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1. Supplementary note
Supplementary note 1 
Calculation method of reflection loss (SER) and absorption loss (SEA) 
For conductive shielding materials, the reflection loss calculated by the Fresnel equation is as follows: 
SER(dB) = 39.5 + 10 log
SEA(dB) = 8.7= 8.7t
Where σ and μ are the electrical conductivity and magnetic permeability of the EMI shielding material, f is the frequency of the incident EM waves, and t is the thickness of the EMI shielding material. 
Calculation method of reflection coefficient and absorption coefficient based on the scattering parameters (S11 and S21) 
R = |S11| 2 
T = |S21| 2 
A = 1 − R − T 























2. Supplementary Figures (1-17)
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Supplementary Fig. 1 | Fabrication and structural evolution of pollen microgels. a Raw pollen grains and corresponding SEM images showing their native spiny exine architecture with lipid on the outer layer. b Defatted pollen particles obtained by acetone/diethyl ether extraction, with SEM images revealing a cleaned but intact sporopollenin shell. c Pollen microgels produced by alkaline (KOH) treatment, with SEM images showing softened structures and partially collapsed wall morphology characteristic after drying.











[image: 单位]
Supplementary Fig. 2 | Time-resolved optical microscopy of pollen microgels during CNT loading. Optical microscope images showing the morphological evolution of pollen microgels stirred with CNTs over different durations. The dispersion contained 2 wt% alginate and 15 mg mL⁻¹ CNTs.
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Supplementary Fig. 3 | Long-term stability of the PAC ink. Photographs of the PAC ink after six months of storage, showing no visible precipitation or phase separation upon inversion.
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Supplementary Fig. 4 | Effect of alginate concentration on CNT loading in PAC inks. a Optical microscopy images of PAC microgels prepared with different ALG concentrations (0–3 wt%). b Measured CNT loading in PAC inks formulated with 20 mg mL⁻¹ CNT feed concentration and varying ALG concentrations. c UV–vis spectra of PAC dispersions as a function of ALG concentration, where increased absorption indicates enhanced CNT incorporation.   
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Supplementary Fig. 5 | Electrical conductivity of PAC films formulated with different alginate concentrations. Conductivity of PAC films prepared with 20 mg mL⁻¹ CNT feed concentration and varying ALG contents (0.5–3 wt%), showing enhanced electrical performance at intermediate ALG levels.
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Supplementary Fig. 6 | Effect of CNT concentration on the formation and properties of PAC inks. a Optical microscopy images of pollen microgels prepared with different CNT feed concentrations (0–25 mg mL⁻¹), showing progressive darkening and increasingly uniform CNT coating at higher CNT levels. b Measured CNT loading in PAC inks formulated with varying CNT feed concentrations and 2 wt% ALG. c UV–vis spectra of PAC dispersions as a function of CNT concentration, where elevated absorbance reflects increased CNT incorporation. d Electrical conductivity of PAC films prepared with different CNT concentrations (2 wt% ALG), highlighting optimal performance near 15 mg mL⁻¹ CNT feed concentration.
[image: 幻灯片7]
Supplementary Fig. 7 | Viscoelastic behavior of PAC inks and pollen microgels. a Frequency-dependent G′/G′′ ratios of PAC inks with different solid contents, showing a broad elastic-dominant regime (G′/G′′ > 1) relevant for extrusion printing. b Storage (G′) and loss (G′′) moduli of pollen microgel dispersions with varying solid contents as a function of oscillatory frequency, demonstrating concentration-dependent enhancement in viscoelasticity.
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Supplementary Fig. 8 | Cytocompatibility of PAC inks. Fluorescence microscopy images of L929 fibroblasts cultured for 1 day and 3 days with extracts from the control group (a), CNT dispersion (b), and PAC ink (c), showing predominantly viable cells (green). d Quantified live-cell densities after 1 and 3 days of incubation, indicating that PAC extracts maintain high cell viability compared with CNT-only extracts.
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Supplementary Fig. 9 | TEM characterization of pristine CNTs. a Low-magnification TEM image showing the morphology and bundled structure of raw multi-walled carbon nanotubes. b High-resolution TEM image revealing well-defined graphitic lattice fringes characteristic of multi-walled CNTs.
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Supplementary Fig. 10 | Effect of mixing sequence on CNT dispersion. a Optical microscopy image of the Pollen@CNT mixture after 24 h of stirring, showing incomplete CNT dispersion and large CNT aggregates without ALG. b Optical microscopy image of the LPollen@CNT@ALG mixture prepared by stirring low-concentration pollen with CNTs and ALG, resulting in insufficient CNT dispersion due to limited pollen–CNT collision events.
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Supplementary Fig. 11 | Effect of alginate concentration on PAC film formation. Photographs of PAC films prepared with different ALG concentrations (0–3 wt%), showing that increasing ALG content improves film integrity and prevents cracking during drying.
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Supplementary Fig. 12 | CNT coverage on pollen microgels at different CNT concentrations. SEM images of PAC microgels prepared with varying CNT feed concentrations (5–20 mg mL⁻¹, 2 wt% ALG), showing progressively denser and more uniform CNT networks on the pollen surface as CNT concentration increases.
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Supplementary Fig. 13 | Effect of substrate wettability on the drying morphology of PAC-15 films. a PAC-15 ink dried on a hydrophobic Petri dish (water contact angle≈99.9°) forms an intact, uniform film due to reduced adhesion between the ink and substrate. b PAC-15 ink dried on a hydrophilic Petri dish (water contact angle≈75.5°) exhibits severe cracking and nonuniform shrinkage, indicating strong ink–substrate interactions that hinder coherent film formation.
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Supplementary Fig. 14 | The electrical properties of PAC film. a I-V curve of the PAC film. b Normalized cyclic voltammogram (CV) of PAC film at 5 mV·s-1.
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Supplementary Fig. 15 | The SEM images show the (a) surface and (b) cross-sectional views of the conductive pathways printed on linen with the dye.
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Supplementary Fig. 16 | Microstructural characterization of screen-printed PAC inks on paper substrates. a Top-view SEM image of a screen-printed PAC micro-pillar array on paper. b Magnified SEM image of an individual PAC micro-pillar. c SEM image of the interconnecting region between adjacent micro-pillars, revealing continuous conductive pathways formed by a thin layer of PAC ink. d SEM image of the pristine paper substrate for comparison.
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Supplementary Fig. 17 | Photo of the sensor prepared by printing. a The front of the sensor. b The back of the sensor.






