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Supplementary Table 1 | Detailed information of 3D brain images across 34 modalities
from the UK Biobank. This table provides detailed information including modality name,
index, and description. Abbreviations: DTI (Diffusion Tensor Imaging), NODDI (Neurite
Orientation Dispersion and Density Imaging), rs-fMRI (Resting-state functional MRI), and FC
(functional connectivity).

Modality Name Index Description
DTI-FA 0 DTI-Fractional anisotropy
DTI-L1 1 DTI-Axial diffusivity
DTI-L2 2 DTI-Radial diffusivity
DTI-L3 3 DTI-Second radial diffusivity
DTI-MD 4 DTI-Mean diffusivity
DTI-MO 5 DTI-Mode of anisotropy
NODDI-ICVF 6 NODDI-Intracellular volume fraction
NODDI-ISOVF 7 NODDI-Isotropic volume fraction
NODDI-OD 8 NODDI-Orientation dispersion
QSM 9 Quantitative susceptibility mapping from SWI
SWI 10 Susceptibility-weighted imaging
Tlw 11 T1-weighted MRI
T1-Jac 12 Jacobian map of T1w nonlinear registration
T2-FLAIR 13 T2-Fluid attenuated inversion recovery
T2star 14 T2* from SWI
VBM 15 Grey matter volume from voxel-based morphometry
Task-1 16 Task-based fMRI: Shapes contrast z-statistic maps
Task-2 17 Task-based fMRI: Faces contrast z-statistic maps
Task-5 18 Task-based fMRI: faces > shapes contrast z-statistic maps
Rest-1 19 rs-fMRI seed-based FC: Visual Peripheral
Rest-2 20 rs-fMRI seed-based FC: Cingulo-Opercular
Rest-3 21 rs-fMRI seed-based FC: Default Network-B
Rest-4 22 rs-fMRI seed-based FC: Somatomotor-B
Rest-5 23 rs-fMRI seed-based FC: Auditory
Rest-6 24 rs-fMRI seed-based FC: Premotor-Posterior Parietal
Rostral
Rest-7 25 rs-fMRI seed-based FC: Dorsal Attention-B
Rest-8 26 rs-fMRI seed-based FC: Somatomotor-A
Rest-9 27 rs-fMRI seed-based FC: Language
Rest-10 28 rs-fMRI seed-based FC: Frontoparietal Network-B
Rest-11 29 rs-fMRI seed-based FC: Frontoparietal Network-A
Rest-12 30 rs-fMRI seed-based FC: Dorsal Attention-A
Rest-13 31 rs-fMRI seed-based FC: Visual Central
Rest-14 32 rs-fMRI seed-based FC: Salience / Parietal Memory
Network

Rest-15 33 rs-fMRI seed-based FC: Default Network-A




Supplementary Table 2 | Information on datasets used in this study. Information about the
number of sites (Site), subjects (Subject), scans (Scan), and image modality types (Modality)
is provided. The UK Biobank dataset (used for pretraining and evaluation) contains 34 different
image modalities; details are provided in Supplementary Table 1. For the ABIDE autism dataset,

the Tian subcortical atlas was used to extract seed-based functional connectivity from the rs-
fMRI data.

Dataset Site Subject Number of Modality
Scan
UK Biobank (pretraining) 1 44,398 1,193,348 34 modalities
UK Biobank (evaluation) 1 2,000 68,000 34 modalities
Z1C Alzheimer’s disease 1 1,138 2,271 T1w, T2-FLAIR
ADNI 1 768 2,632 Tlw
Schizophrenia 17 2,958 5,780 T1lw, VBM
ABIDE I and II (ASD) 36 1,778 1,778 rs-fMRI
Major Depressive Disorder 24 2,831 2,831 VBM
(MDD)
SOOP (acute stroke) 1 1,106 1,106 DTI-ADC

ARC (chronic stroke) 1 213 213 DTI-FA




Supplementary Table 3 | Details information of multisite datasets in our study.
Information on the multisite datasets, including image modality (Modality), site name (Site),
and number of subjects (Subjects), is provided.

