Supplementary Information for:
GTcomplex: Spatial indexing-powered search and alignment of
macromolecular complexes

. [y *
Mindaugas Margelevicius®

MInstitute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.

Corresponding author(s). E-mail(s): mindaugas.margelevicius@bti.vu.lt;

Contents

S1 Supplementary results 2
S1.1 Supplementary figures L e 2

S2 Supplementary methods 9
S2.1 Efficient identification of optimal superpositions oL 9

Bibliography 15

S1 Supplementary results
S1.1 Supplementary figures

a
S 0.6 0.6 — =1 S 0.4+ ~ 8-
% xI* S S " |Ref-2-100 /‘
~ =:] =z X
Qo - ~
g 0.4+ 0.4 1 2 03 5
@ = =
s O 0.2+ o
= o o
o 0.2 0.2 4 o 2
2 £ 0.1+ k5|
© o =
Z g E
£ 00+ 0.0 s sutud st it o 3 0.0 3
(&) T T T T T T T [&] T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 10° 10* 10° 0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00
top hits (x10%) Runtime (sec) # top hits (x10%) # top hits (x10%)
b
) 3. X tom 9 5 < ~
X g % &, JFul-PDB y
o & Z /
3 21 P 2
I E =
= o o
= o
[14 4 =
= = ©
© o =
E g £
g] [0 P TP TP EEPRPIY TP IR TP B 3 o
(&) T T T T T T T T T T [&] T T T T T T
0 1 2 3 4 5 10° 10* 10° 10° 0o 1 2 3 4 5 0o 1 2 3 4 5
#top hits (x10%) Runtime (sec) # top hits (x10°%) # top hits (x10%
C
P v | -
o 204 , - 8000 1viral-C /
S o = 8 /s
¢ 15 4 = 2 = Y
s o o 2000 A / /,/
= © (] /7
) 10 4 2
2 b= = ,
© L 14 - /
2 54 . Z 2 1000 S
£ i 5 = S/ -
> (&] s
o &} -
Ot eatiand o v atd 0
I2 I3 I4 T T T T T T T T T T
10 10 10 0 10 20 30 40 0 10 20 30 40
d # top hits Runtime (sec) # top hits # top hits
YN —
+A o O ® v)
x - o X = NA-2-100
< 154 45/ 1.5+ %
[= ~
: 3
? 1.0 104 2
s o
5 2
2 05+ 0.5 1 i
© >
S =
§ 00+ 004 v vl el . . 3
(&) T T T T T T T T T T T T
00 05 10 15 20 25 10! 102 108 00 05 10 15 20 25
top hits (x10%) Runtime (sec) # top hits (x10%)
—— GTcomplex —--speed=0 --—- GTcomplex --speed=9 —— GTcomplex --speed=12 —— US-align --—= Foldseek-MM
—— GTcomplex —-speed=4 — - GTcomplex --speed=10 -—-—- GTcomplex —--speed=16 —— US-align -fast —— Foldseek-MM-TM
O GTcomplex —-speed=0 A GTcomplex —-speed=9 X GTcomplex —--speed=12 v US-align X Foldseek-MM
O GTcomplex —-speed=4 + GTcomplex —-speed=10 <& GTcomplex --speed=16 ~ ® US-align -fast @ Foldseek-MM-TM
Fig. S1 Benchmarking results on the Ref-2-100 (a), Full-PDB (b), Viral-C (c), and NA-2-100 (d) datasets, evaluated using

TM-score and GDT_TS metrics normalized by query length. Left panels show cumulative TM-score as a function of the number
of top-ranked alignments (ranked by TM-score). Vertical lines indicate the number of alignments with TM-score > 0.5. Middle-
left panels in (a—c) and the central panel in (d) plot cumulative TM-score versus runtime (seconds). Middle-right panels in
(a—c) plot cumulative GDT_TS, and right panels plot cumulative RMSD, each as a function of the number of top-ranked
alignments. Alignments are ranked by TM-score normalized by the length of the query complex. In the left, middle-left (a—c),
and central (d) panels, the TM-scores correspond to TM-align recalculations of the alignments, and the ranking of alignments

is based on these recalculated TM-scores.

Fig. S2 Example of spatial mismatches produced by Foldseek-MM and Foldseek-MM-TM. The figure shows the superim-
position of complexes 8ssz and 9gul as aligned by Foldseek-MM-TM. Spatially distant chains that are incorrectly paired and
aligned, resulting in a large RMSD of 36.60 A (36.96 A for Foldseek-MM), are highlighted in matching colors. All other chains
are shown in gray.

