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1. Multi-source Data 

 

This study utilized multi-source datasets encompassing remote sensing, hydrological, and 

environmental disciplines. A detailed list of these data is available in Supplementary Table S1, 

which provides comprehensive information on their sources and download links. 

 

Supplementary Table 1 Multi-source data 
 

Data Name Full Name Data Source Download Source 

WRI GPPD 

World Resources Institute 

Global Power Plant 

Database  

WRI https://datasets.wri.org 

GHPT 
Global Hydropower 

Tracker 
GEM 

https://globalenergymonitor.org/project

s/global-hydropower-tracker/ 

GloHydroRes GloHydroRes Scientific Data www.nature.com/scientificdata 

 HR Imagery High-Resolution Imagery Google Earth https://earthengine.google.com/ 

Sentinel-2  Sentinel-2  ESA https://earthengine.google.com/ 

HydroSHEDS HydroSHEDS database 
World Wildlife 

Fund US 

https://www.hydrosheds.org/products/ 

hydrosheds 

HydroBASINS HydroBASINS database 
World Wildlife 

Fund US 

https://www.hydrosheds.org/products/ 

hydrobasins 

WDPA 
World Database on 

Protected Areas 
IUCN https://www.protectedplanet.net/en 

GEDI 

GEDI L4A Raster 

Aboveground Biomass 

Density 

 NASA GEDI 

mission 

https://developers.google.com/earth-

engine/datasets/catalog/LARSE_GEDI_

GEDI04_A_002_MONTHLY 

Flood Hub Flood Hub Google 
https://developers.google.com/flood-

forecasting 

GRRR 
Google Runoff Reanalysis 

& Reforecast 
Google 

https://sites.research.google/gr/floodfor

ecasting/resources/ 

 
 

l WRI GPPD The World Resources Institute Global Power Plant Database is an extensive, 

open-access repository that consolidates global power plant data to facilitate comparative 

analysis and insights. The database comprises approximately 28,500 power plants across 164 

countries, encompassing a wide range of energy sources, including coal, natural gas, wind, 

solar, and hydroelectric power, which collectively represent a significant portion of the world's 

electricity generation capacity. The global power plant dataset from the World Resources 
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Institute (WRI) includes information on nearly 7,000 operational hydropower plants. 

l Global Hydropower Tracker The Global Hydropower Tracker provides a comprehensive, 

worldwide dataset that catalogs hydropower facilities globally. This tracker focuses on 

hydroelectric power plants with a minimum capacity of 45 megawatts (MW), encompassing 

all facilities meeting this threshold—including those in operational status, as well as announced, 

pre-construction, and under-construction units. Additionally, it incorporates select data for 

plants in non-active states, such as shelved, mothballed, retired, or canceled projects. It 

encompasses data from 145 countries/areas globally, tracking a total of 5,617 hydropower 

projects. Among these, there is an operating capacity of 1,216 GW, while the prospective 

capacity reaches 1,113 GW.  

l GloHydroRes is a comprehensive, open-source global dataset developed to address the 

fragmentation of existing hydropower and reservoir data, where hydropower plant datasets lack 

reservoir attributes and reservoir datasets omit critical plant parameters, thereby hindering 

analyses of climate change impacts and water-energy nexus dynamics. Constructed by 

integrating multi-source open data, removing duplicates (prioritizing regional datasets), and 

linking plants to reservoirs via criteria of <10 km distance and lower plant elevation (using 15 

arc-second DEM), followed by manual verification, it encompasses 7,775 hydropower plants 

across 128 countries with a total installed capacity of 1,096.3 GW, accounting for 79% (EIA, 

2022) and 81% (IRENA, 2023) of global installed hydropower capacity.  

l Sentinel-2 The Sentinel-2 mission, developed under the European Space Agency’s Copernicus 

program, comprises a dual-satellite system (Sentinel-2A and Sentinel-2B) designed for high-

resolution multispectral imaging of Earth’s surface. Operational since June 2015 for Sentinel-

2A and March 2017 for Sentinel-2B, these satellites follow synchronized sun-synchronous 

orbits, enabling a combined five-day revisit interval at equatorial latitudes, with more frequent 

coverage at higher latitudes due to orbital convergence. Each satellite is equipped with a Multi-

Spectral Instrument (MSI) capturing data across 13 spectral bands, spanning visible, near-

infrared (NIR), and short-wave infrared (SWIR) wavelengths, with spatial resolutions ranging 

from 10 to 60 meters. This configuration supports detailed, frequent, and comprehensive 

monitoring of global land and coastal environments. 
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l High-Resolution (HR) Imagery High-resolution (HR) imagery aggregated by Google Earth 

(GE) is sourced from multiple satellite platforms, including WorldView-1, 2, 3, and 4, as well 

as GeoEye-1, resulting in variations in spatial and temporal resolution. The frequency of 

imagery updates is heterogeneous, driven by regional factors and data acquisition priorities. 