3. Supplementary Table
Table S1. Relationship between shielding effectiveness (dB) and shielding efficiency (%).

	Shielding effectiveness (dB)
	Shielding efficiency (%)

	0 
	0 

	10 
	90 

	20 
	99 

	30 
	99.9 

	40 
	99.99 

	50 
	99.999 

	60 
	99.9999 

	68.9 
	99.99998 









Table S2. Comparison of EMI shielding performance between 90% CNT/CTS aerogel and various shielding materials.
	Sample
	Density
(g ·cm-³)
	SE(dB)
	SSE (dB ·cm³g-¹)
	Ref.

	Cu-wrapped nanofiber membranes
	1.6
	53.2
	33.25
	1

	Ag-wrapped nanofiber membranes
	1.97
	55.1
	27.97
	

	Densified CNT film
	1.39
	51.2
	36.83
	2

	Densified CNT film
	1.39
	73.3
	52.73
	

	Densified CNT film
	1.39
	84.5
	60.79
	

	Densified CNT film
	1.39
	101.4
	72.95
	

	FC-ANF/CNT
	0.0403
	41.9
	1039.7
	3

	FC-ANF/CNT
	0.0403
	35.6
	883.37
	

	FC-ANF/CNT
	0.0403
	27.8
	689.83
	

	FC-ANF/CNT
	0.0403
	22.7
	563.28
	

	Graphene film
	1.49
	38.1
	25.57
	4

	Graphene film
	1.49
	44.5
	29.87
	

	Graphene film
	2.25
	27.8
	12.36
	

	Al foil
	2.7
	66
	24.4
	5

	Cu foil
	8.97
	70
	7.8
	

	Ti₃C₂Tx
	2.39
	68
	28.4
	

	Ti₃C₂Tx/SA
	2.32
	57
	24.6
	

	MXene film (Blade coating)
	4.3
	53.5
	12.44
	6

	d-Ti3C2Tx/CNFs
	1.14
	25
	22
	7

	d-Ti3C2Tx/CNFs
	1.625
	26
	16
	

	d-Ti3C2Tx/CNFs
	2
	24
	12
	

	CNT/epoxy composites
	0.3372
	14.331
	42.5
	8

	CNT/epoxy composites
	0.3374
	22.1672
	65.7
	

	GCF
	0.91
	48.9
	53.7
	9

	MCS film
	2.489
	58
	23.3
	10

	BF/ANF/CNT Composite Paper
	0.66393
	40.5
	61
	11

	PAC
	0.5597
	41.0776
	73.3922
	This work

	PAC
	0.5597
	40.3621
	72.1137
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