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Supplementary Table 1 | Detailed information of 3D brain images across 34 modalities 
from the UK Biobank. This table provides detailed information including modality name, 
index, and description. Abbreviations: DTI (Diffusion Tensor Imaging), NODDI (Neurite 
Orientation Dispersion and Density Imaging), rs-fMRI (Resting-state functional MRI), and FC 
(functional connectivity). 

Modality Name Index Description 
DTI-FA 0 DTI-Fractional anisotropy 
DTI-L1 1 DTI-Axial diffusivity 
DTI-L2 2 DTI-Radial diffusivity 
DTI-L3 3 DTI-Second radial diffusivity 
DTI-MD 4 DTI-Mean diffusivity 
DTI-MO 5 DTI-Mode of anisotropy 

NODDI-ICVF 6 NODDI-Intracellular volume fraction 
NODDI-ISOVF 7 NODDI-Isotropic volume fraction 

NODDI-OD 8 NODDI-Orientation dispersion 
QSM 9 Quantitative susceptibility mapping from SWI 
SWI 10 Susceptibility-weighted imaging 
T1w 11 T1-weighted MRI 

T1-Jac 12 Jacobian map of T1w nonlinear registration 
T2-FLAIR 13 T2-Fluid attenuated inversion recovery 

T2star 14 T2* from SWI 
VBM 15 Grey matter volume from voxel-based morphometry 
Task-1 16 Task-based fMRI: Shapes contrast z-statistic maps 
Task-2 17 Task-based fMRI: Faces contrast z-statistic maps 
Task-5 18 Task-based fMRI: faces > shapes contrast z-statistic maps 
Rest-1 19 rs-fMRI seed-based FC: Visual Peripheral 
Rest-2 20 rs-fMRI seed-based FC: Cingulo-Opercular 
Rest-3 21 rs-fMRI seed-based FC: Default Network-B 
Rest-4 22 rs-fMRI seed-based FC: Somatomotor-B 
Rest-5 23 rs-fMRI seed-based FC: Auditory 
Rest-6 24 rs-fMRI seed-based FC: Premotor-Posterior Parietal 

Rostral 
Rest-7 25 rs-fMRI seed-based FC: Dorsal Attention-B 
Rest-8 26 rs-fMRI seed-based FC: Somatomotor-A 
Rest-9 27 rs-fMRI seed-based FC: Language 
Rest-10 28 rs-fMRI seed-based FC: Frontoparietal Network-B 
Rest-11 29 rs-fMRI seed-based FC: Frontoparietal Network-A 
Rest-12 30 rs-fMRI seed-based FC: Dorsal Attention-A 
Rest-13 31 rs-fMRI seed-based FC: Visual Central 
Rest-14 32 rs-fMRI seed-based FC: Salience / Parietal Memory 

Network 
Rest-15 33 rs-fMRI seed-based FC: Default Network-A 



Supplementary Table 2 | Information on datasets used in this study. Information about the 
number of sites (Site), subjects (Subject), scans (Scan), and image modality types (Modality) 
is provided. The UK Biobank dataset (used for pretraining and evaluation) contains 34 different 
image modalities; details are provided in Supplementary Table 1. For the ABIDE autism dataset, 
the Tian subcortical atlas was used to extract seed-based functional connectivity from the rs-
fMRI data. 

Dataset Site Subject Number of 
Scan 

Modality 

UK Biobank (pretraining) 1 44,398 1,193,348  34 modalities 
UK Biobank (evaluation) 1 2,000 68,000 34 modalities 
ZIC Alzheimer’s disease 1 1,138 2,271 T1w, T2-FLAIR 

ADNI 1 768 2,632 T1w 
Schizophrenia 17 2,958 5,780 T1w, VBM 

ABIDE I and II (ASD)  36 1,778 1,778 rs-fMRI 
Major Depressive Disorder 

(MDD) 
24 2,831 2,831 VBM 

SOOP (acute stroke)  1 1,106 1,106 DTI-ADC 
ARC (chronic stroke)  1 213 213 DTI-FA 

 

  



Supplementary Table 3 | Details information of multisite datasets in our study. 
Information on the multisite datasets, including image modality (Modality), site name (Site), 
and number of subjects (Subjects), is provided. 