Dataset Modality Site Name (Subjects)

Schizophrenia Tlw HCP-EP (93), ds004302(66), CLB (90),
NUSDAST (250), chengdu (228), taiwan (254),
ds000115 (40), ds000030 (171), NMorphCH (87),
SH _JZ1 (298), COBRE (165), MCIC (203),
zhengzhou (253), SH JZ2 (324), SH_ECT (65),
SH_drugl (255), fBIRN (107)

VBM HCP-EP (93), ds004302 (64), CLB (90),
NUSDAST (250), chengdu (103), taiwan (254),
ds000115 (40), ds000030 (171), NMorphCH (87),
SH JZ1 (298), COBRE (165), MCIC (204),
zhengzhou (253), SH JZ2 (330), SH_ECT (65),
SH_drugl (257), fBIRN (107)

ABIDE I and II (ASD) rs-fMRI STANFORD (36), ABIDEII-GU 1 (99),
ABIDEII-NYU 2 (27), ABIDEII-BNI 1 (54),
ABIDEII-SDSU 1 (55), ABIDEII-OHSU_1 (86),
YALE (48), CMU (5), ABIDEII-NYU _1 (72),
NYU (171), LEUVEN 2 (32), OHSU (23),
ABIDEII-EMC_1 (54), UM_2 (31), USM (61),
ABIDEIL-ETH 1 (34), ABIDEII-KKI 1 (198),
SBL (26), ABIDEII-OILH_2 (58), UM_1 (82),
ABIDEII-IU_1 (36), ABIDEII-KUL 3 (28),
UCLA_1 (55), OLIN (25), PITT (45),
TRINITY (44), MAX_MUN (42),
ABIDEII-UCD 1 (13), LEUVEN_1 (29),
UCLA_ 2 (20), ABIDEIL-IP_1 (51),
ABIDEII-TCD _1 (21), SDSU (33), KKI (39),
ABIDEII-UCLA _1 (8), CALTECH (37)

Major Depressive Disorder VBM S1 (148), S2 (60), S3 (64), S5 (24), S6 (30),
S7 (87), S8 (150), S9 (100), S10 (83), S11 (61),
S12 (38), S13 (42), S14 (96), S15 (100), S16 (62),
S17 (91), S18 (41), S19 (87), S20 (533),
S21 (156), S22 (50), S23 (62), S24 (63),
S25 (152)




Supplementary Table 4 | Raw BWAS performance metrics corresponding to Fig. 5. Raw

quantitative metrics underlying the relative improvements reported in Fig. 5, comparing real

and synthetic data for brain-wide association studies (BWAS) across Schizophrenia (SCZ),

Major Depressive Disorder (MDD), and Autism Spectrum Disorder (ASD). Metrics include

Pearson correlation between voxel-wise Cohen’s d maps, Dice coefficients computed on the

full map and on positive (d > 0) and negative (d < 0) effects, as well as Dice coefficients

restricted to the top 20% of absolute Cohen’s d values. Relative improvements shown in Fig. 5

were computed from these raw values.

Site Disease Data Correlation Dice Dice- Dice- top- top- top-
p n Dice Dice-p Dicen

SH JZ2 SCZ  Real 0.17 0.59 035 065 0.19 0.05 0.20
SH JZ2 SCZ  Syn. 0.29 0.69 037 077 0.29 0.08 0.30
SH JZ1 SCZ  Real 0.27 0.64 038 072 0.25 0.12 0.26
SH JZ1 SCZ  Syn. 0.30 0.68 038 076 0.27 0.18 0.28
S20 MDD  Real 0.13 0.65 034 074 0.19 0.03 0.21
S20 MDD  Syn. 0.18 0.67 037 076 0.19 0.06 0.21
S9 MDD  Real 0.01 0.65 034 074 0.11 0.03 0.12
S9 MDD  Syn. 0.01 0.67 037 076 0.16 0.04 0.17
NYU ASD  Real 0.21 0.57 062 048 0.10 0.11 0.09
NYU ASD  Syn. 0.27 0.60 0.67 048 0.31 0.35 0.09
KKI 1 ASD  Real 0.16 0.68 077 032 0.23 0.24 0.01
KKI 1 ASD  Syn. 0.22 0.71 081 034 025 0.25 0.03




Supplementary Table S | Selected brain regions segmented using WMH-SynthSeg. Region
names and labels are listed, and their volumes were computed as features for the LightGBM
classification task.

Region Label Regions Label
Left cerebral white matter 2 Left cerebral cortex 3
Left lateral ventricle 4 Left cerebellum white matter 7
Left cerebellum cortex 8 Left thalamus 10
Left caudate 11 Left putamen 12
Left pallidum 13 3" ventricle 14
4™ ventricle 15 Brainstem 16
Left hippocampus 17 Left amygdala 18
Extracerebral CSF 24 Left accumbens 26
Left ventral DC 28 Right white matter 41
Right cortex 42 Right lateral ventricle 43
Right cerebellum white matter 46 Right cerebellum cortex 47
Right thalamus 49 Right caudate 50
Right putamen 51 Right pallidum 52
Right hippocampus 53 Right amygdala 54
Right accumbens 58 Right ventral DC 60
WMH 77 Optic chiasm 85




