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1. Multi-source Data

This study utilized multi-source datasets encompassing remote sensing, hydrological, and
environmental disciplines. A detailed list of these data is available in Supplementary Table S1,

which provides comprehensive information on their sources and download links.

Supplementary Table 1 Multi-source data

Data Name Full Name Data Source Download Source
World Resources Institute
WRI GPPD Global Power Plant WRI https://datasets.wri.org
Database
Global Hydropower https://globalenergymonitor.org/project
GHPT GEM
Tracker s/global-hydropower-tracker/
GloHydroRes GloHydroRes Scientific Data www.nature.com/scientificdata
HR Imagery High-Resolution Imagery Google Earth https://earthengine.google.com/
Sentinel-2 Sentinel-2 ESA https://earthengine.google.com/
World Wildlife https://www.hydrosheds.org/products/
HydroSHEDS HydroSHEDS database
Fund US hydrosheds
World Wildlife https://www.hydrosheds.org/products/
HydroBASINS HydroBASINS database )
Fund US hydrobasins
World Database on
WDPA IUCN https://www.protectedplanet.net/en
Protected Areas
GEDI L4A Raster https://developers.google.com/earth-
NASA GEDI )
GEDI Aboveground Biomass o engine/datasets/catalog/LARSE GEDI
mission
Density GEDI0O4 A 002 MONTHLY
https://developers.google.com/flood-
Flood Hub Flood Hub Google .
forecasting
Google Runoff Reanalysis https://sites.research.google/gr/floodfor
GRRR Google

& Reforecast

ecasting/resources/

® WRI GPPD The World Resources Institute Global Power Plant Database is an extensive,
open-access repository that consolidates global power plant data to facilitate comparative
analysis and insights. The database comprises approximately 28,500 power plants across 164
countries, encompassing a wide range of energy sources, including coal, natural gas, wind,
solar, and hydroelectric power, which collectively represent a significant portion of the world's

electricity generation capacity. The global power plant dataset from the World Resources



Institute (WRI) includes information on nearly 7,000 operational hydropower plants.

Global Hydropower Tracker The Global Hydropower Tracker provides a comprehensive,
worldwide dataset that catalogs hydropower facilities globally. This tracker focuses on
hydroelectric power plants with a minimum capacity of 45 megawatts (MW), encompassing
all facilities meeting this threshold—including those in operational status, as well as announced,
pre-construction, and under-construction units. Additionally, it incorporates select data for
plants in non-active states, such as shelved, mothballed, retired, or canceled projects. It
encompasses data from 145 countries/areas globally, tracking a total of 5,617 hydropower
projects. Among these, there is an operating capacity of 1,216 GW, while the prospective

capacity reaches 1,113 GW.

GloHydroRes is a comprehensive, open-source global dataset developed to address the
fragmentation of existing hydropower and reservoir data, where hydropower plant datasets lack
reservoir attributes and reservoir datasets omit critical plant parameters, thereby hindering
analyses of climate change impacts and water-energy nexus dynamics. Constructed by
integrating multi-source open data, removing duplicates (prioritizing regional datasets), and
linking plants to reservoirs via criteria of <10 km distance and lower plant elevation (using 15
arc-second DEM), followed by manual verification, it encompasses 7,775 hydropower plants
across 128 countries with a total installed capacity of 1,096.3 GW, accounting for 79% (EIA,

2022) and 81% (IRENA, 2023) of global installed hydropower capacity.

Sentinel-2 The Sentinel-2 mission, developed under the European Space Agency’s Copernicus
program, comprises a dual-satellite system (Sentinel-2A and Sentinel-2B) designed for high-
resolution multispectral imaging of Earth’s surface. Operational since June 2015 for Sentinel-
2A and March 2017 for Sentinel-2B, these satellites follow synchronized sun-synchronous
orbits, enabling a combined five-day revisit interval at equatorial latitudes, with more frequent
coverage at higher latitudes due to orbital convergence. Each satellite is equipped with a Multi-
Spectral Instrument (MSI) capturing data across 13 spectral bands, spanning visible, near-
infrared (NIR), and short-wave infrared (SWIR) wavelengths, with spatial resolutions ranging
from 10 to 60 meters. This configuration supports detailed, frequent, and comprehensive
monitoring of global land and coastal environments.
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High-Resolution (HR) Imagery High-resolution (HR) imagery aggregated by Google Earth
(GE) is sourced from multiple satellite platforms, including WorldView-1, 2, 3, and 4, as well
as GeoEye-1, resulting in variations in spatial and temporal resolution. The frequency of
imagery updates is heterogeneous, driven by regional factors and data acquisition priorities.
Areas of high population density or strategic importance, such as urban centers, typically
experience more frequent updates, often on the order of several months or less in developed
nations. Conversely, remote or less prioritized regions, particularly in developing countries,
may experience update intervals that extend to a year or longer. Spatial resolution also varies
significantly, with urban and high-interest areas benefiting from finer resolution imagery, while
older or remote datasets often exhibit coarser resolution. Specifically, imagery at zoom level
19 corresponds to a spatial resolution of approximately 0.54 m, level 18 to 1.07 m, and level
17 to 2.15 m. These disparities underscore the influence of geographic and temporal factors on