Dataset Modality Site Name (Subjects) 
Schizophrenia T1w HCP-EP (93), ds004302(66), CLB (90), 

NUSDAST (250), chengdu (228), taiwan (254), 
ds000115 (40), ds000030 (171), NMorphCH (87), 
SH_JZ1 (298), COBRE (165), MCIC (203),  
zhengzhou (253), SH_JZ2 (324), SH_ECT (65), 
SH_drug1 (255), fBIRN (107) 

 VBM HCP-EP (93), ds004302 (64), CLB (90), 
NUSDAST (250), chengdu (103), taiwan (254), 
ds000115 (40), ds000030 (171), NMorphCH (87), 
SH_JZ1 (298), COBRE (165), MCIC (204), 
zhengzhou (253), SH_JZ2 (330), SH_ECT (65), 
SH_drug1 (257), fBIRN (107) 

ABIDE I and II (ASD)  rs-fMRI STANFORD (36), ABIDEII-GU_1 (99), 
ABIDEII-NYU_2 (27), ABIDEII-BNI_1 (54), 
ABIDEII-SDSU_1 (55), ABIDEII-OHSU_1 (86), 
YALE (48), CMU (5), ABIDEII-NYU_1 (72), 
NYU (171), LEUVEN_2 (32), OHSU (23), 
ABIDEII-EMC_1 (54), UM_2 (31), USM (61), 
ABIDEII-ETH_1 (34), ABIDEII-KKI_1 (198), 
SBL (26), ABIDEII-OILH_2 (58), UM_1 (82), 
ABIDEII-IU_1 (36), ABIDEII-KUL_3 (28), 
UCLA_1 (55), OLIN (25), PITT (45), 
TRINITY (44), MAX_MUN (42), 
ABIDEII-UCD_1 (13), LEUVEN_1 (29), 
UCLA_2 (20), ABIDEII-IP_1 (51), 
ABIDEII-TCD_1 (21), SDSU (33), KKI (39), 
ABIDEII-UCLA_1 (8), CALTECH (37)  

Major Depressive Disorder VBM S1 (148), S2 (60), S3 (64), S5 (24), S6 (30), 
S7 (87), S8 (150), S9 (100), S10 (83), S11 (61), 
S12 (38), S13 (42), S14 (96), S15 (100), S16 (62), 
S17 (91), S18 (41), S19 (87), S20 (533),  
S21 (156), S22 (50), S23 (62), S24 (63),  
S25 (152) 



Supplementary Table 4 | Raw BWAS performance metrics corresponding to Fig. 5. Raw 
quantitative metrics underlying the relative improvements reported in Fig. 5, comparing real 
and synthetic data for brain-wide association studies (BWAS) across Schizophrenia (SCZ), 
Major Depressive Disorder (MDD), and Autism Spectrum Disorder (ASD). Metrics include 
Pearson correlation between voxel-wise Cohen’s d maps, Dice coefficients computed on the 
full map and on positive (d > 0) and negative (d < 0) effects, as well as Dice coefficients 
restricted to the top 20% of absolute Cohen’s d values. Relative improvements shown in Fig. 5 
were computed from these raw values. 