--pre-score=0.38

25 4

o i +A " 3000 A Viral-C //
g 201! 204 * F, 2 S
@ - .
= 15-} 15 1 =) £ 2000 4 o
= ‘ o © o Y
() [} = /
2 104! 10 A 2 k] //'/
g | 3 2 1000 - i
E 54 ! 5 E}i E = S/
3 | 3 o S
04 (O ST VPP ERPRPIY TOOY IRPRPUPY YOV B 0 =
T I2 IS I4 T T T T T
0 10 10 10 0 10 20 30 40
top hits Runtime (sec) # top hits
b --pre-score=0.3
25 o7 25 4 o O @ 3000 =y /:
o | « P » 5 Viral-C /
8 204 | 204, al 8 S
7 y
=454 154) & 2000 7
o ‘ Q g /{/
2 10! 107 5 s sy
3 |) 3 2 10001 v
E 54 ! 5 o E =] S/ i
6 ‘ 8 (&) /
04 Ot 4 eatinnd v vt 04 =
T I2 I3 I4 T T T T T
0 10 10 10 0 10 20 30 40
top hits Runtime (sec) # top hits
¢ --pre-score=0.2
2547 254 o o 4.,
s ‘ o~ r I 3000 yjral-c 7
8 20+ ; 20 1 :j 2 /o
] § B
= 154, 154 3 & 2000 A i
o | o 2 /{/
2 104 10 - £ B /.
S | 3 2 1000 1 y Fah
E 54! 51 @ 5 3 S/
3 | 3 © /C -
04 (O AP VOOY IR YP% IR FOV% 0 —
T T T T I2 I3 I4 T T T T T
0 10 20 30 40 10 10 10 0 10 20 30 40
top hits Runtime (sec) # top hits # top hits
—— GTcomplex --speed=0 --—- GTcomplex --speed=9 —— GTcomplex --speed=12 —— US-align --—= Foldseek-MM
—— GTcomplex --speed=4 — - GTcomplex --speed=10 -—-—- GTcomplex --speed=16 —— US-align -fast —— Foldseek-MM-TM
O GTcomplex —-speed=0 A GTcomplex —-speed=9 X GTcomplex —--speed=12 v US-align X Foldseek-MM

O GTcomplex —-speed=4 + GTcomplex --speed=10 <& GTcomplex --speed=16 ~ ® US-align -fast 8 Foldseek-MM-TM

Fig. S3 Benchmarking results on the Viral-C dataset for three different prefiltering settings: --pre-score=0.38 (a),
--pre-score=0.3 (b), and --pre-score=0.2 (c). Alignments are ranked by TM-score normalized by the length of the shorter
complex. Panel definitions follow those in Fig. 2 of the main text.

Q

--pre-score=0.38

! w 4\
0 20| 20{ 4 00 " 8000 viral-C /
S 1 < = 2 v
P 154 15 = 27 /
Z1sq) 5 Z 2000 o
F i o o o /
© 104 10 2 = .
£ 1 5 kT /e
3 5 21 2 1000 v
E 54! i E 3 Sy
=1 O s
(&) | o /
d7 (O ST TP PRI TP IRPRPIY TPPF I 04
0 T '2 '3 '4 T T T T T
0 10 10 10 0 10 20 30 40
top hits Runtime (sec) # top hits
b --pre-score=0.3
0 209 204, F ©°° N . 3000 yiral-C 7
g | o P 5 S/
@ - E = 24 /
415 } 15 5 2 2000 4 T
= ‘ % 2 s
2 1041 10 o E £ ’
g N S 11 3 1000 e
E 59! 51 | E 3
S =2 o
&} \ o
4! (01 PP VPO PRI TVR EPEPUY PPVH B
0 T T T T T '2 '3 '4
0 10 20 30 40 10 10 10
top hits Runtime (sec) # top hits
¢ --pre-score=0.2
H o 0 -\ s
© 204 204 x ¥ Lt 3000 1\/jral-C /
< o (%)
3 ! = aQ /o
7 \ 15 E 21 2 /7
s °7)) Z 2000 - g
co e 2 /y
2104, 107 2 g Vs
S 2 1 /7* T T 3 1000 S
5= X £ L /. ,
E 59! e e @ E) 3 S/
=1 ey o S
04! 0+ ol et it . 04—
T T T T T > 3 4 T T T T T T T T T T
0 10 20 30 40 10 10 10 0 10 20 30 40 0 10 20 30 40
top hits Runtime (sec) # top hits # top hits
—— GTcomplex --speed=0 --—- GTcomplex --speed=9 —— GTcomplex --speed=12 —— US-align --—= Foldseek-MM
—— GTcomplex --speed=4 — - GTcomplex --speed=10 -—-—- GTcomplex --speed=16 —— US-align -fast —— Foldseek-MM-TM
O GTcomplex —-speed=0 A GTcomplex —-speed=9 X GTcomplex —--speed=12 v US-align X Foldseek-MM

