

1 **Depletion of CD206⁺ tumour macrophages by mUNO targeted**
2 **nanoconjugate inhibits tumourigenesis and dissemination in triple**
3 **negative breast cancer**

4

5

6 Anni Lepland^{¥,1}, Alessio Malfanti^{¥,2}, Uku Haljasorg³, Eliana K. Asciutto⁴, Monica Pickholz^{5,6},
7 Mauro Bringas^{7,8}, Snežana Đorđević², Liis Salumäe⁹, Pärt Peterson³, Tambet Teesalu^{¥,1,10},
8 María J. Vicent^{¥,2}, Pablo Scodeller^{¥,1}

9 ¥: equal contribution

10 ψ: equal contribution

11

12

13 ¹ Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine,
14 University of Tartu, Ravila 14B, Tartu, 50411, Estonia

15 ² Polymer Therapeutics Laboratory, Prince Felipe Research Center, Av. Eduardo Primo Yúfera 3,
16 Valencia 46012, Spain

17 ³ Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine,
18 University of Tartu, Ravila 19, Tartu, 50412, Estonia

19 ⁴ School of Science and Technology, National University of San Martin (UNSAM) ICIFI and
20 CONICET. Buenos Aires, Argentina.

21 ⁵ Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
22 Buenos Aires

23 ⁶ Instituto de Física de Buenos Aires (IFIBA), CONICET-Universidad de Buenos Aires, Buenos Aires,
24 Argentina

25 ⁷ Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y
26 Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1428EHA, Argentina

27 ⁸ Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-
28 CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.

29 ⁹ Tartu University Hospital, Pathology department, Puusepa 8, 50406, Estonia

30 ¹⁰ Centre for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University
31 of California, Santa Barbara, 93106, CA, USA

32

33

34

35

36

37

38 **Synthetic procedures**

39

40 **Materials**

41 Three arms benzenetricarboxamide (BTA) centred star-shaped poly-L-glutamates (St-PGA)
42 was kindly provided by Polypeptide Therapeutic Solution. The mUNO peptide (CSPGAK-
43 COOH) was purchased from TAG Copenhagen. The Oregon GreenTM 488 (OG) Cadaverine
44 and trifluoroacetic acid were purchased from Thermo Fisher Scientific. Doxorubicin
45 hydrochloride salt (DOX) was purchased from Xingcheng Chempharm Co. Ltd. Daunorubicin
46 HCl (DAU), cathepsin B from bovine spleen, dithiothreitol, and sodium acetate were purchased
47 from Sigma-Aldrich and used without further purification unless otherwise indicated.
48 Deuterium oxide was purchased from Deutero GmbH. Size exclusion chromatography (SEC)
49 was performed using Sephadex[®] LH-20, and columns were purchased from GE Healthcare
50 Bio-Sciences AB. Dialysis was performed in a Millipore ultrafiltration device fitted with a 3
51 kDa molecular weight cut-off (MWCO) regenerated cellulose membrane (Vivaspin[®], Merck).
52 For the drug release study, EDTANa₂, PBS, chloroform, liquid-chromatography–mass
53 spectrometry (LC-MS) grade methanol, and water were purchased from Merck, while LC-MS
54 grade acetonitrile was purchased from Fisher chemical.

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

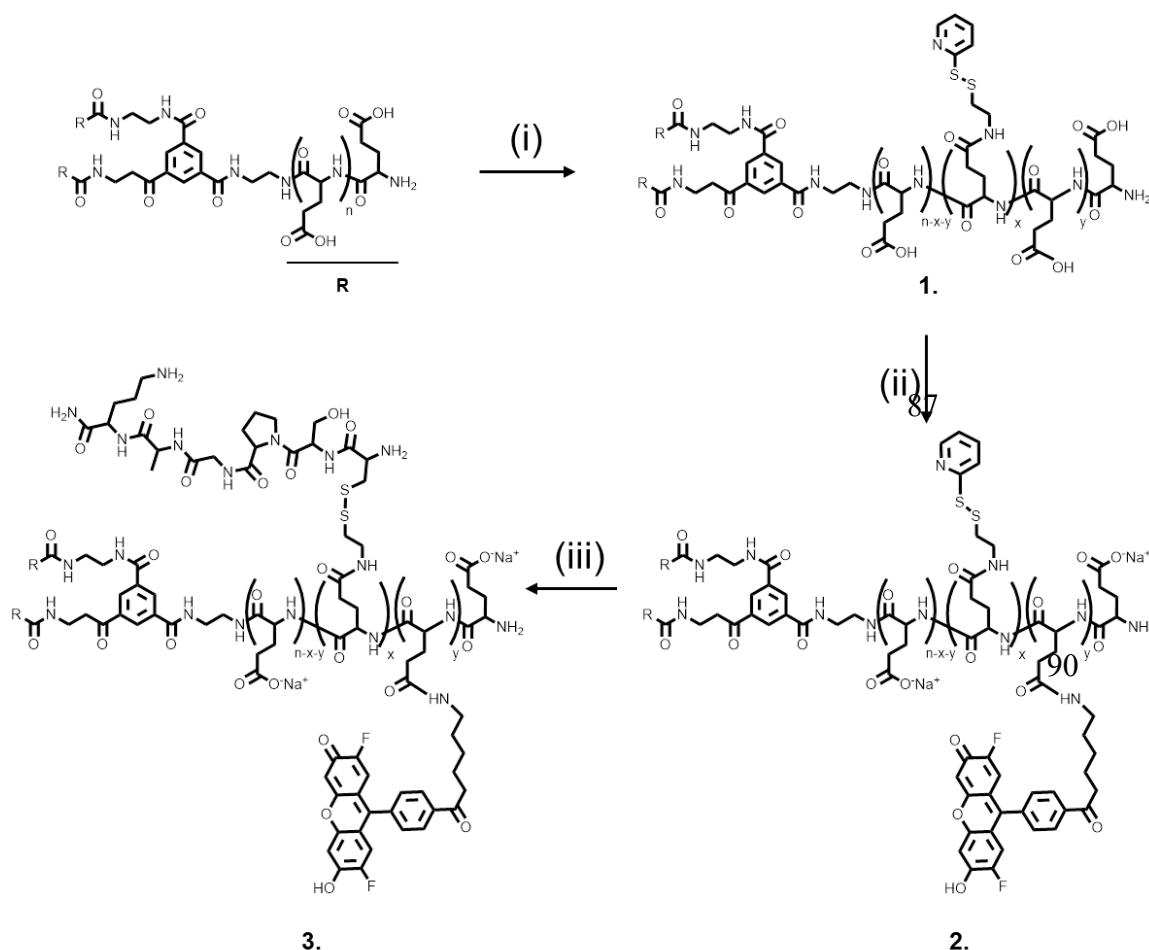
70

71

72

73

74


75

76

77

78

79 **Synthesis of St-PGA-OG-mUNO**

Scheme S1. Synthetic approach to obtain St-PGA-OG-mUNO nanoconjugate. (i) *a.* DMTMM BF₄, 30 min, RT, anh-DMF, *b.* pyridyldithiol (PD) amine, DIEA, pH 8, anh-DMF, 24 h; (ii) *a.* DMTMM BF₄, 30, RT, anh-DMF, *b.* OG₄₈₈-cadaverine, DIEA, pH 8, anh-DMF, 24 h; (iii) mUNO, 3 h, PBS, pH 7.4.

