the orbital moment - charge conversion). It turns out

that the Rashba response χREE
xy reads χREE

xy =
(
eλREEN 2D

DOS
)
. Considering θREE ≃ 0.1

and λs f ≃ 10 nm, we find χREE
xy ≃ 1010(h̄)/(V.m) as expected.

In the limit of an infinitely thin interfacial layer (i), ∆ĴΣR
σ gives the same result

than ∆ĴΣL
σ owing to the TRS property acting on an angular momentum accumu-

lation.

3. Modeling results

In our model, the low transmission coefficients that we impose on that layer

mechanically lead to simulating a large angular momentum accumulation be-

cause spins are not able to "escape". To exhibit that clearly, we simulated four

cases:

1. A case where Al spin resistance (here dimensionless) is of 2, a value close to

Co resistivity (2.5) and the two transmission coefficients are set to a small

value: 0.1 (blue line on figure 3(c).

2. A case (orange line on figure 3(c) where the transmission toward Co is in-

creased to 0.8.

3. A case (green line on figure 3(c) where the transmission coefficient toward

Al is risen to 0.8 while the one toward Co is kept to 0.1.

4. In the last case, the transmission coefficient toward Al is again large (0.8)

but the resistivity of Al is increased to 10.

Comparing the second case to the first, we see a reduction in the field-like

torque despite a better transmission of spins from the virtual layer to Co. This
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counter-intuitive result stems from the fact that increased transmission lowers

the accumulation of spins more than it increases the angular momentum trans-

fer. In the third case, the field like torque is the lowest because not only trans-

mission of spins to Co is low but also electrons diffuse the best inside the Al layer

where they exert no torque.

Finally, the fourth case recovers the same amplitude of field like torque as

the first case due to the rise in Al resistivity. This is expected since a great

resistivity difference between two consecutive layers prevents electronic diffusion

equivalently to low transmission.

This model reproduces expected behavior of REE on SOT. The resulting torques

are a trade off in the coupling of the Rashba states with the neighbouring metals:

while better coupling with the ferromagnetic states improves transfer of angular

momentum, it also decreases the lifetime of Rashba polarized electronic states

and therefore the total amount of out of equilibrium momentum accumulation.

D. Rashba-Edelstein effect (REE) at Co|Al interfaces

The large increase in the experimental ratio ξFL/ξDL in Ta(5)|Pt(8)|Co(tCo)|Al|Pt(3)

and Ta(5)|Pt(8)|Co(tCo)|Al* samples with ultrathin Co incompatible with a model

comprising only Pt SHE and mostly real spin-mixing conductance at Pt|Co in-

terface.

When the Rashba term is turned on through a non-zero source term in the

virtual interfacial layer, we are able to precisely match the experimental data for

each SOT component. This ultimately leads us to the conclusion that there exists

a strong interfacial SOT generation at Co|Al interface through spin or orbital

Rashba-Edelstein effect.

• The spin Hall effect (SHE) arising from the bottom Pt|Co layer is parameter-

ized by a bare spin-angle angle of θSHE = 0.22±0.02 and a spin-memory loss

coefficient δ = 0.4. Such SHE spin current is also subject to spin-backflow

at this interface. The efficiency of the torques calculated for tCo = 0.9 nm are

respectively ξ SHE
DL = 0.045 and ξ SHE

FL = 0.03.
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FIG. 3. (a) respective Field-like and Damping-like components of SOT due to SHE, no

REE, dependence on Co layer thickness. (b) Field-like torque for different values of the

parameters representing Al resistivity and the virtual Rashba layer transmission coeffi-

cients. SHE set to zero, dependence on Co layer thickness. (c) Scheme of the model for

Pt|Co|Al multilayers with relevant coefficients. T1 and T2 represent the transmission co-

efficient between adjacent layers whereas Ti1 and Ti2 represent transmission from layers

to interface Rashba states. δ1 and δ2 are spin-memory loss coefficients.

• The Ta(5)|Pt(8)|Co(0.9)|Al(1.4)|Pt(3) sample experiments OREE giving rise

to additional torque components ξ OREE
DL = 0.03 and ξ OREE

FL = 0.075. The FLT

from OREE represents 70% of this additional OREE torque (DLT represents

30%) showing the major role of REE to generate the FLT. This ratio is param-

eterized by the TiL ≃0.2 transmission coefficient (coupling) from the Rashba

virtual layer to bulk Co states as discussed by Rojas-Sanchez et al. [6]. The
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OREE represents then 40% of the total DLT and 70% of the total FLT.

• The Ta(5)|Pt(8)|Co(0.9)|Al(3)|Pt(3) sample experiments OREE giving rise to

additional torque components ζ OREE
DL = 0.07 and ξ OREE

FL = 0.21, still compared to

SHE. The Field-like torque by OREE then represents 75% of this additional

OREE torque (DLT is only 25%). This ratio is parameterized by a coupling

TiL ≃ 0.1 (transmission coefficient) from the Rashba to bulk Co states.

• Those calculations reproduce then well the amplitude of the experimental

torques reported here. The final conclusion is that, Ta(5)|Pt(8)|Co(0.9)|Al(1.4)|Pt(3)

and Ta(5)|Pt(8)|Co(0.9)|Al(3)|Pt(3) samples, the total DLT efficiency in-

creases from ξDL = 0.075 to ξDL = 0.12 whereas for the FLT , the increase goes

from ξFL = 0.11 to ξFL = 0.23.

The reduced critical switching current observed in the Co|Al sample can thus

be assigned to the ability of the OREE to enhance the damping-like component

of the SOT. While OREE is typically associated with a dominant FL torque, our

switching experiments demonstrate its effectiveness as a powerful tool for probing

the DLtorque and, more broadly, for torque metrology. Table III summarizes the

measured values and relative contributions of both torque efficiencies, ξFL and

ξDL efficiencies for the two samples.
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ξFL ξDL

Ta(5)|Pt(8)|Co(0.9)|Al(1.4)|Pt(3)

SHE OREE total

0.025 0.075 0.10

25 % 75 % 100 %

SHE OREE total

0.0375 0.03 0.0675

56 % 44 % 100 %

Ta(5)|Pt(8)|Co(0.9)|Al(3)|Pt(3)

SHE OREE total

0.03 0.21 0.24

13 % 87 % 100 %

SHE OREE total

0.045 0.07 0.115

39 % 61 % 100 %

TABLE III. Values and relative contributions of OREE and Pt SHE in both torque ξFL and

ξDL efficiencies for the two samples. For instance, in Ta(5)|Pt(8)|Co(0.9)|Al(3)|Pt(3), SHE

induces 0.03 field like efficiency and OREE 0.21. OREE thus induces 87 % of the field

like torque.
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