the availability and quality of GE HR imagery.

HydroSHEDS database delivers a comprehensive suite of globally consistent hydrographic
datasets, designed to underpin hydrological, ecological, and environmental research across
multiple spatial scales—from local watershed studies to planetary water-resource assessments.
Primarily derived from high-resolution Shuttle Radar Topography Mission (SRTM) digital
elevation data, the database provides spatially contiguous information on critical hydrographic
features, including river networks, watershed boundaries, drainage directions, and flow
accumulation patterns, ensuring uniformity in data structure and quality across global
biogeographic realms. HydroSHEDS systematically delineates all rivers draining catchments
of 10 km2 or more or exhibiting a mean annual discharge of greater than 0.1 m?3/s, yielding a
detailed global river network that encompasses approximately 8.5 million individual river
reaches with a cumulative total length of approximately 35.9 million km. A defining strength
of the database lies in its standardized topological framework and explicit hierarchical
connectivity across river basins—a feature that eliminates spatial discontinuities common in
regional hydrographic datasets, enabling robust large-scale analyses. These analyses
encompass assessments of freshwater ecosystem integrity and river connectivity, as well as

evaluations of global water resource availability and vulnerability. By integrating rigorous data



processing protocols (including correction for topographic artifacts and validation against in
situ hydrographic measurements) with open-access distribution, HydroSHEDS has established
itself as a foundational resource for advancing interdisciplinary research on Earth’s freshwater
systems, supporting evidence-based conservation and water-management strategies at global

and regional scales.

Supplementary Fig. 1 | Global hydrography map from HydroSHEDS.

® HydroBASINS is a global dataset comprising vectorized polygons that represent sub-basin
boundaries, providing a detailed hierarchical subdivision of river basins across various spatial
scales, ranging from tens to millions of square kilometers. Derived from the HydroSHEDS
core layers at a 15-arc-second resolution, the product utilizes the 'Pfafstetter' coding system to
facilitate the analysis of catchment topology, including upstream and downstream connectivity.
At the finest scale of subdivision, it identifies sub-basins with a minimum upstream area of 100
km?, ensuring comprehensive representation of the global hydrological network. With
approximately 1 million polygons and an average size of 130.6 km? HydroBASINS covers
135 million km? of terrestrial surface, excluding Antarctica. The dataset primarily provides

geometric attributes, including sub-basin area and distances from headwaters to ocean outlets.

® GRRR The Google Runoff Reanalysis & Reforecast (GRRR) dataset represents a pioneering
advancement in global hydrological science, delivering comprehensive insights into

streamflow derived from Google's state-of-the-art hydrological modeling framework—an
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evolution of methodologies validated in prominent scientific literature. Spanning the entire
globe with daily temporal resolution, GRRR encompasses three pivotal components: It offers
streamflow reanalysis across more than 1 million hybas locations, chronicling hydrological
dynamics from 1980 to 2023. It features streamflow reforecasts for the same extensive network
of hybas locations between 2016 and 2022, with predictive lead times ranging from 0 to 7 days,
enabling a robust evaluation of the efficacy of short-term hydrological forecasting. It integrates
return period metrics derived from the reanalysis data, serving as critical benchmarks for

assessing flood severity thresholds.

Supplementary Fig. 2 | Global map of flood-prone areas from Flood Hub (https://developers.google.com/flood-forecasting).

® Flood Hub, developed by Google Research, represents a transformative advancement in global
riverine flood monitoring and early warning, leveraging state-of-the-art artificial intelligence
(AI) and multi-source data fusion to address the critical gap in flood preparedness across data-
scarce regions. This platform delivers actionable flood forecasts and hydrological insights for
over 460 million people in more than 80 countries, with a particular focus on enhancing
resilience in regions historically underserved by traditional hydrological monitoring networks.
The platform provides multi-tiered flood intelligence: (1) 7-day ahead streamflow forecasts
with daily resolution, achieving a 35% improvement in predictive skill (assessed via Nash—

Sutcliffe efficiency) in 2025 compared to prior model iterations; (2) dynamic inundation maps



for select basins, visualizing spatially explicit flood extents; and (3) return period-based
severity thresholds, derived from historical reanalysis datasets (e.g., GRRR), to contextualize
flood magnitudes. These outputs are updated daily, ensuring timeliness for emergency response

and long-term risk assessment.