Synthesis of St-PGA-PD

The synthesis of St-PGA-PD (PD – pyridyldithiol) was performed according to previously published protocols^{1,2}. St-PGA (50 mg, 0.387 mmol glutamic acid units (GAU), 1 eq.) was dissolved in 5 mL of anhydrous N,N'-dimethylformamide (DMF) under nitrogen flow. Then, 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium tetrafluoroborate (DMTMM BF₄, 9.06 mg, 0.075 eq.) was added after dissolving it in anhydrous DMF. The solution was stirred for 30 min at RT. Then, pyridyldithiol amine (4.1 mg, 0.06 eq.) was added to the solution and the pH was adjusted to 8 by adding N,N-diisopropylethylamine (DIEA). The mixture was kept under magnetic stirring for 24 h at RT. The mixture was purified by precipitation in diethyl ether (3x100 mL). The compound was further purified through either acid/base precipitation. A white amorphous solid was obtained after freeze-drying.

113 Yield: 80-90%.

114 ^1H NMR δH (300MHz, D_2O): 8.53-8.19 (1H, b), 7.93-7.74 (2H, b), 7.45-7.23 (1H, b), 4.48-
115 4.23 (1H, b), 2.40-1.79 (4H, m).

116

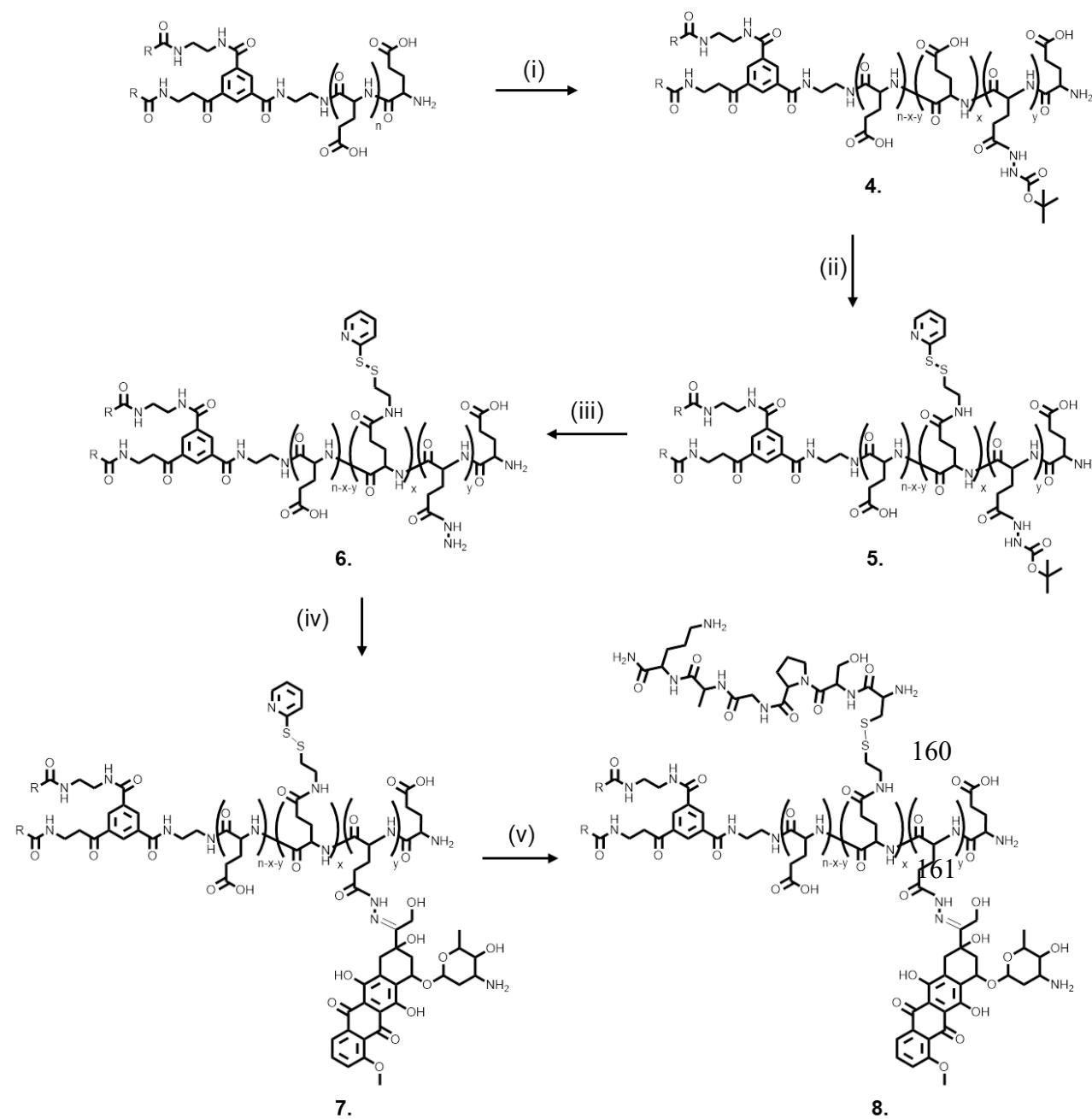
117 **Synthesis of St-PGA-PD-OG**

118 The synthesis of St-PGA-PD-OG was performed according to a Van Lysebetten et al. protocol².

119 St-PGA-PD (25 mg, 0.1935 mmol GAU, 1 eq.) was dissolved in 2.5 mL of anhydrous DMF
120 under nitrogen flow. Then, DMTMM BF₄ (4.53 mg, 0.075 eq.) dissolved in anhydrous DMF
121 was added. The solution was stirred for 30 min at RT. Then, OG₄₈₈-cadaverine (1.1 mg, 0.012
122 eq.) was added to the solution, and the pH was adjusted to 8 by adding DIEA. The mixture was
123 kept under magnetic stirring for 24 h at RT and protected from the light. The mixture was
124 purified by precipitation in diethyl ether (3x100 mL). The fine powder obtained was dissolved
125 in DMF and passed twice through an LH-20 column. The first eluting fraction, corresponding
126 to the acid form of the St-PGA-PD-OG, was collected and dried under vacuum, and the water-
127 soluble sodium salt form of the final product was obtained by dissolving the resulting solid in
128 0.1 M NaHCO₃. The excess of the free drug was further removed by using Vivaspin® 3 kDa.
129 An orange-red amorphous solid was obtained after freeze-drying.