Areas of high population density or strategic importance, such as urban centers, typically 

experience more frequent updates, often on the order of several months or less in developed 

nations. Conversely, remote or less prioritized regions, particularly in developing countries, 

may experience update intervals that extend to a year or longer. Spatial resolution also varies 

significantly, with urban and high-interest areas benefiting from finer resolution imagery, while 

older or remote datasets often exhibit coarser resolution. Specifically, imagery at zoom level 

19 corresponds to a spatial resolution of approximately 0.54 m, level 18 to 1.07 m, and level 

17 to 2.15 m. These disparities underscore the influence of geographic and temporal factors on 

the availability and quality of GE HR imagery. 

l HydroSHEDS database delivers a comprehensive suite of globally consistent hydrographic 

datasets, designed to underpin hydrological, ecological, and environmental research across 

multiple spatial scales—from local watershed studies to planetary water-resource assessments. 

Primarily derived from high-resolution Shuttle Radar Topography Mission (SRTM) digital 

elevation data, the database provides spatially contiguous information on critical hydrographic 

features, including river networks, watershed boundaries, drainage directions, and flow 

accumulation patterns, ensuring uniformity in data structure and quality across global 

biogeographic realms. HydroSHEDS systematically delineates all rivers draining catchments 

of 10 km² or more or exhibiting a mean annual discharge of greater than 0.1 m³/s, yielding a 

detailed global river network that encompasses approximately 8.5 million individual river 

reaches with a cumulative total length of approximately 35.9 million km. A defining strength 

of the database lies in its standardized topological framework and explicit hierarchical 

connectivity across river basins—a feature that eliminates spatial discontinuities common in 

regional hydrographic datasets, enabling robust large-scale analyses. These analyses 

encompass assessments of freshwater ecosystem integrity and river connectivity, as well as 

evaluations of global water resource availability and vulnerability. By integrating rigorous data 
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processing protocols (including correction for topographic artifacts and validation against in 

situ hydrographic measurements) with open-access distribution, HydroSHEDS has established 

itself as a foundational resource for advancing interdisciplinary research on Earth’s freshwater 

systems, supporting evidence-based conservation and water-management strategies at global 

and regional scales. 

 

 

Supplementary Fig. 1 | Global hydrography map from HydroSHEDS. 

 

l HydroBASINS is a global dataset comprising vectorized polygons that represent sub-basin 

boundaries, providing a detailed hierarchical subdivision of river basins across various spatial 

scales, ranging from tens to millions of square kilometers. Derived from the HydroSHEDS 

core layers at a 15-arc-second resolution, the product utilizes the 'Pfafstetter' coding system to 

facilitate the analysis of catchment topology, including upstream and downstream connectivity. 

At the finest scale of subdivision, it identifies sub-basins with a minimum upstream area of 100 

km², ensuring comprehensive representation of the global hydrological network. With 

approximately 1 million polygons and an average size of 130.6 km², HydroBASINS covers 

135 million km² of terrestrial surface, excluding Antarctica. The dataset primarily provides 

geometric attributes, including sub-basin area and distances from headwaters to ocean outlets. 

l GRRR The Google Runoff Reanalysis & Reforecast (GRRR) dataset represents a pioneering 

advancement in global hydrological science, delivering comprehensive insights into 

streamflow derived from Google ’s state-of-the-art hydrological modeling framework—an 
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evolution of methodologies validated in prominent scientific literature. Spanning the entire 

globe with daily temporal resolution, GRRR encompasses three pivotal components: It offers 

streamflow reanalysis across more than 1 million hybas locations, chronicling hydrological 

dynamics from 1980 to 2023. It features streamflow reforecasts for the same extensive network 

of hybas locations between 2016 and 2022, with predictive lead times ranging from 0 to 7 days, 

enabling a robust evaluation of the efficacy of short-term hydrological forecasting. It integrates 

return period metrics derived from the reanalysis data, serving as critical benchmarks for 

assessing flood severity thresholds.  

