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Supplemental materials
Table S1
	Variables
	First-generation college student
(n = 1548)
	Continuing-generation college student
(n =778)
	F or χ2
	p-value

	Girls (%)
	45.2%
	42.8%
	5.22
	0.013

	Province (n (%))
	
	
	49.84
	<0.001

	Jiangsu 
	383 (43.0%) a
	55 (33.2%) b
	
	

	Beijing 
	1165 (28.9%) a
	723 (18.3%) b
	
	

	Age (M (SD))
	18.13(0.78)
	18.16(1.28)
	296.27
	<0.001

	SSS (M (SD))
	9.46(2.64)
	11.19(2.37)
	179.84
	<0.001

	PR (M (SD))
	47(10.72)
	48.1(10.94)
	105.35
	<0.001

	SS (M (SD))
	19.19(6.09)
	20.57(6.13)
	25.89
	<0.001


Sample Characteristics of First-generation and Continuing-generation college students(N = 2326)
Note. SSS = subjective socioeconomic status, PR = Psychological resilience, SS = Social Support;
Proportion with different subscripts were significantly different from each other within a raw (p < .05). 

Table S1 suggested that demographic differences exist between first-generation and continuing-generation college students, which aligns with the broader socioeconomic patterns in China. First, a higher proportion of girls were observed among first-generation students (45.2%) compared to continuing-generation students (42.8%), χ² = 5.22, p = 0.013. This pattern is consistent with national demographic trends, where rural populations show a more balanced gender ratio (1.03) compared to urban populations (1.08) according to the China Statistical Yearbook (2021). Second, significant regional distribution differences were found, χ² = 49.84, p < 0.001. First-generation students were overrepresented in Jiangsu province (43.0% vs. 33.2%), while continuing-generation students were more concentrated in Beijing (18.3% vs. 28.9%). This geographical pattern reflects the urban-rural composition of these regions, with Jiangsu having a larger rural population base. Third, although the mean age difference was statistically significant (F = 296.27, p < 0.001), the actual difference was minimal (first-generation: M = 18.13, SD = 0.78; continuing-generation: M = 18.16, SD = 1.28). This slight variation may be attributed to educational policy implementations in rural areas, where the Compulsory Education Law allows for delayed school entry and grade retention in regions with limited educational resources. Fourth, first-generation students reported significantly lower subjective socioeconomic status (SSS: M = 9.46, SD = 2.64) compared to continuing-generation students (M = 11.19, SD = 2.37), F = 179.84, p < 0.001. This disparity mirrors the substantial urban-rural income gap documented in the China Statistical Yearbook (2021), which shows urban residents' disposable income was approximately 2.7 times that of rural residents from 2017-2020. Finally, first-generation students demonstrated lower levels of both psychological resilience (PR: M = 47.0, SD = 10.72 vs. M = 48.1, SD = 10.94; F = 105.35, p < 0.001) and social support (SS: M = 19.19, SD = 6.09 vs. M = 20.57, SD = 6.13; F = 25.89, p < 0.001), consistent with typically reduced parental academic involvement and future orientation resources available in rural environments.


Alternate model analyses

[bookmark: OLE_LINK1]Although both latent class growth analysis (LCGA) and growth mixture modeling (GMM) are widely used longitudinal mixture techniques (Herle et al., 2020), LCGA was selected for the current study based on comparative model evaluation. While GMM allows for within-class variation, its increased complexity can lead to convergence problems and overfitting, particularly with smaller class sizes (Pennoni & Romeo, 2017; van der Nest et al., 2020).To empirically justify this choice, we compared LCGA against GMM specifications, including a GMM with only slope variances fixed to zero (GMM1). As shown in Table S5, the GMM1 solutions demonstrated several limitations: the 4- and 5-class solutions contained very small classes (each comprising only 4.39%-4.47% of the sample), falling below the recommended 5% threshold for class stability (Jung & Wickrama, 2008; Nylund et al., 2007). Additionally, entropy values for the 2- and 3-class solutions were suboptimal (.52 and .54, respectively), indicating inadequate class separation. A fully unrestricted GMM (GMM2) further failed to achieve convergence for the 3- to 5-class solutions.Although the 4-class GMM1 solution showed improved entropy (.67) and significant LMR-LRT p-values, its smallest class size (4.47%) remained below the recommended standard. By contrast, the more parsimonious LCGA approach provided conceptually clear and empirically stable class solutions that adequately balanced model fit with interpretability, making it more suitable for the data patterns observed in this study.

Table S2
Model fit statistics for GMM1 results (N = 2326)
	Classes
	AIC
	BIC
	Adj-BIC
	Entropy
	Adj-LMR-LRT (p value)
	SC N (%)

	2
	57397.142
	57512.18
	57448.64
	.52
	<.001
	961(41.32%)

	3
	57189.326
	57344.63
	57258.84
	.54
	<.001
	635(27.3%)

	4
	57093.266
	57288.83
	57180.81
	.67
	0.01
	104(4.47%)

	5
	57031.877
	57267.71
	57137.44
	.69
	0.02
	102(4.39%)


Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, Adj-BIC = sample-size adjusted Bayesian information criterion, Adj-LMR-LRT = Adjusted Lo-Mendell-Rubin Likelihood Test, SC = smallest class size. 
Table S3
Model fit statistics for GMM2 results (N = 2326)
	Classes
	AIC
	BIC
	Adj-BIC
	Entropy
	Adj-LMR-LRT (p value)
	SC N (%)

	2
	57429.66
	57515.94
	57468.28
	.53
	.005
	914(48.7%)

	3
	Failed to converge

	4
	Failed to converge

	5
	Failed to converge


Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, Adj-BIC = sample-size adjusted Bayesian information criterion, Adj-LMR-LRT = Adjusted Lo-Mendell-Rubin Likelihood Test, SC = smallest class size. 
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