130 Yield: 75-80% wt.

131


132 **Synthesis St-PGA-OG-mUNO**

133 The synthesis of St-PGA-OG-mUNO was performed as described according to a set-up
134 protocol². Briefly, St-PGA-PD-OG (20 mg, 1.0 eq) was dissolved at the concentration of 10
135 mg/mL in PBS, pH 7.4, RT under gently stirring. The mUNO peptide (4.1 mg, 0.055 eq.) was
136 dissolved in PBS, immediately added to the solution, and stirred for 3 h in the dark. Then, the
137 reaction was purified by Vivaspin® 3 kDa. The final product was lyophilised, and an
138 amorphous orange-red solid was obtained.

139 Yield: 60% wt.

140

141 **Synthesis of St-PGA-DOX-mUNO (“OximUNO”)**

Scheme S2. Synthetic approach to achieve OximUNO conjugate. (i) a. DMTMM BF₄, 30, RT, anh-DMF, b. tert-butylcarbazate, DIEA, pH 8, anh-DMF, 24 h; (ii) a. DMTMM BF₄, 30, RT, anh-DMF, b. pyridyldithiol amine, DIEA, pH 8, anh-DMF, 24 h; (iii) TFA, 30'; (iv) DOX, anh-DMF, CH₃COOH (cat), pH 5, 72 h; (v) mUNO, 3 h, PBS, pH 7.4.

Synthesis of St-PGA-Hz-Boc (fourth step)

The synthesis of St-PGA-Hz-Boc was performed according to a protocol slightly modified from Arroyo-Crespo et al.³. Briefly, St-PGA (500 mg, 3.67 mol GAU, 1 eq.) was dissolved in 10 mL of anhydrous DMF under nitrogen flow. Afterward, DMTMM BF₄ (90.56 mg, 0.075

178 eq.) dissolved in anhydrous DMF was added. The solution was stirred for 30 min at RT. Then,
179 tert-butylcarbazate (29.15 mg, 0.06 eq.) was added to the solution, and the pH was adjusted to
180 8 by adding DIEA. The mixture was kept under magnetic stirring for 24 h at RT. The mixture
181 was purified by precipitation in diethyl ether (3x300 mL). The compound was further purified
182 through either acid/base precipitation. A white amorphous solid was obtained after freeze-
183 drying.

184 Yield: 80-90% wt.

185 ^1H NMR δH (300MHz, D_2O): 4.36-4.14 (1H, b), 2.40-1.79 (4H, m), 1.42-1.37 (9H, s).

186

187 **Synthesis of St-PGA- Hz-Boc-PD (fifth step)**

188 St-PGA (250 mg, 1.935 mol GAU, 1 eq.) was dissolved in 10 mL of anhydrous DMF under
189 nitrogen flow. Then, DMTMM BF_4 (45.28 mg, 0.075 eq.) dissolved in anhydrous DMF was
190 added. The solution was stirred for 30 min at RT. Then, pyridyldithiol amine (20.46 mg, 0.06
191 eq.) was added to the solution and the pH was adjusted to 8 by adding DIEA. The mixture was
192 kept under magnetic stirring for 24 h at RT. The mixture was purified by precipitation in diethyl
193 ether (3x300 mL). The compound was further purified through either acid/base precipitation.
194 A white amorphous solid was obtained after freeze-drying.

195 Yield: 80-90% wt.

196 ^1H NMR δH (300MHz, D_2O): 8.49-8.28 (1H, b), 7.95-7.81 (2H, b), 7.45-7.28 (1H, b), 4.49-
197 4.19 (1H, b), 2.41-1.81 (4H, m), 1.57-1.42 (9H, s).

198

199 **Deprotection of St-PGA-Hz and St-PGA- Hz-PD (sixth step)**

200 The deprotection of protected St-PGA-Hz-Boc and St-PGA -Hz-Boc-PD (200 mg each) was
201 performed by dissolving the conjugates in trifluoroacetic acid (100%, 5 mL). After complete
202 dissolution, the reaction was allowed to continue for 30 minutes. The nanoconjugates were
203 precipitated in diethyl ether (3x300 mL), washed with acidic water, and lyophilised.

204 Yield: 70% wt.

205 ^1H NMR δH (300MHz, D_2O): 8.51-8.27 (2H, b), 7.90-7.79 (1H, b), 7.40-7.27 (2H, b), 4.50-
206 4.22 (1H, b), 2.47-1.91 (4H, m).

207

208 **Synthesis of St-PGA-DOX and St-PGA- DOX-PD (seventh step)**

209 Deprotected polymers were conjugated with DOX following a previously published protocol
210 by Arroyo-Crespo et al.³ Briefly, St-PGA-Hz or St-PGA-Hz-PD (100 mg, 0.734 mmol, 1 eq.)
211 and DOX (42.57 mg, 0.1 eq.) were dissolved in 5 mL of anhydrous DMF at RT under magnetic

212 stirring. After the full solubilisation of reagents, acetic acid (glacial, 100 µL) was added to the
213 solution to reach pH 5. The reaction was allowed to proceed for 72 h at RT, protected from the
214 light. After that time, the reaction volume was reduced by half, and the mixture was purified
215 by passing it through an LH-20 column two times to remove the unreacted DOX. The first
216 eluting fraction, corresponding to the acid form of the DOX-conjugate, was collected and dried
217 under vacuum and the water-soluble sodium salt form of the final product was obtained by
218 dissolving the resulting solid in 0.1 M NaHCO₃. The excess of the free drug was further
219 removed using Vivaspin® 3 kDa. The final product was lyophilised, and an amorphous dark
220 red solid was obtained.

221 Yield(s):

222 • St-PGA-DOX: 70-80 % wt
223 • St-PGA-DOX-PD: 70 % wt

224

225 **Synthesis of OximUNO (eighth step)**

226 St-PGA-PD-DOX (80 mg, 1.0 eq) was dissolved at the concentration of 10 mg/mL in PBS, pH,
227 7.4, RT under gentle stirring. The mUNO peptide (16.35 mg, 0.055 eq.) was dissolved in PBS,
228 immediately added to the solution, and stirred for 3 h in the dark. Then, the product was purified
229 by Vivaspin® 3 kDa. The final product was lyophilised, and an amorphous dark red solid was
230 obtained.