 

 

Supplementary Fig. 2 | Global map of flood-prone areas from Flood Hub (https://developers.google.com/flood-forecasting). 

 

l Flood Hub, developed by Google Research, represents a transformative advancement in global 

riverine flood monitoring and early warning, leveraging state-of-the-art artificial intelligence 

(AI) and multi-source data fusion to address the critical gap in flood preparedness across data-

scarce regions. This platform delivers actionable flood forecasts and hydrological insights for 

over 460 million people in more than 80 countries, with a particular focus on enhancing 

resilience in regions historically underserved by traditional hydrological monitoring networks. 

The platform provides multi-tiered flood intelligence: (1) 7-day ahead streamflow forecasts 

with daily resolution, achieving a 35% improvement in predictive skill (assessed via Nash–

Sutcliffe efficiency) in 2025 compared to prior model iterations; (2) dynamic inundation maps 
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for select basins, visualizing spatially explicit flood extents; and (3) return period-based 

severity thresholds, derived from historical reanalysis datasets (e.g., GRRR), to contextualize 

flood magnitudes. These outputs are updated daily, ensuring timeliness for emergency response 

and long-term risk assessment. 

l WDPA The World Database on Protected Areas represents the most comprehensive global 

repository of information on terrestrial and marine protected areas to date, compiled and 

maintained by the UN Environment Programme World Conservation Monitoring Centre 

(UNEP–WCMC) in collaboration with the World Commission on Protected Areas (WCPA) of 

the IUCN. As of its January 2025 update, the WDPA encompasses 305,195 total records, 

including 303,312 protected areas, spanning 244 countries and territories (with spatial data 

composed of 293,259 polygons and 11,936 points) and provides standardized spatial and 

attribute data essential for tracking global progress in biodiversity conservation. Notably, the 

WDPA is updated monthly with submissions from governments, non-governmental 

organizations, landowners, and communities to ensure data timeliness; it also synergizes with 

complementary databases, such as the World Database on Other Effective Area-Based 

Conservation Measures (WDOECM) and the Global Database on Protected Area Management 

Effectiveness (GD-PAME), to deliver a holistic perspective on conservation efforts. 

 

Supplementary Fig. 3 | The 303,312 protected areas defined by the IUCN. 

 

l GEDI L4A Raster Aboveground Biomass Density This dataset includes predictions of 
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aboveground biomass density (AGBD; in Mg/ha) and corresponding standard error estimates 

for each geolocated laser footprint, derived from Global Ecosystem Dynamics Investigation 

(GEDI) Level 4A (L4A) Version 2. Sub-orbits organize the data granules. Height metrics 

obtained from simulated waveforms, calibrated with field-based AGBD measurements across 

multiple regions and plant functional types (PFTs)—including deciduous broadleaf, evergreen 

broadleaf, evergreen needleleaf, deciduous needleleaf trees, and a composite category of 

grasslands, shrubs, and woodlands—were compiled to create the calibration dataset. 

Additionally, the GEDI02_A Version 2 algorithm settings for evergreen broadleaf trees in 

South America have been adjusted to minimize false positive errors caused by incorrectly 

selecting waveform modes above ground elevation as the lowest mode. 
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2. Comparison with the Existing Hydropower Plant Inventories 

2.1 Comparison of GloHydro with existing hydropower plant inventories 

The results from GloHydro were compared against existing public inventories. As presented in 

Supplementary Fig. 4, which compares the number and spatial distribution of records, 55.7% of 

the plants in GloHydro were not reported in the existing public hydropower inventories. 

Supplementary Fig. 7 presents a comparison of the global hydropower installed capacity as 

reported by different stockpiles. 

 

 

Supplementary Fig. 4 | Comparison of GloHydro with existing hydropower plant inventories. 
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We manually verified all locations in the existing public inventories (WRI GPPD, GHPT, and 

GloHydroRes). We found that a significant proportion of sites were erroneous, likely due to the 

inclusion of planned projects or compilation errors, despite these inventories reportedly involving 

manual checks. Some examples of incorrect locations are shown in Supplementary Fig. 5. 

Consequently, the validated hydropower locations plotted in Figure 1 in the main text 

represent a curated set of correct sites, integrated through a rigorous process of manual 

selection from three public inventories. 

 

 

Supplementary Fig. 5 | Examples of incorrect locations in the existing public inventories. 
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Supplementary Fig. 6 | The number of hydropower plants on each continent in GloHydro. 