O GTcomplex --speed=4 + GTcomplex --speed=10 & GTcomplex --speed=16 & US-align -fast B8 Foldseek-MM-TM

Fig. S4 Benchmarking results on the Viral-C dataset for three different prefiltering settings: --pre-score=0.38 (a),
--pre-score=0.3 (b), and --pre-score=0.2 (c). Alignments are ranked by TM-score normalized by the length of the query
complex. Panel definitions follow those in Fig. S1.

i --pre-score=0.38
5 20 2.0 —
— L oV K e~
X L~ Lop S [NA-2-100
® 151] 1540 x Z 4]
: 3
172
4 104 1.0 P
g 2 21
% 0.5+ 0.5 3
3
s €
E 00+ (ORI TP I TP RN 3 04
(&) T T T T T L T L T T T T T
00 05 10 15 20 25 10 102 108 00 05 10 15 20 25
top hits (x10%) Runtime (sec) # top hits (x10%)
E --pre-score=0.3
% 20 2.0 = =<1
% 1= + 80 © |NA-2-100
1 .
3 154 1 1547 " ks
: 7
1]
4 104 1.0 P
= o
[2
% 0.5 0.5 =
=}
2 1S
£ 00+ 0041 v v itiad 4 et . d O
(&) T T T T T T T T T T T T T
00 05 10 15 20 25 10 102 108 00 05 10 15 20 25
top hits (x10%) Runtime (sec) # top hits (x10%)
i --pre-score=0.2
%S 20 2.0 6 5 e —
% = P e [NA-2-100
> 15 1 1.5+ z /
5] o 7
S %]
4 1.0 1.0 z
=)
[=
2 051 0.5+ k]
=}
3 1S
£ 0.0+ 004 4 4 tieid 4 atind ..l O
(&) T T T T T T T T T T T T
00 05 10 15 20 25 10° 102 10° 00 05 1.0 15 20 25

top hits (x10°%)

GTcomplex --speed=0
GTcomplex --speed=4

GTcomplex —-speed=0
GTcomplex —-speed=4

A
+

Runtime (sec)

GTcomplex —--speed=9
GTcomplex --speed=10

X
<

GTcomplex ——speed=9
GTcomplex —-speed=10

GTcomplex —--speed=12 ——

GTcomplex --speed=16 ——
GTcomplex —--speed=12 v
GTcomplex —--speed=16 ®

top hits (x10°%)

US-align
US-align -fast

US-align
US-align -fast

Fig. S5 Benchmarking results on the NA-2-100 dataset for three different prefiltering settings: --pre-score=0.38 (a),
--pre-score=0.3 (b), and --pre-score=0.2 (c). Alignments are ranked by TM-score normalized by the length of the shorter
complex. Panel definitions follow those in Fig. 2d of the main text.

aA --pre-score=0.38
@
o
b% /
— 1.54 L]
° -
<]
(5]
? 1.0+
=
=
2 051
s
>
£ 0.0+
(&) T T T T
0.0 0.5 1.0 1.5 2.0 2.5
top hits (x10%)
E --pre-score=0.3
s
o
*
2 45 » /
o
Q
(5]
? 1.0+
=
=
2 054
k]
>
§ 0.0+
(&) T T T T
0.0 0.5 1.0 1.5 2.0 2.5
top hits (x10%)
i --pre-score=0.2
s
o
< 154 L
P =
Q
(5]
? 1.0+
=
=
2 051
k]
>
£ 00+
o T T T T T
0.0 0.5 1.0 1.5 2.0 2.5

top hits (x10°%)

