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Fig. 1 Indian region divided into six different regions based on different geographical and topographical features [1]

.

Fig. 2 Model vs Observation of diel variation of ClNO2 and pCl– at New Delhi, India. Observation data of ClNO2 is taken
for January-February 2019 [2] and pCl– is for February-March from [3].
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Fig. 3 Seasonal distribution of modelled pCl– concentrations (µgm−3) from the Wo-AnthroHCl simulation, shown together
with wind patterns. The results highlight the influence of marine transport on coastal regions across all seasons.

Fig. 4 Seasonal spatial distribution of NH3 (ppb) from the Wi-AnthroHCl simulation over the Indian subcontinent.
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Fig. 5 Spatial distribution of Annual average relative humidity (%) and the pCl– partitioning ratio efficiency
(pCl–/HCl+pCl– ) for 2018.

Winter Spring

Summer Autumn

Fig. 6 Spatial distribution of ∆PM2.5 for each season calculated as the difference between Wi-AnthroHCl and Wo-AnthroHCl
simulation
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Fig. 7 Spatial distribution of NH4
+ from Wi-AnthroHCl simulation and the absolute difference between Wi-AnthroHCl and

Wo-AnthroHCl simulations for each season

4



W
i-A

nt
hr

oH
CL

Di
ffe

re
nc
e

10°N

30°N

20°N

10°N

30°N

20°N

70°E 80°E 90°E 70°E 80°E 90°E 70°E 80°E 90°E 70°E 80°E 90°E

Winter Spring Summer Autumn

Fig. 8 Spatial distribution of NO3
– from Wi-AnthroHCl simulation and the absolute difference between Wi-AnthroHCl and

Wo-AnthroHCl simulations for each season
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Fig. 9 Spatial distribution of SO4
2– from Wi-AnthroHCl simulation and the absolute difference between Wi-AnthroHCl and

Wo-AnthroHCl simulations for each season

5



 Winter                                                Spring

Summer                                             Autumn

Fig. 10 Spatial distribution of ∆MDA8 O3 for each season of 2018.
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Fig. 11 Spatial distribution of ClNO2 from Wi-AnthroHCl and Wo-AnthroHCl for each season along with the absolute
difference between both type of simulation.
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HCl Emission
191.58 Gg a-1

pCl Emission
188.68 Gg a-1

Total Cl Emission
380.30 Gg a-1
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Fig. 12 Pie charts show percentage distribution of HCl, pCl−, and Total Cl (HCl + pCl−) annual emissions by source sectors.
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Fig. 13 Seasonal distribution of modelled pCl– concentrations (µgm−3) from the Wi-AnthroHCl simulation.
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Fig. 14 Global distribution of ∆O3 for the month of December (2018) taking as a difference of Wi-AnthroHCl and Wo-
AnthroHCl simulations. This figure indicate that the magnitude of tropospheric ∆O3 over India is comparatively smaller,
reflecting a weaker sensitivity to anthropogenic chlorine emissions.

Table 1 Model performance evaluation for PM2.5 and O3 in Wi-AnthroHCl and Wo-AnthroHCl model simulations.

Station Mean NMB r IOA

Obs Wi-HCl Wo-HCl Wi-HCl Wo-HCl Wi-HCl Wo-HCl Wi-HCl Wo-HCl

PM2.5

Ahmedabad 66.56 63.96 63.32 -0.04 -0.05 0.28 0.29 0.57 0.57

Chennai 59.04 53.51 52.49 -0.09 -0.11 0.70 0.70 0.81 0.81

Delhi 82.16 133.66 126.91 0.63 0.54 0.57 0.56 0.62 0.64

Kanpur 89.24 93.78 89.85 0.05 0.01 0.66 0.65 0.77 0.74

O3

Ahmedabad 33.88 36.22 36.42 0.07 0.07 0.50 0.48 0.62 0.62

Chennai 24.96 38.30 38.67 0.53 0.55 0.62 0.62 0.60 0.60

Delhi 36.66 32.54 32.53 -0.11 -0.11 0.21 0.22 0.50 0.50

Kanpur 24.97 55.28 55.38 1.21 1.22 0.57 0.57 0.36 0.36

Table 2 Model performance evaluation across campaign sites for pCl–

observations.

Station Obs Mean Model Mean MB NMB IOA

Ahmedabad 0.25 0.51 0.26 1.02 0.18

Chennai 0.83 0.54 -0.36 -0.40 0.37

Delhi 5.91 2.68 -3.27 -0.54 0.76

Kanpur 17.65 8.93 -8.72 -0.49 0.62

Munnar 0.18 0.25 0.07 0.41 0.52

Mahabaleshwar 0.09 0.14 0.05 0.56 0.22

Table 3 Campaign details of different locations for the pCl– and ClNO2 observations

Location Species Campaign Period Reference
Ahmedabad (23.03° N, 72.58° E) pCl– September-October 2017 [4]
Kanpur (26.45° N, 80.35° E) pCl– January 2016 [5]
Delhi (28.61° N, 77.23° E) pCl– ,

ClNO2

February-March 2018,
January-February 2019

[2, 3]

Chennai (13.08° N, 80.27° E) pCl– January-February 2019 [3]
Mahabaleshwar (17.92° N, 73.65° E) pCl– January-February 2018 This Study
Munnar (10.09° N, 77.06° E) pCl– June-July 2021 This Study

8



Without pCl– : Yield: 2 HNO3 per N2O5

N2O5 +H2O −−→ 2HNO3 (SR13)

With pCl– : Yield: 1 HNO3 per N2O5

N2O5 + pCl− +H+ −−→ ClNO2 +HNO3 (SR14)

Without HCl emissions: More NH3 goes to SO4
2– formation:

2NH3(g) + H2SO4(g) −−→ (NH4)2SO4 (SR15)

With HCl emissions: HCl competes for available NH3 to form NH4Cl and limits SO4
2– neutralization:

NH3(g) + HCl(g) −−→ NH4Cl (SR16)
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