 

 

Supplementary Fig. 7 | Comparison of installed capacity across hydropower plant inventories. 

 

2.2 Hydropower plant types and their remote sensing imagery 

l Storage Hydropower Plants (STO) Storage hydropower plants are characterized by the use 

of large reservoirs to store water. These plants typically operate by releasing water from the 

reservoir through turbines to generate electricity when demand is high. The ability to store 

water during periods of low demand and release it during peak demand offers flexibility in grid 

management. Additionally, storage hydropower plants are capable of providing a stable and 

reliable source of power, making them a crucial component in many national energy systems. 
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l Pumped Storage Hydropower Plants (PS) Pumped storage hydropower plants (PS) function 

as a form of grid-scale energy storage, utilizing two reservoirs at different elevations. During 

periods of low energy demand, excess electricity is used to pump water from the lower 

reservoir to the upper one, storing potential energy. During periods of high energy demand, 

water is released from the upper reservoir to generate electricity as it flows back down through 

turbines. This cycle allows pumped storage plants to provide rapid-response power, 

contributing to grid stability by balancing fluctuations in demand and supply. Although they 

are considered a form of renewable energy, the environmental impacts of pumped storage, 

including habitat disruption and concerns about water quality, remain areas of focus for 

ecological assessments. 

l Run-of-River Hydropower Plants (ROR) Run-of-river hydropower plants (ROR) operate 

without the need for large reservoirs, instead harnessing the natural flow of rivers or streams 

to generate electricity. Water is diverted from the river to flow through turbines, typically with 

minimal alteration to the river’s natural course. This type of hydropower plant is often 

considered more environmentally friendly than storage or pumped storage plants, as it avoids 

the large-scale land inundation and ecosystem disruption associated with reservoirs. However, 

the efficiency and capacity of run-of-river plants are generally lower than those of storage 

plants due to the variable nature of river flow, which depends on seasonal and climatic factors. 

Despite this, ROR plants contribute to sustainable energy generation, particularly in regions 

with suitable river systems. 
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Supplementary Fig. 8 | Hydropower plant types and their remote sensing imagery. a, Storage Hydropower Plants. b, Pumped Storage 

Hydropower Plants. c, Run-of-River Hydropower Plants.  
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3. Hydropower Clusters and Transboundary Developments 
 

By leveraging the precise locations of hydropower plants from GloHydro and global river network 

data from HydroSHEDS and HydroBASINS, we identified clustered hydropower developments 

worldwide. This analysis is crucial for identifying global trends in hydropower clustering and 

transboundary development, as illustrated in Supplementary Fig. 9, which outlines the methodology 

used to define and analyze these clusters. 

 

 
Supplementary Fig. 9 | Clustering development of hydropower plants across river basins. 
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Supplementary Fig. 10 displays a cluster of hydropower plants in Europe, along with their 

corresponding remote sensing imagery. These facilities are distributed along a river and are situated 

near populated towns, serving as a vital energy source for these communities. 

 

 

 

Supplementary Fig. 10 | A cluster of hydropower plants in Europe. 

 

 

As listed in Supplementary Table 2, international organizations have played a crucial role in 

promoting transboundary hydropower development through mechanisms such as interstate 

coordination, equitable benefit-sharing, and the formulation of supportive policies. 

 
Supplementary Table 2: International organizations for transboundary hydropower 

Name Data Source Download Source 

HYDROPOWER EUROPE European Union https://hydropower-europe.eu/ 

UN‑Water United Nations https://www.unwater.org/ 

Low Impact Hydropower Institute LIHI https://lowimpacthydro.org/ 

International Hydropower Association IHA https://www.hydropower.org/ 

Mekong River Commission MRC https://www.mrcmekong.org/ 
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4. Global Coupling of Hydropower Plants and Protected Areas 

4.1 Hydropower distribution and population density  

 

The statistical analysis reveals a distinct relationship between global hydropower distribution and 

population density. As shown in Supplementary Fig. 11, 77.98% of global hydropower plants are 

located in regions with a population density below 100, whereas only 2.04% are situated in densely 

populated areas with a population density of more than 1,000 people per square kilometer. 

 

 

 

Supplementary Fig. 11 | Global hydropower plant distribution in relation to population density. 