® WDPA The World Database on Protected Areas represents the most comprehensive global
repository of information on terrestrial and marine protected areas to date, compiled and
maintained by the UN Environment Programme World Conservation Monitoring Centre
(UNEP-WCMC) in collaboration with the World Commission on Protected Areas (WCPA) of
the IUCN. As of its January 2025 update, the WDPA encompasses 305,195 total records,
including 303,312 protected areas, spanning 244 countries and territories (with spatial data
composed of 293,259 polygons and 11,936 points) and provides standardized spatial and
attribute data essential for tracking global progress in biodiversity conservation. Notably, the
WDPA is updated monthly with submissions from governments, non-governmental
organizations, landowners, and communities to ensure data timeliness; it also synergizes with
complementary databases, such as the World Database on Other Effective Area-Based
Conservation Measures (WDOECM) and the Global Database on Protected Area Management

Effectiveness (GD-PAME), to deliver a holistic perspective on conservation efforts.

Supplementary Fig. 3 | The 303,312 protected areas defined by the IUCN.

® GEDI L4A Raster Aboveground Biomass Density This dataset includes predictions of



aboveground biomass density (AGBD; in Mg/ha) and corresponding standard error estimates
for each geolocated laser footprint, derived from Global Ecosystem Dynamics Investigation
(GEDI) Level 4A (L4A) Version 2. Sub-orbits organize the data granules. Height metrics
obtained from simulated waveforms, calibrated with field-based AGBD measurements across
multiple regions and plant functional types (PFTs)—including deciduous broadleaf, evergreen
broadleaf, evergreen needleleaf, deciduous needleleaf trees, and a composite category of
grasslands, shrubs, and woodlands—were compiled to create the calibration dataset.
Additionally, the GEDIO2 A Version 2 algorithm settings for evergreen broadleaf trees in
South America have been adjusted to minimize false positive errors caused by incorrectly

selecting waveform modes above ground elevation as the lowest mode.



2. Comparison with the Existing Hydropower Plant Inventories

2.1 Comparison of GloHydro with existing hydropower plant inventories

The results from GloHydro were compared against existing public inventories. As presented in
Supplementary Fig. 4, which compares the number and spatial distribution of records, 55.7% of
the plants in GloHydro were not reported in the existing public hydropower inventories.
Supplementary Fig. 7 presents a comparison of the global hydropower installed capacity as

reported by different stockpiles.

a Global Hydropower Tracker b GloHydroRes

GloHydro (ours)

Supplementary Fig. 4 | Comparison of GloHydro with existing hydropower plant inventories.



We manually verified all locations in the existing public inventories (WRI GPPD, GHPT, and
GloHydroRes). We found that a significant proportion of sites were erroneous, likely due to the
inclusion of planned projects or compilation errors, despite these inventories reportedly involving
manual checks. Some examples of incorrect locations are shown in Supplementary Fig. S.
Consequently, the validated hydropower locations plotted in Figure 1 in the main text
represent a curated set of correct sites, integrated through a rigorous process of manual

selection from three public inventories.

Supplementary Fig. 5 | Examples of incorrect locations in the existing public inventories.
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Supplementary Fig. 6 | The number of hydropower plants on each continent in GloHydro.
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Supplementary Fig. 7 | Comparison of installed capacity across hydropower plant inventories.

2.2 Hydropower plant types and their remote sensing imagery

® Storage Hydropower Plants (STO) Storage hydropower plants are characterized by the use
of large reservoirs to store water. These plants typically operate by releasing water from the
reservoir through turbines to generate electricity when demand is high. The ability to store
water during periods of low demand and release it during peak demand offers flexibility in grid
management. Additionally, storage hydropower plants are capable of providing a stable and

reliable source of power, making them a crucial component in many national energy systems.
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Pumped Storage Hydropower Plants (PS) Pumped storage hydropower plants (PS) function
as a form of grid-scale energy storage, utilizing two reservoirs at different elevations. During
periods of low energy demand, excess electricity is used to pump water from the lower
reservoir to the upper one, storing potential energy. During periods of high energy demand,
water is released from the upper reservoir to generate electricity as it flows back down through
turbines. This cycle allows pumped storage plants to provide rapid-response power,
contributing to grid stability by balancing fluctuations in demand and supply. Although they
are considered a form of renewable energy, the environmental impacts of pumped storage,
including habitat disruption and concerns about water quality, remain areas of focus for

ecological assessments.