231 Yield: 60% wt.

232

233 **OG/DOX/mUNO loading determination**

234 OG loading was determined by fluorescence spectroscopy ($\lambda_{\text{ex}} = 501$ nm, $\lambda_{\text{em}} = 526$ nm) using
235 a calibration curve previously made with the OG standard solutions in the concentration range
236 0.5-20 µg/mL ($y = 6 \cdot 10^6 x - 7240$, $R^2 = 0.9988$).

237 DOX loading was determined by UV-VIS at 480 nm using a calibration curve previously made
238 with DOX standard solutions in the concentration range of 5.0-50 µg/mL ($y = 0.0197x + 0.0045$,
239 $R^2 = 0.9988$).

240 mUNO loading was estimated by ¹H-NMR and further confirmed by LC-MS amino acid
241 analysis performed at the University of Barcelona (Unitat de Tècniques Separatives I Síntesi
242 de Pèptids Centres Científics I Tecnològics).

243

244

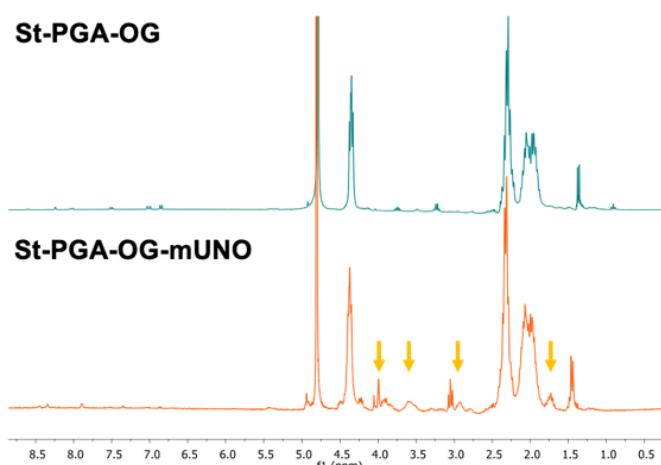
245

246

247 **Free drug determination**

248 OximUNO nanoconjugate (3 mg/mL) was suspended in 500 μ L of methanol (LC-MS grade)
249 with DAU as internal standard, vortexed for 2 min and centrifuged at 30 437g for 10 min. The
250 supernatant was filtered through a 0.45 μ m filter and subjected to the LC-MS analysis.

251


252

253 **Supplementary figures and videos**

254

255

A

267 **Fig. S1. Representative characterisation of St-PGA-OG and St-PGA-OG-mUNO. (A)** ^1H -NMR in D_2O of
268 the conjugates. The orange arrows show the peaks from mUNO.

269

270

271 **Video S1. 50 ns MD trajectory of St-PGA in solution.** Water and ions were removed for visualization purposes.
272 PGA chains are shown in white by overlaying in magenta the regions that form the alpha-helix structure, and the
273 BTA core is shown in green.

274

275

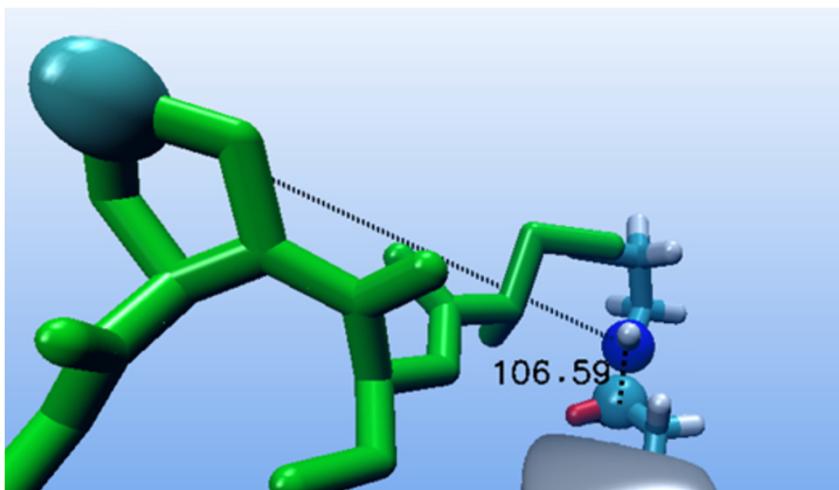
276

277

278

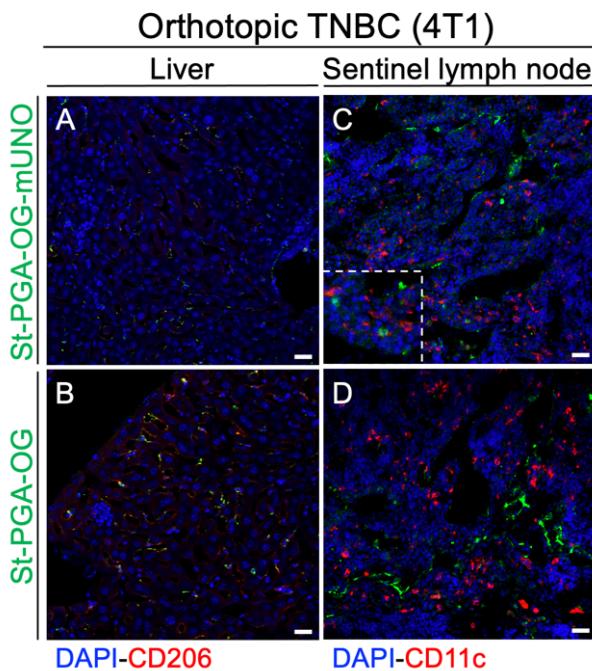
279

280


281

282

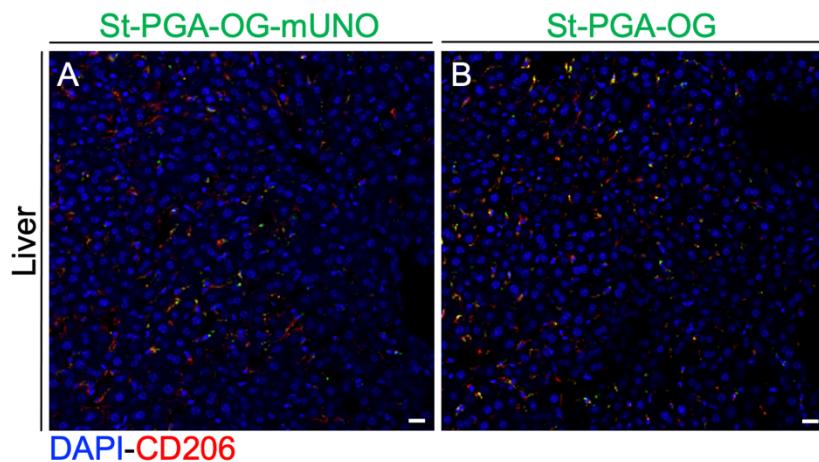
283


284

A

302 **Fig. S2. The angle used to characterise the rotation of mUNO around the PGA.** (A) Angle formed by an
 303 aromatic carbon of mUNO's proline (green sphere), a nitrogen of the pyridylthiol linker (blue sphere) and an
 304 aromatic carbon of the glutamic acid (light blue sphere).