 

4.2 Aboveground biomass density processing 

The workflow of Supplementary Fig. 12 was designed to generate annual GEDI-based biomass 

products for the spatial neighborhood surrounding each hydropower plant. For every plant, its 

geographic coordinates and unique identifier were first extracted, and a circular buffer with a 5-km 

radius was delineated to define the analysis area. The procedure was repeated for each year from 

2019 to 2024, with annual start and end dates initialized to constrain data filtering. 
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For each hydropower plant and year, the GEDI Level 4A monthly product was queried and 

restricted to both the corresponding temporal window and the buffered spatial extent. To ensure the 

quality and reliability of canopy biomass estimates, three sequential filtering steps were applied: (1) 

a quality mask retaining only observations flagged as valid, (2) an uncertainty mask excluding 

samples with relative biomass error (agbd_se/agbd) greater than 0.2, and (3) a terrain-based mask 

removing observations located on slopes exceeding 30°, with slope derived from the COPERNICUS 

GLO-30 digital elevation model. The filtered GEDI shots were subsequently mosaicked to produce 

a continuous annual AGBD layer while preserving the native projection. 

The resulting GEDI mosaic was resampled using bilinear interpolation, aggregated using a 

mean reducer with a pre-defined maximum-pixel limit, and reprojected to a uniform spatial 

resolution of 100 m. The final processed biomass layer for each hydropower plant and year was 

exported to Google Drive as a GeoTIFF in EPSG:4326 geographic coordinates. This complete 

workflow was executed iteratively across all hydropower plants and all years in the analysis period. 

 

Supplementary Fig. 12 | Workflow for Annual GEDI-Based Biomass Processing Around Hydropower Plants. 

 

For each hydropower plant, we performed a multi-year analysis of aboveground biomass (AGB) 

within its 5-km buffer zone using annual AGBD raster layers exported from Google Earth Engine. 

The workflow first scanned all files in the dataset directory. It automatically grouped them by 

hydropower plant identifier and year extracted from the filenames, thereby reconstructing a 

complete biomass time series for each plant from 2019 to 2024. For every annual raster, the biomass 

band was extracted, and invalid or missing pixels were removed. To convert pixel-level biomass 

density (Mg ha⁻¹) to total biomass (Mg), the geographic area of each pixel was calculated from the 

raster’s affine transformation; when such metadata were missing or unreliable, a fallback pixel size 

of 100 m—consistent with the export resolution—was applied to ensure internal consistency across 
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years. The total biomass for each plant-year combination was then calculated by summing all valid 

pixel values, multiplied by the corresponding pixel area in hectares. To characterize interannual 

variations, the annual total biomass values were plotted as a time series, with each year labeled to 

facilitate visual assessment of increases, declines, or fluctuations. This automated and plant-

centered workflow offers a reproducible and internally consistent approach for quantifying multi-

year biomass dynamics in the landscapes surrounding hydropower plants. 

 

Supplementary Fig. 13 | Biomass trends within a 5-kilometre radius of hydropower plants. The red colour indicates the operational 

period of the hydroelectric power plant.  

 

As shown in Supplementary Fig. 13, aboveground biomass within a 5-km radius of the 

hydropower plant exhibited a noticeable decline during the initial period following construction. 

This pattern is consistent with previous findings that infrastructure development can impose short-

term disturbances on surrounding ecosystems, potentially through the removal of vegetation, land 

modification related to construction, or adjustments to local hydrological regimes. However, this 

decline does not appear to be persistent. In the case of GHR2022, biomass levels began to increase 

again in 2023, suggesting a degree of ecological recovery after the early-stage disturbance. Such 

recovery may reflect a combination of factors, including the regrowth of natural vegetation, the 

inherent resilience of the local ecosystem, and possible mitigation or management actions 

implemented during the operational phase—such as riparian restoration, reduced human disturbance, 

or improved soil and water conservation practices. It is essential to note that, although the timing of 

Plant A
start=2020

2019 2020 2021 2022 2023 2024

Plant B
start=2021
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Plant D
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Trend
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biomass changes aligns with the construction and operation phases of the hydropower plant, the 

observed associations do not, in themselves, establish causal mechanisms; additional ecological 

indicators or management records would be required to disentangle the underlying drivers fully. 

Overall, Supplementary Fig. 13 illustrates a dynamic process in which the surrounding ecosystem 

initially experiences disturbance but subsequently exhibits signs of recovery, highlighting potential 

lagged ecological responses and the role of management interventions in modulating the 

environmental impacts of hydropower development. 