GTcomplex --speed=0
GTcomplex --speed=4

O GTcomplex ——speed=0
0 GTcomplex —--speed=4

A
+

® v
Qd
154 ><+
1.0
0.5+
0.0-! PP TP PR P | s
10’ 102 10°
Runtime (sec)
+ A0 O ® vV
154< %
1.0
0.5+
0.0-; PPN PP B PP s
10° 102 10°
Runtime (sec)
+A o D ® v
o> X
1.5
1.0
0.5+
0.0 A R | R | ra—ry
10’ 10? 10°

Runtime (sec)

GTcomplex —--speed=9
GTcomplex --speed=10

GTcomplex ——speed=9 X
GTcomplex —-speed=10 <

GTcomplex —--speed=12 ——
GTcomplex --speed=16

GTcomplex —--speed=12 v
GTcomplex —--speed=16 &

Cumulative RMSD (x10%) Cumulative RMSD (x10%)

Cumulative RMSD (x10%)

NA-2-100
4 -
2 -
0 -l
T T T T T
0.0 0.5 1.0 1.5 2.0 2.5
top hits (x10%)
NA-2-100
4 -
2 -l
0 -l
T T T T T
0.0 0.5 1.0 15 2.0 2.5
top hits (x10%)
NA-2-100
T T T T T
0.0 0.5 1.0 1.5 2.0 2.5

top hits (x10°%)

US-align
US-align -fast

US-align
US-align -fast

Fig. S6 Benchmarking results on the NA-2-100 dataset for three different prefiltering settings: --pre-score=0.38 (a),
--pre-score=0.3 (b), and --pre-score=0.2 (c). Alignments are ranked by TM-score normalized by the length of the query
complex. Panel definitions follow those in Fig. S1d.

a
< < o 2.0
< Ref-2-100 X Full-PDB) X NA-2-100
< 4 < 20 8 =
< < 2 o 1.54
= = 5 < 1.0
F 21 = 104 2 [=
[o © [
2 = = 2 0.54
R g 51 E k-
> = 8 >
E o4 E o1 § 0.0+
(&) T T T T T O T T T T T (&) T T T T T
0 2 4 6 8 0 10 20 30 40 00 05 1.0 15 20 25
b #top hits (x10%) # top hits (x10°%) # top hits (x10°%)
T 06 S 3+)
< Ref-2-100 X Full-PDB) X NA-2-100
o o 8 2]
g 041 g 27 4 8
e i = ? 1.0+
= =) =
~ 02 = 1 = =
e $ 3 2 054
g g g g
=] =} =
o
£ 0.0+ £ 04 £ 00+
(&) T T T T T o T T T T T T [&] T T T T T
0.00 0.25 0.50 0.75 1.00 0 1 2 3 4 5 00 05 1.0 15 20 25
top hits (x10°%) # top hits (x10°%) # top hits # top hits (x10°%)
—— GTcomplex --speed=0 --—- GTcomplex --speed=9 —— GTcomplex --speed=12 —— US-align --—= Foldseek-MM
—— GTcomplex --speed=4 — - GTcomplex --speed=10 -—-—- GTcomplex --speed=16 —— US-align -fast —— Foldseek-MM-TM
O GTcomplex —-speed=0 A GTcomplex —-speed=9 X GTcomplex —-speed=12 v US-align X Foldseek-MM

O GTcomplex —-speed=4 + GTcomplex --speed=10 <& GTcomplex --speed=16 ~ ® US-align -fast & Foldseek-MM-TM

Fig. S7 Rate of accurate alignments, evaluated by cumulative TM-score as a function of the number of top-ranked alignments
for the Ref-2-100, Full-PDB, Viral-C, and NA-2-100 datasets. Unlike the left panels of Fig. 2 in the main text and Fig. S1, here
TM-scores computed by each tool are used to rank alignments. a, Alignments ranked by TM-score normalized by the length
of the shorter complex. b, Alignments ranked by TM-score normalized by the length of the query complex.

S2 Supplementary methods
S2.1 Efficient identification of optimal superpositions

This section describes the core algorithms that enable GTcomplex to identify optimal structural superposi-
tions of macromolecular complexes. To efficiently explore vast superposition space and converge on the most
consistent superpositions, GTcomplex employs spatial indexing to generate candidate transformations, fol-
lowed by iterative alignment, chain assignment, and refinement steps. Highly customizable, these algorithms
enable sensitive and scalable structure alignment across large datasets.