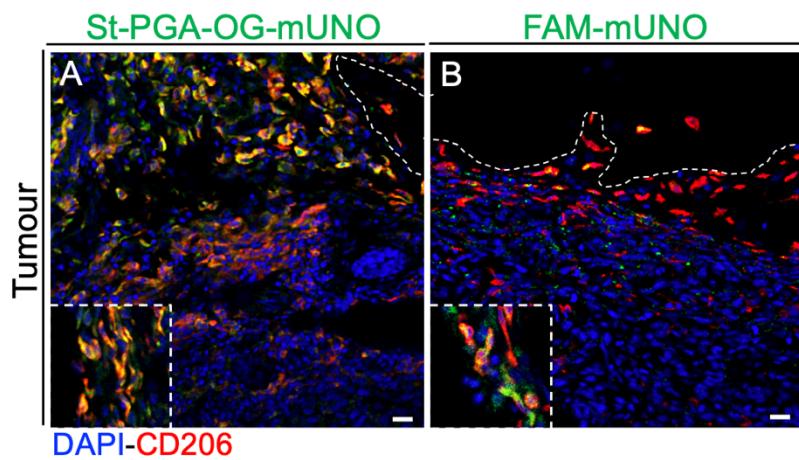
305
 306
 307



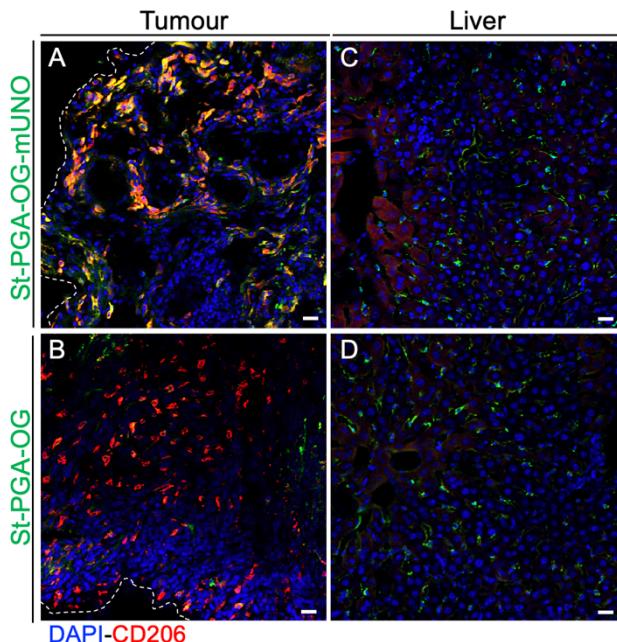
319 **Fig. S3. St-PGA-OG-mUNO shows low accumulation in the liver in the orthotopic TNBC model.** St-PGA-
 320 OG-mUNO (0.41mg/0.5mL) or St-PGA-OG (0.35mg/mL) was injected i.p. 10 days post tumour induction (s.c.
 321 injection of 1×10^6 4T1 cells), N=3. Nanoconjugates were circulated for 6 h, after which mice were sacrificed and
 322 organs collected for analysis. (A, B) Both St-PGA-OG-mUNO and St-PGA-OG showed low accumulation in the
 323 liver. (C, D) Both conjugates showed no colocalisation with CD11c⁺ dendritic cells in the sentinel lymph node.
 324 Scale bars represent 20 μm.

325

326

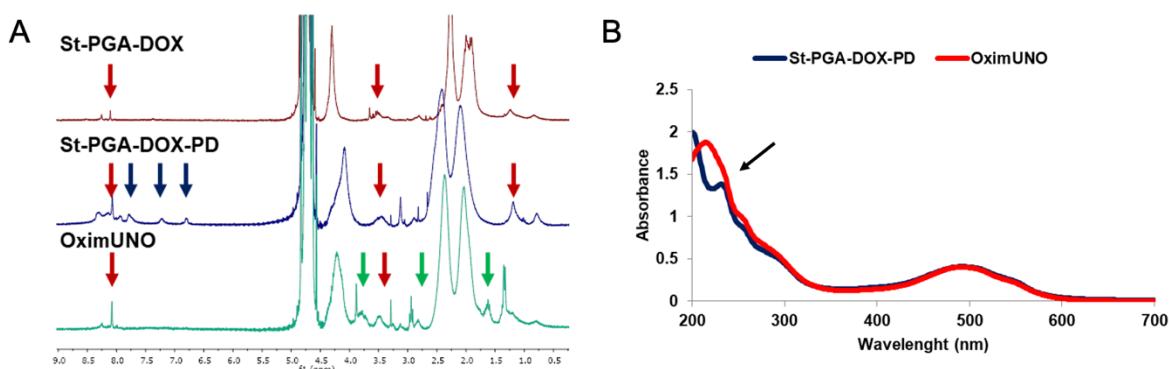

327

334 **Fig. S4. St-PGA-OG-mUNO shows low accumulation in the liver with the experimental metastases model**
335 **of TNBC.** St-PGA-OG-mUNO (0.41mg/0.5mL) or St-PGA-OG (0.35mg/0.5mL) was injected i.p. 10 days post
336 tumour induction in lungs (i.v. injection of 5×10^5 4T1 cells), N=2. Nanoconjugates were circulated for 6 h, after
337 which mice were sacrificed and organs collected for analysis. (A) St-PGA-OG-mUNO displayed low
338 accumulation in the liver. (B) The same was seen with St-PGA-OG. Scale bars represent 20 μ m.