Site Disease Data Correlation Dice Dice-
p 

Dice-
n 

top-
Dice 

top-
Dice-p 

top-
Dice-n 

SH_JZ2 SCZ Real 0.17 0.59 0.35 0.65 0.19 0.05 0.20 
SH_JZ2 SCZ Syn. 0.29 0.69 0.37 0.77 0.29 0.08 0.30 
SH_JZ1 SCZ Real 0.27 0.64 0.38 0.72 0.25 0.12 0.26 
SH_JZ1 SCZ Syn. 0.30 0.68 0.38 0.76 0.27 0.18 0.28 

S20 MDD Real 0.13 0.65 0.34 0.74 0.19 0.03 0.21 
S20 MDD Syn. 0.18 0.67 0.37 0.76 0.19 0.06 0.21 
S9 MDD Real 0.01 0.65 0.34 0.74 0.11 0.03 0.12 
S9 MDD Syn. 0.01 0.67 0.37 0.76 0.16 0.04 0.17 

NYU ASD Real 0.21 0.57 0.62 0.48 0.10 0.11 0.09 
NYU ASD Syn. 0.27 0.60 0.67 0.48 0.31 0.35 0.09 

KKI_1 ASD Real 0.16 0.68 0.77 0.32 0.23 0.24 0.01 
KKI_1 ASD Syn. 0.22 0.71 0.81 0.34 0.25 0.25 0.03 

 

  



 

Supplementary Table 5 | Selected brain regions segmented using WMH-SynthSeg. Region 
names and labels are listed, and their volumes were computed as features for the LightGBM 
classification task. 

Region Label Regions Label 
Left cerebral white matter 2 Left cerebral cortex 3 

Left lateral ventricle 4 Left cerebellum white matter 7 
Left cerebellum cortex 8 Left thalamus 10 

Left caudate 11 Left putamen 12 
Left pallidum 13 3rd ventricle 14 
4th ventricle 15 Brainstem 16 

Left hippocampus 17 Left amygdala 18 
Extracerebral CSF 24 Left accumbens 26 

Left ventral DC 28 Right white matter 41 
Right cortex 42 Right lateral ventricle 43 

Right cerebellum white matter 46 Right cerebellum cortex 47 
Right thalamus 49 Right caudate 50 
Right putamen 51 Right pallidum 52 

Right hippocampus 53 Right amygdala 54 
Right accumbens 58 Right ventral DC 60 

WMH 77 Optic chiasm 85 
 

  



Supplementary Table 6 | Hyperparameter settings of LightGBM. For data augmentation 
in machine learning–based disease diagnosis, the classification experiment was repeated 20 
times for each synthetic-to-real ratio using randomly selected combinations of LightGBM 
hyperparameters. 

Hyperparameter Value Description 
n_estimators {25,50,100,200,300} Number of boosted trees to fit. 
max_depth {5, 10, 15, 20, 25, 30} Maximum tree depth for base learners. 
num_leaves {5, 10, 15, 20, 25, 30} Maximum number of leaves in one tree. 
subsample {0.60, 0.65, 0.70, …, 1.00} Subsample ratio of the training instance. 

learning_rate {0.1, 0.05, 0.01, 0.001} Learning rate. 
colsample_bytree {0.60, 0.65, 0.70, …, 1.00} Subsample ratio of columns when 

constructing each tree. 
boosting_type {‘gbdt’} Traditional gradient boosting decision tree. 
 

  



Supplementary Note 1 | Extending GenBrain to other non-imaging variables 

GenBrain was originally pretrained on the UK Biobank (UKB) dataset, using subject-specific 
biological variables—age and sex—as conditions for image generation. To examine whether 
GenBrain could also model images conditioned on other non-imaging phenotypic variables, we 
introduced fluid intelligence scores as an additional condition and fine-tuned the model on a 
subset of 1,000 subjects (26,939 images) from the UKB pretraining data. Fine-tuning was 
performed for 50,000 steps with a batch size of 64. 

To evaluate the extent to which fluid intelligence–related patterns were preserved in the 
generated images, we followed the same procedure used to assess age- and sex-related 
biological patterns. Population-level pseudo–ground truth maps for fluid intelligence were 
constructed as voxel-wise t-statistic maps derived from a reference cohort (N = 18,345), with 
missing values imputed using the mean score (6.576). 

Even when fine-tuned on only 1,000 subjects, GenBrain successfully captured fluid 
intelligence–associated spatial patterns in both structural MRI and task fMRI images. 
Quantitative evaluation results are provided in Supplementary Fig. 1. 