Supplementary Fig.14 presents a detailed, site-by-site tracking analysis, illustrating the 

temporal trajectory of aboveground biomass density relative to the commissioning year of each 

hydropower plant. While the comprehensive analysis is presented in the main text, this figure 

displays the results for individual cases. It reveals that hydropower development consistently leads 

to a marked reduction in biomass density; however, the subsequent recovery is highly heterogeneous 

across sites. This variability underscores the ecological diversity of hydropower impacts globally, 

which is influenced by local environmental conditions, construction practices, and regulatory 

policies. 

 

 

Supplementary Fig. 14 | Impacts of hydropower plant construction on the temporal dynamics of aboveground biomass density. 
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Notably, the impact of hydropower plants on aboveground biomass density is not necessarily 

confined to the year of their completion. Because the construction of a hydropower plant typically 

spans several years, substantial ecological disturbance can occur during this period. As shown in 

Supplementary Fig. 14, declines in aboveground biomass density were already evident in the years 

preceding the commissioning of hydropower plants. This observation motivated our analysis in the 

main text, where we specifically tracked and examined changes in biomass density over the three 

years preceding the completion of new hydropower projects. 
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5. Runoff Alteration and Flood Risk 

5.1 Runoff trend processing 

The runoff data used in this study were obtained from 

Google’s global Runoff Reanalysis & Reforecast (GRRR) 

dataset, which provides daily streamflow predictions for 

more than one million HydroBasins watershed outlets 

based on a state-of-the-art hydrologic modeling 

framework (Supplementary Fig. 15). The dataset is 

distributed in cloud-optimized Zarr format and accessed 

directly via the xarray.open_zarr() interface, allowing anonymous, on-demand retrieval of its three 

primary components: (i) daily reanalysis streamflow (1980–2023), (ii) short-term reforecasts issued 

between 2016–2022 with lead times of 0–7 days, and (iii) return-period streamflow thresholds 

derived from the reanalysis. All datasets are indexed by a unique gauge_id corresponding to the 

outlet of each HydroBasins watershed, with reanalysis records organized along a daily time 

dimension and reforecast data structured by issue_time and lead_time. After loading the dataset, the 

notebook extracts the complete runoff time series for any specified gauge_id and, optionally, links 

it to approximate geographic coordinates using an auxiliary (unofficial) set of HydroBasins outlet 

locations included in the appendix. This indexing structure and data-access pipeline enable efficient 

retrieval of historical discharge, forecast trajectories, and severity thresholds for any watershed 

globally, providing a coherent and scalable basis for hydrological time-series analysis, flood-risk 

assessment, and broader environmental modeling. 

 

Supplementary Fig. 16 | Global runoff extraction workflow. 

 

Supplementary Fig. 15 | Runoff extraction workflow. 
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After accessing the GRRR runoff dataset, we developed an automated global pipeline  

(Supplementary Fig. 16) to systematically extract hydrologic information for all hydropower 

plants worldwide by linking each facility to its nearest HydroBasins outlet. For every plant location 

(latitude, longitude), the workflow computes great-circle distances to all basin outlets using the 

Haversine formula. It employs a multi-scale adaptive search strategy, starting with a 10 km radius 

and progressively expanding the search radius (30, 50, 100, 200, 500 km) until at least one valid 

gauge is identified. If no outlet is found within the predefined radii, the algorithm falls back to the 

globally nearest gauge to ensure complete spatial coverage. Once the nearest gauge is identified, the 

corresponding daily streamflow record is retrieved directly from the GRRR reanalysis dataset and 

further aggregated into monthly and yearly mean discharge values, enabling multi-timescale 

hydrological characterization. For each plant, the pipeline automatically generates visual 

summaries—including monthly and annual streamflow trends—and exports structured tables that 

report key hydrological metrics, such as daily means, aggregated totals, and long-term averages. To 

facilitate knowledge-graph applications and large-scale network analysis, the system 

simultaneously constructs node–edge files representing plants and their associated river gauges as 

a relational graph. Collectively, this automated workflow enables high-throughput, globally 

consistent extraction, aggregation, and visualization of river runoff information for hydropower-

relevant locations, providing a scalable and reproducible foundation for assessing hydrological 

variability associated with energy infrastructure. 
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Supplementary Fig. 17 | Hydropower Topology Visualization. 