The top-level algorithm is presented in Algorithm 1. It accepts as input two batches of macromolecular
complex structures, associated structural descriptors, and user-defined parameters, and it produces as output
optimal superpositions, expressed as rigid-body transformation matrices (R,t), for all pairs of structures
drawn from distinct batches. The two batches, representing the sets of query and subject structures, are
processed in parallel.

In the algorithmic specification, bold lowercase letters denote vectors, and italic uppercase letters denote
multi-dimensional matrices or collections. The operator []nu¢ indicates a mutually exclusive operation
preventing concurrent access to the same data by different threads.

Algorithm 1 Find optimal structural superpositions through deep search

procedure DEEPSUPERPOSITIONSEARCH(nq, ng, 1, Ll L, L, C,C, T, T, Nits, Morns Mrns Cthr)

1:

2: Calculate A using Eq. (S1) in parallel for all 0 < ¢ < ng and 0 < s < ng

3 Determine nex¢ from max, [, max; l~s and depth specification

4 Set nyam to 32, 64, or 96 depending on depth specification

5: CALCULATELOCALSIMILARITY (nQ, NS, Mext; 1, 1, lf, A, cihr) > Algorithm 2
6 CALCULATELOCALX COVARIANCES(nq, NS, Next, 1, L I, A, C, O) > Algorithm 3
7 CALCULATETRANSFORMATIONS(nq, NS, Next, L, i, bayn=1) > Algorithm 4
8 for i =0,...,n4s — 1 do

9 ALIGNINCONSTANTTIME(nq, N8, Next, L, L, C, C, T, T, Cenes [i + 1 < nigs]) > Algorithm 5
10: CALCULATEXCOVARIANCESA (nq, ng, Next, 1, I) > Algorithm 6
11: CALCULATETRANSFORMATIONS(nq, NS, Next, 1, 1, [i +1 < nis)) > Algorithm 4
12: end for

13 CALCULATEAPPROXSCORES(nq, ns, Next, 1, 1, L, L) > Algorithm 7
14: GETTOPNTRANSFORMATIONS(NQ, NS, Next, Ntfm, Dsrt=0) > Algorithm 8
15: COMPUTECHAINTMSCORES(nq, 15, Ntfm, Ly Ly cgoc=0) > Algorithm 9
16: MAKECHAIN2CHAINASSIGNMENTS(nqg, NS, Ntim, L, i) > Algorithm 10
17: GETTOPNTRANSFORMATIONS(NQ, 1S, Mtfm; Mbrn; Dsrt=1) > Algorithm 8
18: OPTIMIZESELECTEDALIGNMENTS(nq, ns, Nbm, C, C, brunpp=1) > Algorithm 11
19: REFINEBESTALIGNMENTS(nq, Ns, N, L, L, C,C, Cgoc= — 0.6) > Algorithm 12
20: REFINEBESTALIGNMENTS(nq, 15, Neta, L, L, C, C, ¢goc=0) > Algorithm 12

21: end procedure

The parameters used in Algorithm 1 are defined as follows. ng and ng denote the numbers of query and
subject complex structures in their respective batches. 1 and 1 represent the lengths of the query and subject
complexes, respectively. Iy specifies the context size used for local similarity evaluation and the generation
of initial local alignment-based superpositions.

L and L denote the chain-level lengths of the query and subject complexes, respectively, where L p, is
the length of chain h, of query complex ¢, and L s 18 defined analogously for subject complex s. C and C
represent the Cartesian coordinates of the query and subject structures. Specifically, Cy ,, € R3*! denotes
the coordinates of residue or nucleotide p, in query structure ¢, and C*S,,;s € R3*! has the corresponding
meaning for subject structure s. The position indices p, and p, increase continuously along the entire
complexes, spanning all constituent chains.

T and T represent secondary structure assignments for protein query and subject complexes or nucleotide
sequences for nucleic acid complexes. The complex type, protein or nucleic acid, is determined based on the
predominant atom type, i.e., whether amino acids or nucleotides constitute the majority of the structure.

Nits, Nbrn, and n.g are configurable parameters representing the number of deep, spatial index-driven
superposition search iterations, top-performing superposition branches explored in detail, and refinement
rounds, respectively. The parameter ci,, defines the local structural similarity threshold that triggers
superposition analysis.

The algorithm operates on complete macromolecular complexes rather than treating them as separate
chains. Chain-to-chain assignments are subsequently derived from the optimal complex-level superpositions
identified during the search.