Run-of-River Hydropower Plants (ROR) Run-of-river hydropower plants (ROR) operate
without the need for large reservoirs, instead harnessing the natural flow of rivers or streams
to generate electricity. Water is diverted from the river to flow through turbines, typically with
minimal alteration to the river’s natural course. This type of hydropower plant is often
considered more environmentally friendly than storage or pumped storage plants, as it avoids
the large-scale land inundation and ecosystem disruption associated with reservoirs. However,
the efficiency and capacity of run-of-river plants are generally lower than those of storage
plants due to the variable nature of river flow, which depends on seasonal and climatic factors.
Despite this, ROR plants contribute to sustainable energy generation, particularly in regions

with suitable river systems.
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Supplementary Fig. 8 | Hydropower plant types and their remote sensing imagery. a, Storage Hydropower Plants. b, Pumped Storage

Hydropower Plants. ¢, Run-of-River Hydropower Plants.
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3. Hydropower Clusters and Transboundary Developments

By leveraging the precise locations of hydropower plants from GloHydro and global river network
data from HydroSHEDS and HydroBASINS, we identified clustered hydropower developments
worldwide. This analysis is crucial for identifying global trends in hydropower clustering and
transboundary development, as illustrated in Supplementary Fig. 9, which outlines the methodology

used to define and analyze these clusters.

Hydropower Stations on Main_River_20499555.0
(Main River ID: 20¢99555 0, Total: 12)
BT Hydropower Stations on Main_River_20532766.0
e esen (Main River ID: 20532766.0, Total: 11)

(gt

Hydropower Stations on Main_River_20569014.0
Hydropower Stations on Main_River_20528919.0 (Main River ID: 20569014.0, Total: 12)
(Main River ID: 20528979.0, Total: 5)

® Hrcoomer sucon

e

Hydropower Stations on Main_River_20536382.0 Hydropower Stations on Main_River_20575882.0
(Main River ID: 20536382.0, Total: 5) v :’Mavn River ID: 20575‘352,0. Total: 7)

Supplementary Fig. 9 | Clustering development of hydropower plants across river basins.
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Supplementary Fig. 10 displays a cluster of hydropower plants in Europe, along with their
corresponding remote sensing imagery. These facilities are distributed along a river and are situated

near populated towns, serving as a vital energy source for these communities.

Supplementary Fig. 10 | A cluster of hydropower plants in Europe.

As listed in Supplementary Table 2, international organizations have played a crucial role in
promoting transboundary hydropower development through mechanisms such as interstate

coordination, equitable benefit-sharing, and the formulation of supportive policies.

Supplementary Table 2: International organizations for transboundary hydropower

Name Data Source Download Source
HYDROPOWER EUROPE European Union https://hydropower-europe.eu/
UN-Water United Nations https://www.unwater.org/
Low Impact Hydropower Institute LIHI https://lowimpacthydro.org/
International Hydropower Association THA https://www.hydropower.org/
Mekong River Commission MRC https://www.mrcmekong.org/
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4. Global Coupling of Hydropower Plants and Protected Areas

4.1 Hydropower distribution and population density

The statistical analysis reveals a distinct relationship between global hydropower distribution and
population density. As shown in Supplementary Fig. 11, 77.98% of global hydropower plants are
located in regions with a population density below 100, whereas only 2.04% are situated in densely

populated areas with a population density of more than 1,000 people per square kilometer.
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Supplementary Fig. 11 | Global hydropower plant distribution in relation to population density.

4.2 Aboveground biomass density processing

The workflow of Supplementary Fig. 12 was designed to generate annual GEDI-based biomass
products for the spatial neighborhood surrounding each hydropower plant. For every plant, its
geographic coordinates and unique identifier were first extracted, and a circular buffer with a 5-km
radius was delineated to define the analysis area. The procedure was repeated for each year from

2019 to 2024, with annual start and end dates initialized to constrain data filtering.
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For each hydropower plant and year, the GEDI Level 4A monthly product was queried and
restricted to both the corresponding temporal window and the buffered spatial extent. To ensure the
quality and reliability of canopy biomass estimates, three sequential filtering steps were applied: (1)
a quality mask retaining only observations flagged as valid, (2) an uncertainty mask excluding
samples with relative biomass error (agbd se/agbd) greater than 0.2, and (3) a terrain-based mask
removing observations located on slopes exceeding 30°, with slope derived from the COPERNICUS
GLO-30 digital elevation model. The filtered GEDI shots were subsequently mosaicked to produce

a continuous annual AGBD layer while preserving the native projection.