Supplementary Table 6 | Hyperparameter settings of LightGBM. For data augmentation

in machine learning—based disease diagnosis, the classification experiment was repeated 20

times for each synthetic-to-real ratio using randomly selected combinations of LightGBM

hyperparameters.
Hyperparameter Value Description
n_estimators {25,50,100,200,300} Number of boosted trees to fit.
max_depth {5, 10, 15, 20, 25, 30} Maximum tree depth for base learners.
num_leaves {5, 10, 15, 20, 25, 30} Maximum number of leaves in one tree.
subsample {0.60, 0.65, 0.70, ..., 1.00} Subsample ratio of the training instance.

learning_rate
colsample bytree

boosting_type

{0.1, 0.05, 0.01, 0.001}
£0.60, 0.65, 0.70, ..., 1.00}

{*gbdt’}

Learning rate.

Subsample ratio of columns when
constructing each tree.

Traditional gradient boosting decision tree.




Supplementary Note 1 | Extending GenBrain to other non-imaging variables

GenBrain was originally pretrained on the UK Biobank (UKB) dataset, using subject-specific
biological variables—age and sex—as conditions for image generation. To examine whether
GenBrain could also model images conditioned on other non-imaging phenotypic variables, we
introduced fluid intelligence scores as an additional condition and fine-tuned the model on a
subset of 1,000 subjects (26,939 images) from the UKB pretraining data. Fine-tuning was
performed for 50,000 steps with a batch size of 64.

To evaluate the extent to which fluid intelligence-related patterns were preserved in the
generated images, we followed the same procedure used to assess age- and sex-related
biological patterns. Population-level pseudo—ground truth maps for fluid intelligence were
constructed as voxel-wise t-statistic maps derived from a reference cohort (N = 18,345), with
missing values imputed using the mean score (6.576).

Even when fine-tuned on only 1,000 subjects, GenBrain successfully captured fluid
intelligence—associated spatial patterns in both structural MRI and task fMRI images.
Quantitative evaluation results are provided in Supplementary Fig. 1.
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Supplementary Fig. 1 | Preservation of fluid intelligence-related patterns in synthetic
images. GenBrain was fine-tuned on 1,000 subjects and extended to incorporate fluid
intelligence scores as a new non-imaging conditional variable. The fluid intelligence-related
pattern was evaluated on randomly sampled small cohorts (N = 100) of real data, synthetic data,
and synthetic data averaged from five samples. The similarity score, defined as the cosine
similarity between each small cohort's voxel-wise t-statistic map and that of the large reference
cohort (N = 18,345), quantifies pattern preservation (higher scores indicate better preservation).



Supplementary Note 2 | Image enhancement-SynthSR pipeline

SynthSR'“ is a tool that can standardize clinical brain scans into high-resolution, isotropic 1
mm Tlw images and enhance low-field images with limited resolution and signal-to-noise
ratios by using “--lowfield” option®. In the image enhancement task, we applied SynthSR to
enhance the corrupted T1w image. The image processing pipeline consisted of three steps. First,
SynthSR was used to super-resolve and synthesize 1 mm T1w images with the skull retained.
The command used was:

mri_synthsr --i {corrupted_image} --o {image_with_skull} --threads {threads} --lowfield

Second, the skull was removed using FreeSurfer SynthStrip*. The command used was:

mri_synthstrip --i {image_with_skull} --o {brain_image} --threads {threads}

Finally, the skull-stripped images were registered to MNI152 2 mm standard space using
FreeSurfer SynthMorph®. The command used was:

mri_synthmorph register -o {registered_image} -j {threads} -g {brain_image} {mnil52_2mm}

In the above commands, all variables enclosed in curly brackets “{}”, except for “threads”,
represent data paths. The “registered_image” denotes the final enhanced image. The number of
processing threads in our experiment was set to 16. We also applied this pipeline by replacing
“corrupted_image” with “flair_image” for the FLAIR-to-T1w cross-modality synthesis
experiment.



Supplementary Note 3 | White matter hyperintensities analysis

In clinical practice, T2-FLAIR images are pivotal for detecting white matter hyperintensities
(WMH), a neuroimaging biomarker widely associated with cognitive decline and an increased
risk of Alzheimer’s disease. Beyond achieving high performance on image-level and biological
semantic-level metrics, high-fidelity synthetic T2-FLAIR images should also preserve
clinically meaningful features such as WMH to ensure translational utility. To this end, we
employed WMH-SynthSeg® to automatically segment and estimate the volume of WMH in the
synthesized T2-FLAIR images (WMH label: 77).

For the cross-modality synthesis task, we performed WMH analysis on synthetic FLAIR
images generated in the T1w-to-FLAIR task. WMH were first segmented, and their volumes
were estimated in both real images and synthetic images generated by different methods. We
then computed the correlation of WMH volumes between paired real and synthetic images to
evaluate how well the synthetic images preserved WMH features.