Supplementary Fig. 1 | Preservation of fluid intelligence–related patterns in synthetic 
images. GenBrain was fine-tuned on 1,000 subjects and extended to incorporate fluid 
intelligence scores as a new non-imaging conditional variable. The fluid intelligence–related 
pattern was evaluated on randomly sampled small cohorts (N = 100) of real data, synthetic data, 
and synthetic data averaged from five samples. The similarity score, defined as the cosine 
similarity between each small cohort's voxel-wise t-statistic map and that of the large reference 
cohort (N = 18,345), quantifies pattern preservation (higher scores indicate better preservation). 



Supplementary Note 2 | Image enhancement-SynthSR pipeline 

SynthSR1,2 is a tool that can standardize clinical brain scans into high-resolution, isotropic 1 
mm T1w images and enhance low-field images with limited resolution and signal-to-noise 
ratios by using “--lowfield” option3. In the image enhancement task, we applied SynthSR to 
enhance the corrupted T1w image. The image processing pipeline consisted of three steps. First, 
SynthSR was used to super-resolve and synthesize 1 mm T1w images with the skull retained. 
The command used was: 

mri_synthsr --i {corrupted_image} --o {image_with_skull} --threads {threads} --lowfield 

Second, the skull was removed using FreeSurfer SynthStrip4. The command used was: 

mri_synthstrip --i {image_with_skull} --o {brain_image} --threads {threads} 

Finally, the skull-stripped images were registered to MNI152 2 mm standard space using 
FreeSurfer SynthMorph5. The command used was: 

mri_synthmorph register -o {registered_image} -j {threads} -g {brain_image} {mni152_2mm} 

In the above commands, all variables enclosed in curly brackets “{}”, except for “threads”, 
represent data paths. The “registered_image” denotes the final enhanced image. The number of 
processing threads in our experiment was set to 16. We also applied this pipeline by replacing 
“corrupted_image” with “flair_image” for the FLAIR-to-T1w cross-modality synthesis 
experiment. 

  



Supplementary Note 3 | White matter hyperintensities analysis 

In clinical practice, T2-FLAIR images are pivotal for detecting white matter hyperintensities 
(WMH), a neuroimaging biomarker widely associated with cognitive decline and an increased 
risk of Alzheimer’s disease. Beyond achieving high performance on image-level and biological 
semantic-level metrics, high-fidelity synthetic T2-FLAIR images should also preserve 
clinically meaningful features such as WMH to ensure translational utility. To this end, we 
employed WMH-SynthSeg6 to automatically segment and estimate the volume of WMH in the 
synthesized T2-FLAIR images (WMH label: 77).  

For the cross-modality synthesis task, we performed WMH analysis on synthetic FLAIR 
images generated in the T1w-to-FLAIR task. WMH were first segmented, and their volumes 
were estimated in both real images and synthetic images generated by different methods. We 
then computed the correlation of WMH volumes between paired real and synthetic images to 
evaluate how well the synthetic images preserved WMH features.  

In the inner-dataset evaluation, GenBrain-ft achieved the highest correlation score (0.928) on 
the UKB dataset (N = 500). In the external evaluation on the ZIC dataset (N = 200), TUMSyn 
and GenBrain-ft obtained similar best correlation scores (TUMSyn: 0.922; GenBrain-ft: 0.911). 
The strong generalization performance of TUMSyn can be attributed to its multi-dataset 
training strategy, whereas GenBrain-ft benefited from generative pretraining on the UKB 
dataset. Detailed results are provided in Supplementary Fig. 2. 

 

Supplementary Fig. 2 | Correlation of WMH volumes between paired real and synthetic images. 
WMH analysis was performed on synthetic FLAIR images in the T1w-to-FLAIR experiments. 
Internal dataset evaluation was conducted on the UKB dataset, and external evaluation on the 
ZIC dataset. High correlation indicates that the synthetic images reliably reproduce the WMH 
volume patterns existed in real T1w images. 