The resulting GEDI mosaic was resampled using bilinear interpolation, aggregated using a
mean reducer with a pre-defined maximum-pixel limit, and reprojected to a uniform spatial
resolution of 100 m. The final processed biomass layer for each hydropower plant and year was
exported to Google Drive as a GeoTIFF in EPSG:4326 geographic coordinates. This complete

workflow was executed iteratively across all hydropower plants and all years in the analysis period.

Start Read point Buffer geometry Loop years Set startDate
(ID & geometry) (5000 m) 2019-2024 & endDate
J

Load GEDI
+ Monthly product
- Filter date
« Filter buffer

Export GeoTIFF
« ID_Stacked_Year
« EPSG:4326
* 100 m scale

Stack GEDI only
« Bilinear resample

« reduceResolution(mean)

« Reproject (100 m)

Apply masks
1. qualityMask
2. errorMask
3. slopeMask

Mosaic GEDI
Select AGBD
Set projection

Supplementary Fig. 12 | Workflow for Annual GEDI-Based Biomass Processing Around Hydropower Plants.

For each hydropower plant, we performed a multi-year analysis of aboveground biomass (AGB)
within its 5-km buffer zone using annual AGBD raster layers exported from Google Earth Engine.
The workflow first scanned all files in the dataset directory. It automatically grouped them by
hydropower plant identifier and year extracted from the filenames, thereby reconstructing a
complete biomass time series for each plant from 2019 to 2024. For every annual raster, the biomass
band was extracted, and invalid or missing pixels were removed. To convert pixel-level biomass
density (Mg ha™) to total biomass (Mg), the geographic area of each pixel was calculated from the
raster’s affine transformation; when such metadata were missing or unreliable, a fallback pixel size
of 100 m——consistent with the export resolution—was applied to ensure internal consistency across
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years. The total biomass for each plant-year combination was then calculated by summing all valid
pixel values, multiplied by the corresponding pixel area in hectares. To characterize interannual
variations, the annual total biomass values were plotted as a time series, with each year labeled to
facilitate visual assessment of increases, declines, or fluctuations. This automated and plant-
centered workflow offers a reproducible and internally consistent approach for quantifying multi-

year biomass dynamics in the landscapes surrounding hydropower plants.
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Supplementary Fig. 13 | Biomass trends within a 5-kilometre radius of hydropower plants. The red colour indicates the operational

period of the hydroelectric power plant.

As shown in Supplementary Fig. 13, aboveground biomass within a 5-km radius of the
hydropower plant exhibited a noticeable decline during the initial period following construction.
This pattern is consistent with previous findings that infrastructure development can impose short-
term disturbances on surrounding ecosystems, potentially through the removal of vegetation, land
modification related to construction, or adjustments to local hydrological regimes. However, this
decline does not appear to be persistent. In the case of GHR2022, biomass levels began to increase
again in 2023, suggesting a degree of ecological recovery after the early-stage disturbance. Such
recovery may reflect a combination of factors, including the regrowth of natural vegetation, the
inherent resilience of the local ecosystem, and possible mitigation or management actions
implemented during the operational phase—such as riparian restoration, reduced human disturbance,
or improved soil and water conservation practices. It is essential to note that, although the timing of
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biomass changes aligns with the construction and operation phases of the hydropower plant, the
observed associations do not, in themselves, establish causal mechanisms; additional ecological
indicators or management records would be required to disentangle the underlying drivers fully.
Overall, Supplementary Fig. 13 illustrates a dynamic process in which the surrounding ecosystem
initially experiences disturbance but subsequently exhibits signs of recovery, highlighting potential
lagged ecological responses and the role of management interventions in modulating the

environmental impacts of hydropower development.