 

We visualize the global hydropower topology (Supplementary Fig. 17). The program loads 

hydropower plant nodes and water-flow relationships from a knowledge graph dataset, generating 

a global-scale topological map that illustrates both the spatial distribution and structural connectivity 

within the hydropower system. The visualization is rendered on top of the ESRI World Imagery 

satellite basemap, which provides high-resolution geographic context. All hydropower nodes are 

imported and displayed using a MarkerCluster mechanism to ensure efficient interaction even when 

visualizing a large number of spatial points worldwide. Each node is plotted according to its latitude 

and longitude, and different icon styles are applied to distinguish between node types (e.g., power 

plants versus reservoirs). For edge representation, the program identifies the nearest connection for 

each node from among all potential water-transfer paths and visualizes only this closest edge. This 

approach preserves the most representative hydrological linkage while avoiding excessive visual 

clutter that would result from rendering all available edges. Each edge includes information such as 

distance and flow magnitude, which is displayed through interactive tooltips. Finally, the program 

automatically adjusts the map’s extent based on the geographic bounds of all nodes, ensuring that 
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the resulting visualization fully encompasses the global hydropower network. The final topological 

map is exported as an interactive HTML file, enabling dynamic exploration through a standard web 

browser. This visualization tool provides an intuitive and effective means of examining hydropower 

system structure, supporting analyses related to water-resource dispatching, flow pattern assessment, 

and global hydropower network modeling. This visualization program is accessible online via 

https://glohydro.cn. 

5.2 Monthly runoff data of the global hydropower plant 

Our study provides monthly runoff data (1980-2023) for rivers at all global hydropower plant 

locations. This data not only underpins our analysis of long-term streamflow trends but also enables 

the prediction of monthly power generation for each facility. The data are publicly accessible via 

https://glohydro.cn, and Supplementary Fig. 18 displays some cases, clearly illustrating the 

monthly runoff dynamics of the hydropower plants. 

 

 

https://glohydro.cn/
https://glohydro.cn/
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Supplementary Fig. 18 | Cases of monthly runoff time series for hydropower plants (1980–2023). 
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6. Models and Training Details 

 

To overcome the limitations of conventional vision-based identification models that rely primarily 

on single-modality visual cues, we present HydroVLM, an identification paradigm designed to 

overcome the limitations inherent in conventional approaches that rely predominantly on single 

visual features1. By harnessing the cross-modal comprehension and scene reasoning capabilities of 

Vision-Language Models (VLMs)2,3, we establish a novel recognition paradigm founded on image-

text associations. The training methodology employs Low-Rank Adaptation (LoRA), a technique 

that enhances training efficiency by utilizing low-rank matrices4. This approach involves freezing 

the majority of parameters in the pre-trained model while updating only a small set of low-rank 

adaptive parameters. 

We fine-tuned the Qwen2.5-VL-32B5,6 base model with LoRA on a meticulously curated, 

annotated dataset of 3,963 diverse hydropower samples, each comprising high-resolution remote-

sensing imagery that captures the full spatial extent of the facility together with structured textual 

descriptions. Rather than relying solely on static annotations, we implemented an expert-in-

the-loop calibration workflow: the initially trained model was used to automatically label 

additional imagery, and domain experts corrected and augmented these machine-generated 

annotations. Expert corrections and the newly validated labels were incrementally incorporated into 

subsequent LoRA fine-tuning rounds, with model performance tracked on a held-out validation set 

to guide stopping and sampling decisions. Training and iterative fine-tuning were performed on 8 

NVIDIA A100 GPUs; throughout this cyclical process HydroVLM framed hydropower feature 

identification as an image–text association task, exploiting the cross-modal alignment and scene-

reasoning strengths of vision–language models while progressively reducing manual labeling effort 

and improving predictive precision. 

Given an input image 𝐼and a set of candidate textual descriptors 𝒯 = {𝑇!, 𝑇", … , 𝑇#}, the 

visual encoder 𝐸$(⋅) and text encoder 𝐸%(⋅) of the underlying VLM project image and text into a 

shared semantic space: 

𝐯 = 𝐸$(𝐼), 𝐭& = 𝐸%(𝑇&), 𝑘 = 1,… , 𝐾. (1) 
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The association strength between the image and each textual descriptor is computed using a 

similarity function 𝑆(⋅,⋅), typically cosine similarity: 

𝑠& = 𝑆(𝐯, 𝐭&). (2) 

The predicted hydropower category 𝑦7is determined by selecting the descriptor with the highest 

similarity score: 

𝑦7 = arg𝑚𝑎𝑥
&
  𝑠& . (3) 

This paradigm enables HydroVLM to utilize rich multimodal contextual cues rather than 

relying on isolated visual features, providing improved robustness and interpretability for complex 

remote sensing scenes. 