339

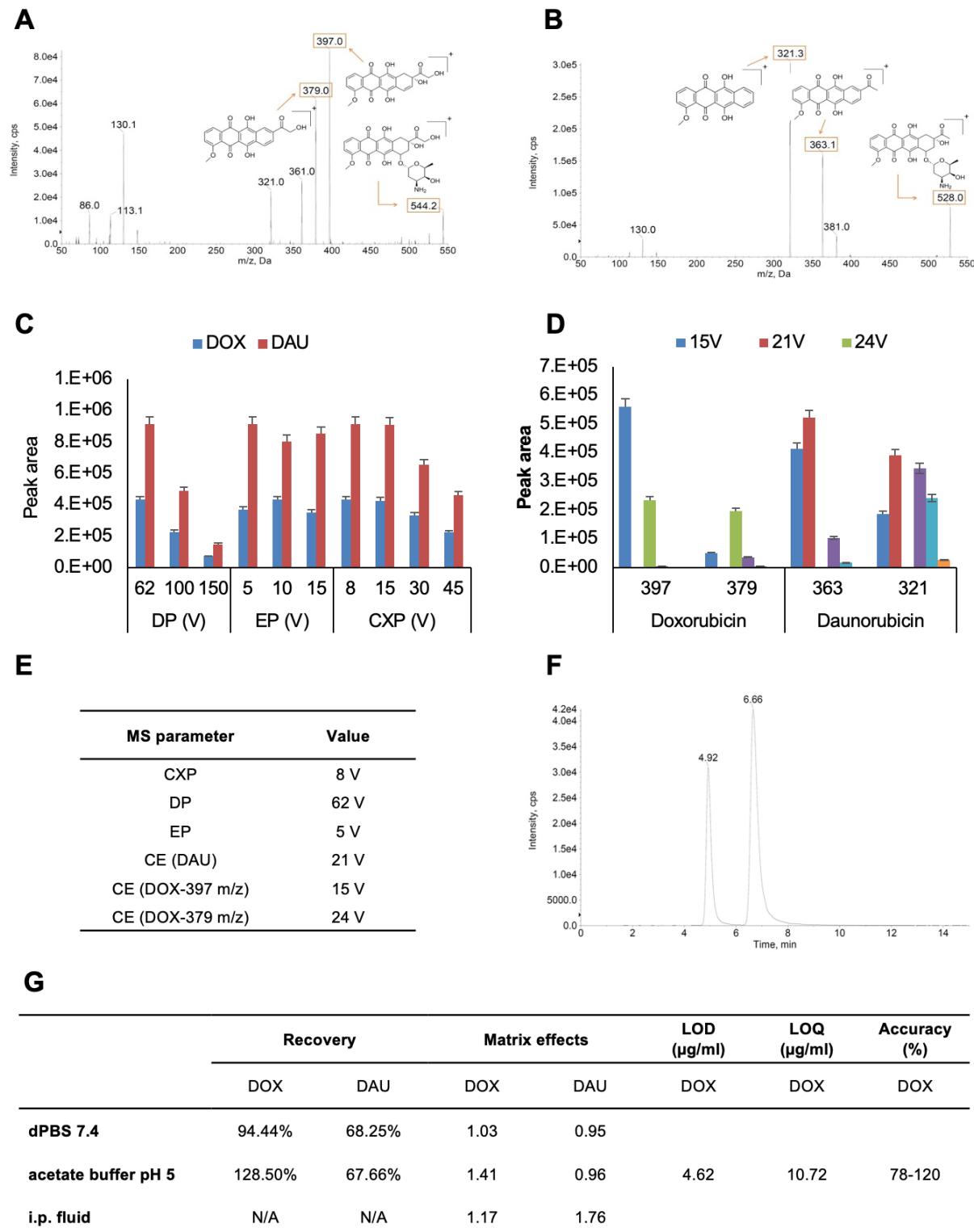
340

351 **Fig. S5. St-PGA-OG-mUNO shows higher colocalisation compared to FAM-mUNO.** St-PGA-OG-mUNO
352 (30nmoles in OG) or FAM-mUNO (30nmoles in FAM) was injected i.p. 10 days post tumour induction (s.c.
353 injection of 1×10^6 4T1 cells), N=2. The nanoconjugate or free peptide was circulated for 6 h, after which mice
354 were sacrificed and organs collected for analysis. (A) St-PGA-OG-mUNO showed higher OG/CD206
355 colocalisation than FAM-mUNO (B), indicating that multivalent presentation of mUNO on St-PGA improved
356 receptor targeting. Scale bars represent 20 μ m.

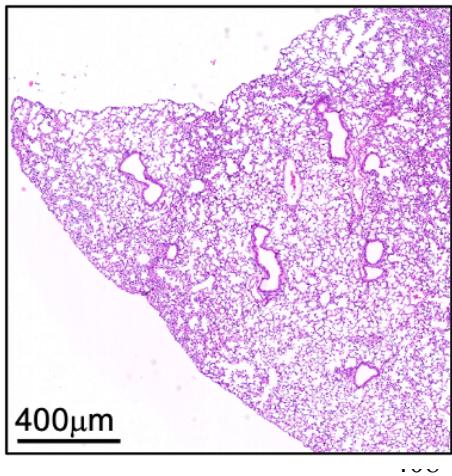

357

373 **Fig. S6. St-PGA-OG-mUNO shows high homing to the M2 TAMs on the orthotopic TNBC model but higher**
 374 **accumulation in the liver, with a higher dose.** St-PGA-OG-mUNO (0.82mg/0.5mL) or St-PGA-OG
 375 (0.7mg/0.5mL) was injected i.p. 10 days post tumour induction (s.c. injection of 1×10^6 4T1 cells), N=2.
 376 Nanoconjugates were circulated for 6h after which mice were sacrificed and organs collected for analysis. (A) St-
 377 PGA-OG-mUNO showed high colocalisation with CD206 whereas (B) St-PGA-OG showed minimal
 378 colocalisation. (C, D) Both nanoconjugates showed moderate accumulation in the liver. Scale bars represent 20
 379 μm .