Supplementary Fig.14 presents a detailed, site-by-site tracking analysis, illustrating the
temporal trajectory of aboveground biomass density relative to the commissioning year of each
hydropower plant. While the comprehensive analysis is presented in the main text, this figure
displays the results for individual cases. It reveals that hydropower development consistently leads
to a marked reduction in biomass density; however, the subsequent recovery is highly heterogeneous
across sites. This variability underscores the ecological diversity of hydropower impacts globally,

which is influenced by local environmental conditions, construction practices, and regulatory

policies.
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Supplementary Fig. 14 | Impacts of hydropower plant construction on the temporal dynamics of aboveground biomass density.
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Notably, the impact of hydropower plants on aboveground biomass density is not necessarily
confined to the year of their completion. Because the construction of a hydropower plant typically
spans several years, substantial ecological disturbance can occur during this period. As shown in
Supplementary Fig. 14, declines in aboveground biomass density were already evident in the years
preceding the commissioning of hydropower plants. This observation motivated our analysis in the
main text, where we specifically tracked and examined changes in biomass density over the three

years preceding the completion of new hydropower projects.
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5. Runoff Alteration and Flood Risk

Google Runoff Reanalysis
& Reforecast (GRRR) Dataset

5.1 Runoff trend processing

[ xarary.open_zarr() ’

The runoff data used in this study were obtained from

Google’s global Runoff Reanalysis & Reforecast (GRRR) Reanalysis

Reforecast

. . . .. Return-period levels
dataset, which provides daily streamflow predictions for

more than one million HydroBasins watershed outlets : )
Runoff time series

for specified gauge._id

outlet
locations|

based on a state-of-the-art hydrologic modeling

framework (Supplementary Fig. 15). The dataset is

Supplementary Fig. 15 | Runoff extraction workflow.
distributed in cloud-optimized Zarr format and accessed
directly via the xarray.open_zarr() interface, allowing anonymous, on-demand retrieval of its three
primary components: (i) daily reanalysis streamflow (1980-2023), (ii) short-term reforecasts issued
between 20162022 with lead times of 0—7 days, and (iii) return-period streamflow thresholds
derived from the reanalysis. All datasets are indexed by a unique gauge id corresponding to the
outlet of each HydroBasins watershed, with reanalysis records organized along a daily time
dimension and reforecast data structured by issue_time and lead_time. After loading the dataset, the
notebook extracts the complete runoff time series for any specified gauge id and, optionally, links
it to approximate geographic coordinates using an auxiliary (unofficial) set of HydroBasins outlet
locations included in the appendix. This indexing structure and data-access pipeline enable efficient
retrieval of historical discharge, forecast trajectories, and severity thresholds for any watershed

globally, providing a coherent and scalable basis for hydrological time-series analysis, flood-risk

assessment, and broader environmental modeling.
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9. Generate HTML dashboard per plant 8. Build knowledge graph tables LEo '“"‘_’"::‘acw csv 6. Generate trend plots
- Embed trend plots — - nodes: plants & gauges gauge_*_daily.csv — - Monthly mean streamflow

- gauge_*_monthly.csv

- Embed summary table - edges: plant-gauge links (distance, flow) B el ear ey

- Yearly mean streamflow

Supplementary Fig. 16 | Global runoff extraction workflow.
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After accessing the GRRR runoff dataset, we developed an automated global pipeline
(Supplementary Fig. 16) to systematically extract hydrologic information for all hydropower
plants worldwide by linking each facility to its nearest HydroBasins outlet. For every plant location
(latitude, longitude), the workflow computes great-circle distances to all basin outlets using the
Haversine formula. It employs a multi-scale adaptive search strategy, starting with a 10 km radius
and progressively expanding the search radius (30, 50, 100, 200, 500 km) until at least one valid
gauge is identified. If no outlet is found within the predefined radii, the algorithm falls back to the
globally nearest gauge to ensure complete spatial coverage. Once the nearest gauge is identified, the
corresponding daily streamflow record is retrieved directly from the GRRR reanalysis dataset and
further aggregated into monthly and yearly mean discharge values, enabling multi-timescale
hydrological characterization. For each plant, the pipeline automatically generates visual
summaries—including monthly and annual streamflow trends—and exports structured tables that
report key hydrological metrics, such as daily means, aggregated totals, and long-term averages. To
facilitate knowledge-graph applications and large-scale network analysis, the system
simultaneously constructs node—edge files representing plants and their associated river gauges as
a relational graph. Collectively, this automated workflow enables high-throughput, globally
consistent extraction, aggregation, and visualization of river runoff information for hydropower-
relevant locations, providing a scalable and reproducible foundation for assessing hydrological

variability associated with energy infrastructure.
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Supplementary Fig. 17 | Hydropower Topology Visualization.