  



Supplementary Note 4 | Fine-tuning GenBrain for image super-resolution 
GenBrain was originally pretrained and analyzed in the MNI152 2 mm standard space (voxel 
size: 2 × 2 × 2	𝑚𝑚! ). To evaluate its adaptability to higher-resolution images, we fine-tuned 
the model to perform super-resolution from MNI152 2 mm to MNI152 1 mm standard space. 

To adapt GenBrain for super-resolution, low-resolution (2 mm) T1-weighted images were 
first upsampled to 1 mm resolution using nearest-neighbor interpolation. Because directly 
applying the model's patch embedding to high-resolution images would incur a quadratic 
increase in computational cost due to the self-attention mechanism, we divided the interpolated 
images into eight equal-sized parts. Each part contained 228,453 voxels, the same number as 
in the corresponding low-resolution input, and was assigned a unique part index. The original 
single-channel patch embedding layer was replaced with a two-channel embedding layer, and 
a new image part–index embedder was introduced. This fine-tuned model is denoted as 
GenBrain-SR. 

During fine-tuning, each interpolated part was concatenated with its corresponding noised 
high-resolution image part along the channel dimension to form a two-channel input tensor. 
GenBrain-SR was conditioned on this input tensor, the modality, and the part indices; age and 
sex embeddings were omitted. Fine-tuning was performed for 50,000 steps with a batch size of 
64, using 1,000 paired T1w images (at both MNI152 1 mm and 2 mm resolutions) from the UK 
Biobank pretraining dataset. 

During inference, GenBrain-SR generated high-resolution outputs part-by-part. These 
parts were subsequently combined into a complete high-resolution image by averaging the 
values of overlapping voxels. We found that GenBrain-SR could not only super-resolve real 
images but also further enhance synthetic images, such as the 2 mm T1w images initially 
generated by GenBrain-ft. Representative examples are provided in Supplementary Fig. 3.  



Supplementary Fig. 3 | Fine-tuning GenBrain for image super-resolution (MNI152 2 mm 
→ 1 mm). a, Examples of high-resolution T1w images (1 mm), nearest-neighbor–interpolated 
T1w images (2mm → 1mm), and GenBrain-SR processed T1w images. b, Examples of 
corrupted T1w images (2 mm), GenBrain-ft–enhanced T1w images (2 mm), and the enhanced 
T1w images further super-resolved by GenBrain-SR (1 mm).  



Supplementary Note 5 | Fine-tuning GenBrain for cross-modality synthesis (MNI152 1 
mm standard space). 

To further evaluate GenBrain’s adaptability to higher-resolution images, we conducted T1w to 
T2-FLAIR and T2-FLAIR to T1w cross-modality synthesis tasks with images registered in 
MNI152 1mm standard space. Similar to the image super-resolution task, each source modality 
image was divided into eight parts of equal size, and GenBrain adopted the same architectural 
modifications, including a two-channel patch embedding layer and an image part–index 
embedder. GenBrain was conditioned on the source image, target modality and part indices, 
while age and sex embeddings were removed. GenBrain was fine-tuned for 50,000 steps with 
a batch size of 64 using 1,000 paired images (source–target modality pairs) from the UK 
Biobank pretraining dataset. At inference, the model translated the source images part-wisely, 
and then combined image parts into the target modality images (overlapped voxels using the 
average value). Cross-modality synthesis results see Supplementary Fig. 4. 

  



 

Supplementary Fig. 4 | Fine-tuning GenBrain for cross-modality synthesis (MNI152 1 
mm). a, T1w to T2-FLAIR synthesis. Examples of source T1w images, target T2-FLAIR 
images, and GenBrain synthesized T2-FLAIR images are shown. b, T2-FLAIR to T1w 
synthesis. Examples of source T2-FLAIR images, target T1w images, and GenBrain 
synthesized T1w images are shown. 
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