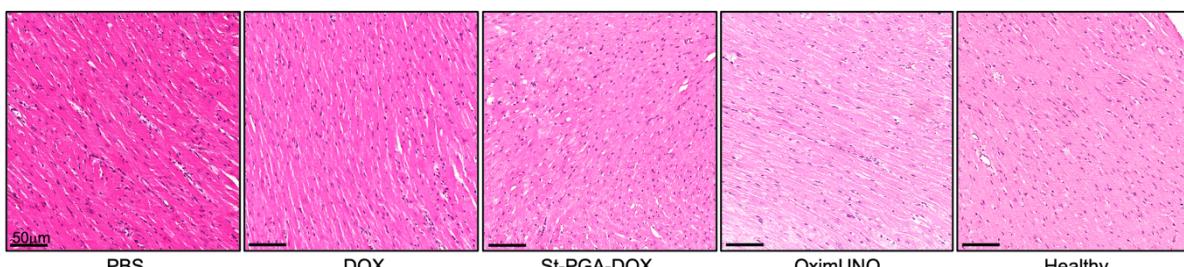
380


381

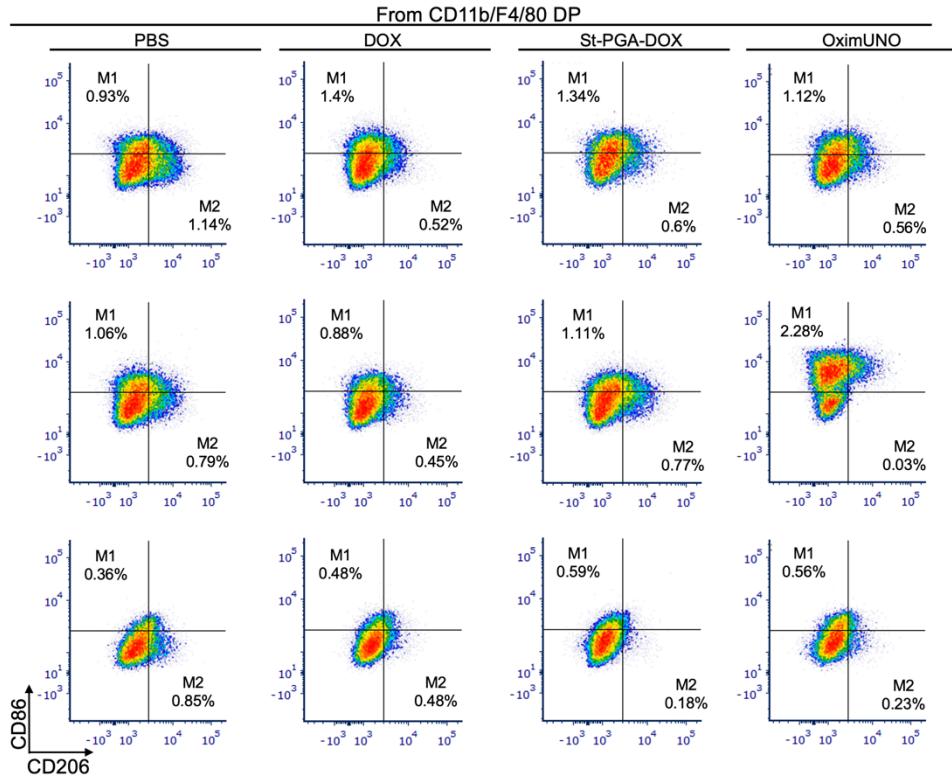
382 **Fig. S7. Representative characterisation of St-PGA-DOX and OximUNO.** (A) ^1H -NMR in D_2O of the
 383 nanoconjugates. Red arrows indicate the signals from DOX, blue arrows show the peaks from the pyridyl of the
 384 pyridyldithiol (PD), while green arrows indicate the signals from mUNO. (B) UV-Vis spectrum of St-PGA-PD-
 385 DOX (blue line) and OximUNO (red line) showing the displacement of pyridyl moiety at 260 nm by mUNO.