The algorithm begins by computing a dynamic programming (DP) matrix of local scores (line 2) using
the following recursive relation:

Agsij =max{Agsi-1j-1+2 -1y 5 —1, Agsi-1; = Cgap, Ag,s,ij—1 = Cgap, 0} (S1)

The one-byte variables A4 are capped at a maximum value of 252, with the two least significant bits
reserved for backtracking information. Initial superpositions (lines 6-7) are then identified based on struc-
tural regions exhibiting high local similarity (line 5). The total number of regions, 7eyxt, is determined by
the lengths of the structures, and the regions are distributed evenly along them.

After the initial superpositions are computed, several rounds of constant-time, spatial index-driven align-
ment are performed to generate the corresponding superpositions (lines 9-11). These steps form the core
of the algorithm, treating each position independently and enabling rapid exploration of the superposition
space across different configurations.

The atom-independent structural analysis produces sequence-order-independent alignments that capture
spatial correspondence but not topological similarity. To account for structural topology, a post-processing
step is applied.

The post-processing step (line 13) converts sequence-order-independent alignments into approximate
order-dependent TM-scores computed in sublinear time. A small number of transformation matrices (nifm)
with the highest approximate scores are then selected (line 14) to calculate chain-level TM-scores (line 15)
using the parallel COMER2 DP algorithm [1]. Note that only complex-level transformation matrices are
used throughout all algorithmic stages.

After determining chain-to-chain correspondences by maximizing the sum of chain-level TM-scores
(line 16), a smaller number of transformation matrices (nym < Nt) corresponding to the highest TM-scores
are selected (line 17) for further optimization of the associated structural alignments (line 18). Finally, the
best-performing alignments—each representing a unique query-subject pair—are refined through iterative
complex alignment, chain reassignment, and optimization of the resulting complex alignments (lines 19-20).

Algorithm 1 produces transformation matrices for each query-subject complex pair, which are subse-
quently used in the final stages for fine-grained alignment refinement. The procedure for such refinement is
summarized in Algorithm 12.

Algorithm 2 Calculate local similarity

1: procedure CALCULATELOCALSIMILARITY (nq, N, Next, L, L I, A, Cthr)

2 for all (g, s, fext) € [0,1nq) % [0,ng) X [0,ncx) do in parallel

3: Calculate query and subject structure positions p, and p,s from index fext
1 if p, + 1t > 1, or ps + 1t > I then

5 Set skip flag for configuration {q, s, fext }

6 return

7 end if

8 S < 032,32

9: for all ¢ € [0,min{96,l, — p,}) do in parallel

10: for all j € [0,min{128,, — p,}) do in parallel

11: [S mod 32,5 mod 32 <= MaX{S; mod 32,5 mod 32, Ag,s,p,+i,5.+5 N OXEFC} Jmu

12: end for

13: end for

14: m <— max; ; Sij > two-dimensional parallel reduction
15: if m < lf X ¢y then > fragment length fraction as a similarity threshold
16: Set skip flag for configuration {q, s, fext }

17: end if

18: end for

19: end procedure

10

Algorithm 3 Calculate local alignment-based cross-covariance matrices

1. procedure CALCULATELOCALXCOVARIANCES(nq, 15, Nexts 1, 1, It, 4, C, C)
2 for all (¢, s, fext) € [0,nq) X [0,ng) X [0, 1) do in parallel
3: continue if skip flag is set for configuration {q, s, foxt }
4 Calculate query and subject structure positions p, and ps from index foxt
5 (P}, Ds) < argmax (Aq, s, pytic /o, potis /e N\ 0XEC) > parallel reduction
1<a <4, py+le /a<ly, potls /<l
6: Construct the set of matched positions P = {(i,7) € N?}
by backtracking from (pj, ps) to (pg,Ps) in Ags,...
7 (qufext 3 Cq foxts 6Sfext) 5 B
<D nep (CQ7Pq+iO;1:[35+Z’ Copotis Cspo+i) > parallel sum reduction
8: Store (Kgsfo. Cqfux Csfux,) I Memory
9: end for

10: end procedure

Algorithm 4 Calculate transformation matrices

1: procedure CALCULATETRANSFORMATIONS(nqQ, N8, Mext, 1, 1, bayn)
2 for all (¢, s, fext) € [0,nq) % [0,ng) X [0, 1) do in parallel

3: continue if skip flag is set for configuration {q, s, foxt }

4 Load (Kgsfuui> Cqfouss Csfur) frOm memory

5: if bayn = 1 and [, > [, then

6: (qufext 1 €qfoxt> 6Sfext) A (K;I:‘;fext) ésfext) quext)