We visualize the global hydropower topology (Supplementary Fig. 17). The program loads
hydropower plant nodes and water-flow relationships from a knowledge graph dataset, generating
a global-scale topological map that illustrates both the spatial distribution and structural connectivity
within the hydropower system. The visualization is rendered on top of the ESRI World Imagery
satellite basemap, which provides high-resolution geographic context. All hydropower nodes are
imported and displayed using a MarkerCluster mechanism to ensure efficient interaction even when
visualizing a large number of spatial points worldwide. Each node is plotted according to its latitude
and longitude, and different icon styles are applied to distinguish between node types (e.g., power
plants versus reservoirs). For edge representation, the program identifies the nearest connection for
each node from among all potential water-transfer paths and visualizes only this closest edge. This
approach preserves the most representative hydrological linkage while avoiding excessive visual
clutter that would result from rendering all available edges. Each edge includes information such as
distance and flow magnitude, which is displayed through interactive tooltips. Finally, the program
automatically adjusts the map’s extent based on the geographic bounds of all nodes, ensuring that
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the resulting visualization fully encompasses the global hydropower network. The final topological
map is exported as an interactive HTML file, enabling dynamic exploration through a standard web
browser. This visualization tool provides an intuitive and effective means of examining hydropower
system structure, supporting analyses related to water-resource dispatching, flow pattern assessment,
and global hydropower network modeling. This visualization program is accessible online via

https://glohydro.cn.

5.2 Monthly runoff data of the global hydropower plant

Our study provides monthly runoff data (1980-2023) for rivers at all global hydropower plant
locations. This data not only underpins our analysis of long-term streamflow trends but also enables
the prediction of monthly power generation for each facility. The data are publicly accessible via

https://glohydro.cn, and Supplementary Fig. 18 displays some cases, clearly illustrating the

monthly runoff dynamics of the hydropower plants.
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Supplementary Fig. 18 | Cases of monthly runoff time series for hydropower plants (1980-2023).
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6. Models and Training Details

To overcome the limitations of conventional vision-based identification models that rely primarily
on single-modality visual cues, we present HydroVLM, an identification paradigm designed to
overcome the limitations inherent in conventional approaches that rely predominantly on single
visual features'. By harnessing the cross-modal comprehension and scene reasoning capabilities of
Vision-Language Models (VLMs)*?, we establish a novel recognition paradigm founded on image-
text associations. The training methodology employs Low-Rank Adaptation (LoRA), a technique
that enhances training efficiency by utilizing low-rank matrices* This approach involves freezing
the majority of parameters in the pre-trained model while updating only a small set of low-rank

adaptive parameters.

We fine-tuned the Qwen2.5-VL-32B>° base model with LoRA on a meticulously curated,
annotated dataset of 3,963 diverse hydropower samples, each comprising high-resolution remote-
sensing imagery that captures the full spatial extent of the facility together with structured textual
descriptions. Rather than relying solely on static annotations, we implemented an expert-in-
the-loop calibration workflow: the initially trained model was used to automatically label
additional imagery, and domain experts corrected and augmented these machine-generated
annotations. Expert corrections and the newly validated labels were incrementally incorporated into
subsequent LoRA fine-tuning rounds, with model performance tracked on a held-out validation set
to guide stopping and sampling decisions. Training and iterative fine-tuning were performed on 8
NVIDIA A100 GPUs; throughout this cyclical process HydroVLM framed hydropower feature
identification as an image—text association task, exploiting the cross-modal alignment and scene-
reasoning strengths of vision—language models while progressively reducing manual labeling effort

and improving predictive precision.

Given an input image Iand a set of candidate textual descriptors T = {Ty, T, ..., T}, the
visual encoder E,(-) and text encoder E;(-) of the underlying VLM project image and text into a

shared semantic space:

v=EW,t, = E(T)k=1,..K. (1)

25



The association strength between the image and each textual descriptor is computed using a

similarity function S(:,-), typically cosine similarity:
Sk = S(v’ tk) (2)

The predicted hydropower category Jis determined by selecting the descriptor with the highest

similarity score:
y = arg max s. 3)

This paradigm enables HydroVLM to utilize rich multimodal contextual cues rather than
relying on isolated visual features, providing improved robustness and interpretability for complex

remote sensing scenes.

Al Models Accuracy and Error Rate Comparison

100% - mmm Accuracy
89% Error Rate
80%
80% 1 74% T2%. 75%
£ 60%-
[]
8
[}
[-4
1S
5 a0%
w
Iy
8 20%-
£
3
v
v
&
0%-
10%
11%
20%1 20%
‘0
30% 26% 23% 25%
HydroVLM GPT-40 GPT-5 DeepSeek-V3 DeepSeek-R1
+ Tencent + Tencent

Hunyuan Turbo Hunyuan Turbo

Supplementary Fig. 19 | Comparison of HydroVLM and existing mainstream VLM models.

