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Fig. 1 Indian region divided into six different regions based on different geographical and topographical features [1]
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Fig. 2 Model vs Observation of diel variation of CINO2 and pCl~ at New Delhi, India. Observation data of CINOz2 is taken
for January-February 2019 [2] and pCl~ is for February-March from [3].
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Fig. 3 Seasonal distribution of modelled pCl~ concentrations (ngm~3) from the Wo-AnthroHCI simulation, shown together
with wind patterns. The results highlight the influence of marine transport on coastal regions across all seasons.
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Fig. 4 Seasonal spatial distribution of NH3 (ppb) from the Wi-AnthroHCI simulation over the Indian subcontinent.
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Fig. 5 Spatial distribution of Annual average relative humidity (%) and the pCl™ partitioning ratio efficiency
(pCl™ /HCl+pCl™) for 2018.
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Fig. 6 Spatial distribution of APMj 5 for each season calculated as the difference between Wi-AnthroHCl and Wo-AnthroHCl
simulation
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Fig. 7 Spatial distribution of NH4t from Wi-AnthroHCl simulation and the absolute difference between Wi-AnthroHCl and
Wo-AnthroHCI simulations for each season
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Fig. 8 Spatial distribution of NO3~ from Wi-AnthroHC]I simulation and the absolute difference between Wi-AnthroHCI and
Wo-AnthroHCI simulations for each season
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Fig. 9 Spatial distribution of SO42~ from Wi-AnthroHCI simulation and the absolute difference between Wi-AnthroHCI and
Wo-AnthroHCI simulations for each season
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Fig. 10 Spatial distribution of AMDAS& O3 for each season of 2018.
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Fig. 11 Spatial distribution of CINO2 from Wi-AnthroHCl and Wo-AnthroHCI for each season along with the absolute
difference between both type of simulation.
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Fig. 12 Pie charts show percentage distribution of HCl, pCl~, and Total Cl (HCI1 4+ pCl~) annual emissions by source sectors.

Fig. 13 Seasonal distribution of modelled pCl~ concentrations (pg m~3) from the Wi-AnthroHCI simulation.
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Fig. 14 Global distribution of AOgz for the month of December (2018) taking as a difference of Wi-AnthroHCl and Wo-
AnthroHCl simulations. This figure indicate that the magnitude of tropospheric AO3 over India is comparatively smaller,
reflecting a weaker sensitivity to anthropogenic chlorine emissions.

Table 1 Model performance evaluation for PM2 5 and O3 in Wi-AnthroHCI and Wo-AnthroHCl model simulations.

Station Mean NMB T IOA
Obs Wi-HClI  Wo-HCI | Wi-HCl  Wo-HCI | Wi-HCI  Wo-HCI | Wi-HCI  Wo-HCl1
Ahmedabad | 66.56 63.96 63.32 -0.04 -0.05 0.28 0.29 0.57 0.57
PM, 5 Chennai 59.04 53.51 52.49 -0.09 -0.11 0.70 0.70 0.81 0.81
Delhi 82.16 133.66 126.91 0.63 0.54 0.57 0.56 0.62 0.64
Kanpur 89.24 93.78 89.85 0.05 0.01 0.66 0.65 0.77 0.74
Ahmedabad | 33.88 36.22 36.42 0.07 0.07 0.50 0.48 0.62 0.62
05 Chennai 24.96 38.30 38.67 0.53 0.55 0.62 0.62 0.60 0.60
Delhi 36.66 32.54 32.53 -0.11 -0.11 0.21 0.22 0.50 0.50
Kanpur 24.97 55.28 55.38 1.21 1.22 0.57 0.57 0.36 0.36

Table 2 Model performance evaluation across campaign sites for pCl~

observations.
Station Obs Mean Model Mean MB NMB IOA
Ahmedabad 0.25 0.51 0.26 1.02 0.18
Chennali 0.83 0.54 -0.36 -0.40 0.37
Delhi 5.91 2.68 -3.27 -0.54 0.76
Kanpur 17.65 8.93 -8.72 -0.49 0.62
Munnar 0.18 0.25 0.07 0.41 0.52
Mahabaleshwar 0.09 0.14 0.05 0.56 0.22

Table 3 Campaign details of different locations for the pCl~ and CINOgz observations

Location Species | Campaign Period Reference
Ahmedabad (23.03° N, 72.58° E) pCl~ September-October 2017 4

Kanpur (26.45° N, 80.35° E) pCl™ January 2016 5

Delhi (28.61° N, 77.23° E) pCl—, February-March 2018, 2, 3]

CINO2 January-February 2019

Chennai (13.08° N, 80.27° E) pCl~ January-February 2019 3]
Mahabaleshwar (17.92° N, 73.65° E) pCl™ January-February 2018 This Study
Munnar (10.09° N, 77.06° E) pCl June-July 2021 This Study




Without pCl™ : Yield: 2 HNOj3 per N5Oj

NsOgs + HbO —— 2HNO;3 (Sng)
With pCl™ : Yield: 1 HNOj3 per N5Os

N,O5 + pCl™ + H" — CINO, + HNOg4 (SR14)
Without HCI emissions: More NHj3 goes to S04%" formation:

2NH3(g) + HQSO4(g) e (NH4)QSO4 (SR15)

With HCI emissions: HCI competes for available NH3 to form NH4Cl and limits S04 neutralization:

NH;(g) + HCl(g) — NH,CI (SR16)
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