In the inner-dataset evaluation, GenBrain-ft achieved the highest correlation score (0.928) on
the UKB dataset (N = 500). In the external evaluation on the ZIC dataset (N = 200), TUMSyn
and GenBrain-ft obtained similar best correlation scores (TUMSyn: 0.922; GenBrain-ft: 0.911).
The strong generalization performance of TUMSyn can be attributed to its multi-dataset
training strategy, whereas GenBrain-ft benefited from generative pretraining on the UKB
dataset. Detailed results are provided in Supplementary Fig. 2.
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Supplementary Fig. 2 | Correlation of WMH volumes between paired real and synthetic images.
WMH analysis was performed on synthetic FLAIR images in the T1w-to-FLAIR experiments.
Internal dataset evaluation was conducted on the UKB dataset, and external evaluation on the
ZIC dataset. High correlation indicates that the synthetic images reliably reproduce the WMH
volume patterns existed in real T1w images.



Supplementary Note 4 | Fine-tuning GenBrain for image super-resolution

GenBrain was originally pretrained and analyzed in the MNI152 2 mm standard space (voxel
size: 2 X 2 x 2mm3). To evaluate its adaptability to higher-resolution images, we fine-tuned
the model to perform super-resolution from MNI152 2 mm to MNI152 1 mm standard space.

To adapt GenBrain for super-resolution, low-resolution (2 mm) T1-weighted images were
first upsampled to 1 mm resolution using nearest-neighbor interpolation. Because directly
applying the model's patch embedding to high-resolution images would incur a quadratic
increase in computational cost due to the self-attention mechanism, we divided the interpolated
images into eight equal-sized parts. Each part contained 228,453 voxels, the same number as
in the corresponding low-resolution input, and was assigned a unique part index. The original
single-channel patch embedding layer was replaced with a two-channel embedding layer, and
a new image part-index embedder was introduced. This fine-tuned model is denoted as
GenBrain-SR.

During fine-tuning, each interpolated part was concatenated with its corresponding noised
high-resolution image part along the channel dimension to form a two-channel input tensor.
GenBrain-SR was conditioned on this input tensor, the modality, and the part indices; age and
sex embeddings were omitted. Fine-tuning was performed for 50,000 steps with a batch size of
64, using 1,000 paired T1w images (at both MNI152 1 mm and 2 mm resolutions) from the UK
Biobank pretraining dataset.

During inference, GenBrain-SR generated high-resolution outputs part-by-part. These
parts were subsequently combined into a complete high-resolution image by averaging the
values of overlapping voxels. We found that GenBrain-SR could not only super-resolve real
images but also further enhance synthetic images, such as the 2 mm T1w images initially
generated by GenBrain-ft. Representative examples are provided in Supplementary Fig. 3.
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Supplementary Fig. 3 | Fine-tuning GenBrain for image super-resolution (MNI152 2 mm
— 1 mm). a, Examples of high-resolution T1w images (1 mm), nearest-neighbor—interpolated
Tlw images (2mm — 1mm), and GenBrain-SR processed Tlw images. b, Examples of
corrupted T1w images (2 mm), GenBrain-ft—-enhanced T1w images (2 mm), and the enhanced
T1w images further super-resolved by GenBrain-SR (1 mm).



Supplementary Note 5 | Fine-tuning GenBrain for cross-modality synthesis (MNI152 1
mm standard space).

To further evaluate GenBrain’s adaptability to higher-resolution images, we conducted T1w to
T2-FLAIR and T2-FLAIR to T1w cross-modality synthesis tasks with images registered in
MNI152 1mm standard space. Similar to the image super-resolution task, each source modality
image was divided into eight parts of equal size, and GenBrain adopted the same architectural
modifications, including a two-channel patch embedding layer and an image part—index
embedder. GenBrain was conditioned on the source image, target modality and part indices,
while age and sex embeddings were removed. GenBrain was fine-tuned for 50,000 steps with
a batch size of 64 using 1,000 paired images (source—target modality pairs) from the UK
Biobank pretraining dataset. At inference, the model translated the source images part-wisely,
and then combined image parts into the target modality images (overlapped voxels using the
average value). Cross-modality synthesis results see Supplementary Fig. 4.
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Supplementary Fig. 4 | Fine-tuning GenBrain for cross-modality synthesis (MNI152 1
mm). a, T1w to T2-FLAIR synthesis. Examples of source Tlw images, target T2-FLAIR
images, and GenBrain synthesized T2-FLAIR images are shown. b, T2-FLAIR to Tlw
synthesis. Examples of source T2-FLAIR images, target Tlw images, and GenBrain
synthesized T1w images are shown.
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