 

 

Supplementary Fig. 19 | Comparison of HydroVLM and existing mainstream VLM models. 

 

HydroVLM demonstrated robust performance metrics, achieving an accuracy of 89% and a 

recall rate of 93% on our primary task of identifying hydropower facilities. To rigorously benchmark 

HydroVLM's capability specifically for hydropower remote sensing image recognition, we 

constructed a dedicated test dataset comprising diverse samples of hydropower facilities. This 
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dedicated evaluation dataset shall consist of 254 meticulously curated samples, including 200 

positive instances and 54 erroneous negative samples. Each sample features high-resolution remote 

sensing imagery that captures the complete spatial extent of the facility. We evaluated HydroVLM 

against several state-of-the-art generalist multimodal foundation models: 

 

Supplementary Table 3: State-of-the-art generalist multimodal foundation models 

Name Source Access 

GPT-4o OpenAI https://chatgpt.com/ 

GPT-5 OpenAI https://chatgpt.com/ 

DeepSeek-V3 + Tencent Hunyuan Turbo DeepSeek AI Team https://yuanbao.tencent.com/ 

DeepSeek-R1 + Tencent Hunyuan Turbo DeepSeek AI Team https://yuanbao.tencent.com/ 

 

Recognizing that DeepSeek-V37 and DeepSeek-R18 lack native image understanding9, it was 

integrated with Tencent Hunyuan Turbo's visual capabilities via a joint inference approach 

(https://yuanbao.tencent.com/ for technical details).  

Supplementary Fig. 19 presents the comparative performance of the VLM models10. Notably, 

the advanced reasoning capabilities of DeepSeek-R111 did not confer a discernible advantage in 

identifying hydropower targets. This finding implies that for specialized domains, enhancing 

generic reasoning prowess alone is insufficient; instead, VLM training must be strategically tailored, 

prioritizing the integration of domain-specific knowledge and architectural suitability over mere 

increases in reasoning complexity. To elucidate the underlying mechanisms of VLMs and to explore 

more advanced approaches, additional experiments would be required. In this study, however, our 

primary goal was to develop a practical, automated alternative to manual mapping, assisting us in 

the top-down identification of hydropower plants. 
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Supplementary Fig. 20 | Overall multimodal AI framework of HydroVLM. 

As illustrated in Supplementary Fig. 20, the HydroVLM establishes an end-to-end workflow 

for hydropower station identification. The system consists of four main stages: (1) precise 

localization of hydropower plants from remote sensing imagery; (2) identification of their 

construction year; (3) name matching based on geospatial coordinates; and (4) retrieval of installed 

capacity information. This comprehensive pipeline enables automated and accurate recognition of 

hydropower plants at a global scale. 

The HydroVLM analyzed high-resolution remote sensing imagery systematically 

retrieved along more than 8 million rivers worldwide, using pre-tiled 300 m × 300 m image 

patches. From these global river-aligned image collections, the model identified 14,545 candidate 

hydropower sites, of which 12,640 were validated as existing hydropower plants following expert 

review. This automated discovery pipeline marks a major advance over conventional manual 

mapping efforts that typically require months to years of intensive survey work, providing efficiency 

gains sufficient to support the global scale of our study. Furthermore, this framework establishes a 

scalable foundation for future extensions of VLM-based methodologies to identify and monitor 

other forms of energy infrastructure with comparable geographic breadth and precision. 
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7. Accessing the GloHydro Online System 

 

Global-scale analyses of hydropower and the Water–Energy–Food (WEF) nexus, including policy 

and environmental assessments, constitute a vast and complex research domain. This study 

introduces a top-down remote sensing tracking approach for global hydropower plants and provides 

an inventory of these plants. We analyze the characteristics of hydropower plants in terms of their 

distribution, ecological impacts, and runoff patterns. Furthermore, we recognize that this inventory 

can play a crucial role in urban planning, sustainable development, and various other domains. To 

this end, we have developed an open-access platform for Glohydro, which can be accessed online 

at https://glohydro.cn. This platform displays a global map of hydropower plant distribution 

(Supplementary Fig. 21) and offers monthly runoff data for each plant from 1980 to 2023 

(Supplementary Fig. 22). 

 

Supplementary Fig. 21 | GloHydro online system. 

 

https://glohydro.cn/
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Supplementary Fig. 22 | Global Hydropower plants dashboard. 
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