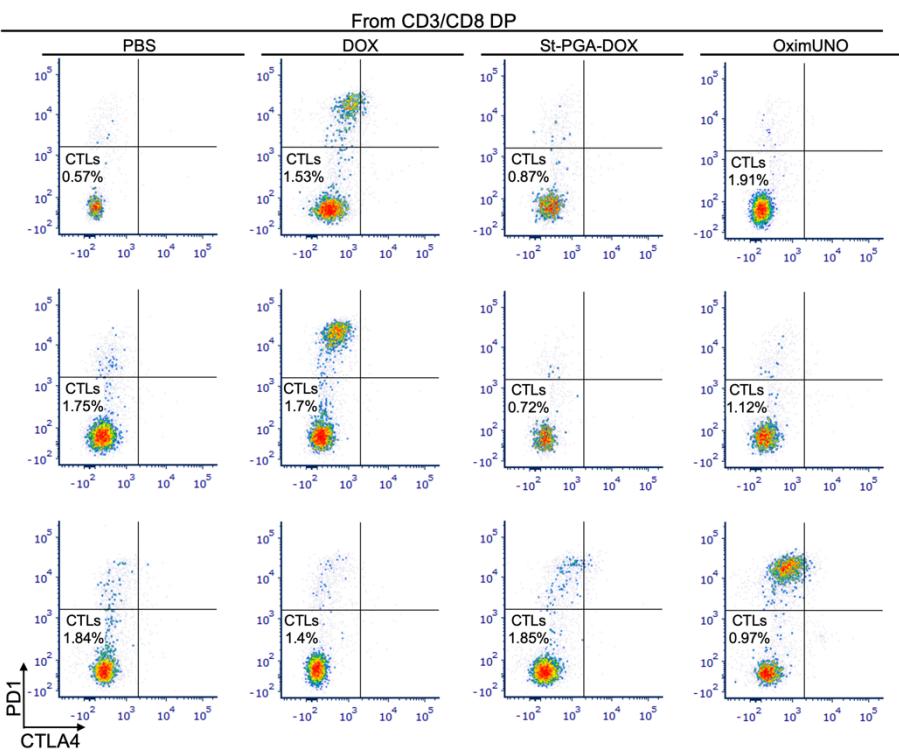

386

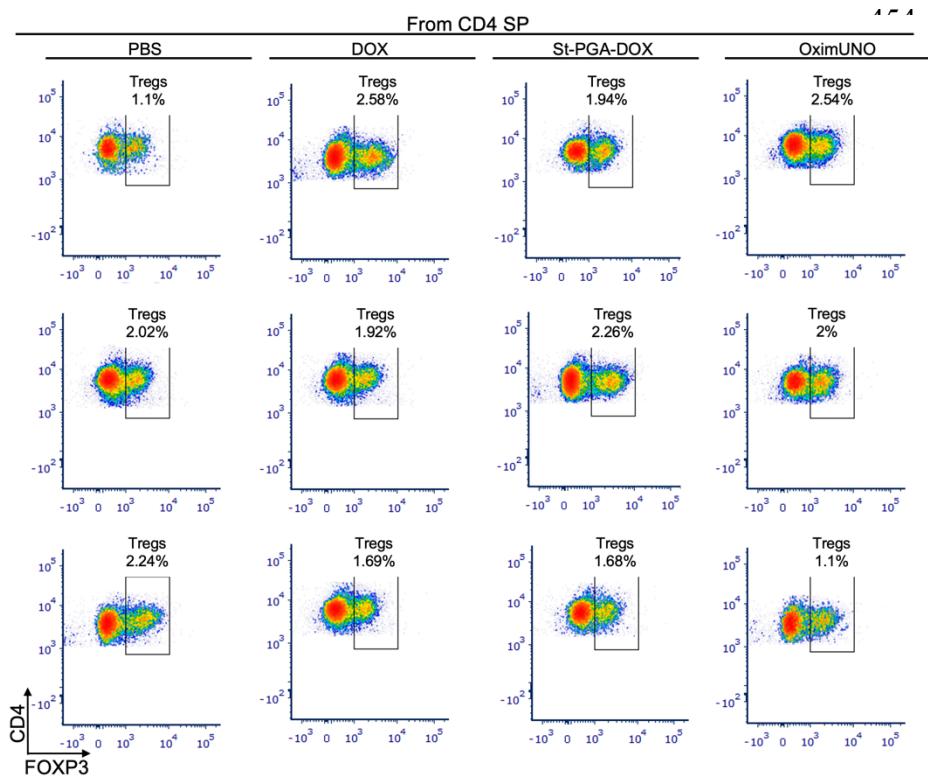
387



388 **Fig. S8. LC-MS method development for determination of DOX in drug release studies and stability studies**
389 **of OximUNO in i.p. fluid and dPBS (A)** MS-MS fragmentation spectra of DOX. **(B)** MS-MS fragmentation
390 spectra of DAU. **(C)** Optimisation of MS parameter (average \pm Sd, N=3). **(D)** Optimisation of CE for each mass
391 transition of DOX and DAU (average \pm Sd, N=3). **(E)** Final MS parameters. **(F)** Representative LC-MS
392 chromatogram of DOX and DAU with t_r =4.92 min and t_r =6.66 min, respectively. **(G)** Method validation
393 parameters. Error bars represent SE. Abbreviations: i.p. fluid – intraperitoneal fluid; DAU – daunorubicin; CXP –


394 collision exit potential; DP – declustering potential; EP – entrance potential; CE – collision energy; LOD – limit of detection;
395 LOQ – limit of quantification; N/A – not applicable.
396
397


409 **Fig. S9. H&E on healthy Balb/c mouse lung.** Representative microscopy image from healthy female Balb/c
410 mouse lung used as a control in H&E analysis showing the typical lung structure. Scale bar represents 400 μm .
411
412


413 **Fig. S10. H&E on hearts from monotherapy with orthotopic TNBC model.** Hearts from all treatment groups
414 were analysed with H&E for potential cardiotoxicity. All treatment groups showed no cardiotoxicity when
415 analysed with H&E. The structure of heart tissue is similar to the structure seen with a healthy heart (farthest
416 right). Scale bar represents 50 μm .
417
418
419

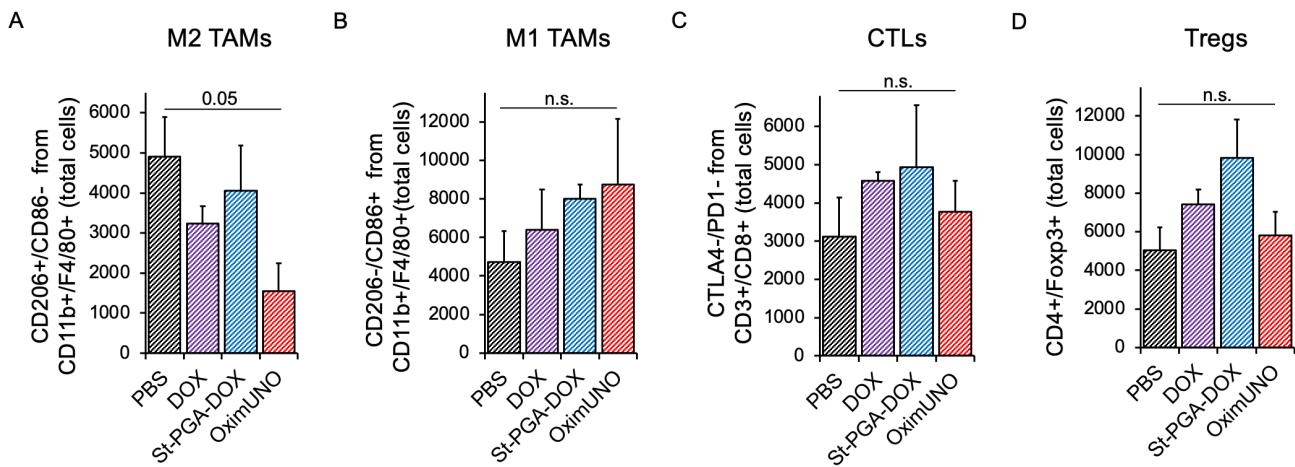

Fig. S11. Flow cytometry plots for M2 and M1 macrophages. Cytometry plots for the M2 and M1 macrophage populations of the treatment study shown in Figure 6. Percentages shown are from total cells. DP – double positive.

Fig. S12. Flow cytometry gating for cytotoxic T lymphocytes (CTLs). Cytometry plots for the CTLs populations of the treatment study shown in Figure 6. Percentages shown are from total cells. DP – double positive

471 **Fig. S13. Flow cytometry gating for T regulatory cells (Tregs).** Cytometry plots for the Treg populations of
472 the treatment study shown in Figure 6. Percentages shown are from total cells. SP – single positive
473

474
475 **Fig. S14. Flow cytometry analysis showing total cells.** Flow cytometry analysis showing total cells for (A) M2
476 TAMs, (B) M1 TAMs, (C) CTLs, and (D) Tregs. Error bars represent SE.

477
478
479
480
481
482

483 **REFERENCES**

484 1. Barz, M., Duro-Castano, A. & Vicent, M. J. A versatile post-polymerization modification
485 method for polyglutamic acid: synthesis of orthogonal reactive polyglutamates and their
486 use in “click chemistry”. *Polym. Chem.* **4**, 2989–2994 (2013).

487 2. Van Lysebetten, D. *et al.* Lipid-Polyglutamate Nanoparticle Vaccine Platform. *ACS Appl.*
488 *Mater. Interfaces* **13**, 6011–6022 (2021).

489 3. Arroyo-Crespo, J. J. *et al.* Tumor microenvironment-targeted poly-L-glutamic acid-based
490 combination conjugate for enhanced triple negative breast cancer treatment. *Biomaterials*
491 **186**, 8–21 (2018).

492