HydroVLM demonstrated robust performance metrics, achieving an accuracy of 89% and a
recall rate of 93% on our primary task of identifying hydropower facilities. To rigorously benchmark
HydroVLM's capability specifically for hydropower remote sensing image recognition, we
constructed a dedicated test dataset comprising diverse samples of hydropower facilities. This
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dedicated evaluation dataset shall consist of 254 meticulously curated samples, including 200
positive instances and 54 erroneous negative samples. Each sample features high-resolution remote
sensing imagery that captures the complete spatial extent of the facility. We evaluated HydroVLM

against several state-of-the-art generalist multimodal foundation models:

Supplementary Table 3: State-of-the-art generalist multimodal foundation models

Name Source Access
GPT-40 OpenAl https://chatgpt.com/
GPT-5 OpenAl https://chatgpt.com/

DeepSeek-V3 + Tencent Hunyuan Turbo ~ DeepSeek Al Team  https://yuanbao.tencent.com/
DeepSeek-R1 + Tencent Hunyuan Turbo ~ DeepSeek Al Team  https://yuanbao.tencent.com/

Recognizing that DeepSeek-V3” and DeepSeek-R 1% lack native image understanding’, it was
integrated with Tencent Hunyuan Turbo's visual capabilities via a joint inference approach

(https://yuanbao.tencent.com/ for technical details).

Supplementary Fig. 19 presents the comparative performance of the VLM models'’. Notably,
the advanced reasoning capabilities of DeepSeek-R1'" did not confer a discernible advantage in
identifying hydropower targets. This finding implies that for specialized domains, enhancing
generic reasoning prowess alone is insufficient; instead, VLM training must be strategically tailored,
prioritizing the integration of domain-specific knowledge and architectural suitability over mere
increases in reasoning complexity. To elucidate the underlying mechanisms of VLMs and to explore
more advanced approaches, additional experiments would be required. In this study, however, our
primary goal was to develop a practical, automated alternative to manual mapping, assisting us in

the top-down identification of hydropower plants.
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Identifying newly-built hydropower plants from 2015-2025
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Supplementary Fig. 20 | Overall multimodal AT framework of HydroVLM.

As illustrated in Supplementary Fig. 20, the HydroVLM establishes an end-to-end workflow
for hydropower station identification. The system consists of four main stages: (1) precise
localization of hydropower plants from remote sensing imagery; (2) identification of their
construction year; (3) name matching based on geospatial coordinates; and (4) retrieval of installed
capacity information. This comprehensive pipeline enables automated and accurate recognition of

hydropower plants at a global scale.

The HydroVLM analyzed high-resolution remote sensing imagery systematically
retrieved along more than 8 million rivers worldwide, using pre-tiled 300 m x 300 m image
patches. From these global river-aligned image collections, the model identified 14,545 candidate
hydropower sites, of which 12,640 were validated as existing hydropower plants following expert
review. This automated discovery pipeline marks a major advance over conventional manual
mapping efforts that typically require months to years of intensive survey work, providing efficiency
gains sufficient to support the global scale of our study. Furthermore, this framework establishes a
scalable foundation for future extensions of VLM-based methodologies to identify and monitor

other forms of energy infrastructure with comparable geographic breadth and precision.
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7. Accessing the GloHydro Online System

Global-scale analyses of hydropower and the Water—Energy—Food (WEF) nexus, including policy
and environmental assessments, constitute a vast and complex research domain. This study
introduces a top-down remote sensing tracking approach for global hydropower plants and provides
an inventory of these plants. We analyze the characteristics of hydropower plants in terms of their
distribution, ecological impacts, and runoff patterns. Furthermore, we recognize that this inventory
can play a crucial role in urban planning, sustainable development, and various other domains. To
this end, we have developed an open-access platform for Glohydro, which can be accessed online

at https://glohydro.cn. This platform displays a global map of hydropower plant distribution

(Supplementary Fig. 21) and offers monthly runoff data for each plant from 1980 to 2023

(Supplementary Fig. 22).

GIOHydro GloHydro Dataset Monitoring Dashboard n ¥

GloHydro Dataset
GloHydro is the first globally comprehensive, spatially explicit inventory of hydropower facilities identified using remote sensing, encompassing

12,640 hydropower plants across 8,330,487 rivers worldwide (each exceeding 0.5 kilometers in length)

This dataset provides high-resolution, spatially explicit coverage of global hydropower infrastructure, enabling analysis, planning, and climate-aligned decision-
making.

Supplementary Fig. 21 | GloHydro online system.
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Supplementary Fig. 22 | Global Hydropower plants dashboard.
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