7: end if

8: Calculate Rgsy,,, by the Kabsch algorithm [2, 3]
based 911 (qufext ’ quext ’ 65fext)

9: tqsfext — Csfext - RqsfextEQfext

10: Store (Rgsfu.:> tgsfoe,) in memory

11: end for

12: end procedure

Algorithm 5 Produce pilot alignments in constant time using spatial indices

1. procedure ALIGNINCONSTANTTIME(nq, ns, Next, 1, 1, C, C, T, T, Conr, bssm)
2 for all (g, s, fext) € [0,nq) X [0,ng) X [0, next) do in parallel

3: continue if skip flag is set for configuration {q, s, foxt }

4 Calculate query and subject structure positions p; and ps from index fexs

5: bssm < 0 if structure g or s does not represent a protein
6: I < min{256,1,, 1}
7: if [, > I, then > always search in the larger structure
8: T4 mjﬂux{O,1rnin{l~s~—gf,p5S —1g/2}}
9: D « CS,TZT+lf71; D7 D'+ Cq; 0« TS,T:'I‘+lf71
10: else
11: r < max{0, min{l, — lr,p, — ls/2}}
12: D «+ Cq,r:r+lf—1; D, D'« CS; 0 «+ Tq,r:r+lf—1
13: end if
14: Load (Rgsfus tqsfe.,) from memory
15: for all i € [0,1;) do in parallel
16: D!« Rysf...Di+tyss.., > transformation
17: j + nearest neighbour in D for D} using index
with (bssm = 1) or without (bssy = 0) information 6; > O(1) time complexity
18: Swap(D;, D;) if 1, > I,
19: Store (D, f)j,j) in memory indexed by (q, s, fext,?)
20: end for
21: if bssm =1 and 3, [D] — Dyl > 8] >l x (1 — cyr) then > parallel reduction
22: Set skip flag for configuration {q, s, fext }
23: end if
24: end for

25: end procedure

11

Algorithm 6 Calculate cross-covariance matrices from alignments

1:
2
3:
4

t

procedure CALCULATEXCOVARIANCESA (nq, ng, Next, 1, i)
for all (g, s, fext) € [0,nq) X [0,ng) X [0, next) do in parallel
continue if skip flag is set for configuration {q, s, foxt }

Iy +— min{256, 14, s}
Load (D;, D;, ~)i-f=701 from memory at (g, s, fcxhi)i-f;()l

(K45 fot s Cfexes Cs fue) < Zif;ol (DiDiT , D, Di) > parallel sum reduction
Store (Kgsfux Cqfuxi Csfux) I MEMOTY
end for

end procedure

Algorithm 7 Calculate approximate sequence-order-dependent scores

1:
2
3
4
5:
6
7
8
9

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:
28:

procedure CALCULATEAPPROXSCORES(nq, 1, Mext, 1, 1, L, L)
for all (¢, s, fext) € [0,nq) X [0,ng) X [0,nex) do in parallel
continue if skip flag is set for configuration {q, s, fext }
Calculate query and subject structure positions p, and ps from index foxt
Iy < min{256, 1,1}
X < —1s12; m < O512; v <= Oy |
Load (Rgsfuys tgsfey) from memory
for all i € [0,1f) do in parallel
Load (D;, D;, j) from memory at (¢, s, fext,)
D; < Rysfo. Di + tys o > transformation
2 « j; a; + d2/(d2 + | D}, — D;|?) > do defined as in [4]
> For clarity, indices j and 7 are assumed to correspond to the query and subject
> structures, respectively, according to the condition [, > I, in Algorithm 5

gi + hqe(j) > get ¢’s chain index from position j
end for
fori=0,...,lf—1do
if i >0 and h,(js + i) # he(ps +i — 1) then > check for a different chain index value
continue if v,, > 0.2 x f’s,ﬁs(ﬁs—ri) > >20% of subject chain length
end if
Vg, < Vg, + 1 > #aligned positions for the query chain
W 4 MaXj.y; <z My > parallel max reduction
¢+ z; mod 512 > trivial hash function
if z. <0 or (z. =z and m. <w + a;) or
(6> 1/2)? e < 250 e > 24) > heuristics upon hash collision
then
Te £ 235 Me & W+ a5
end if
end for
Wys for, < MAX; My > parallel reduction
Store wgsy,,, in memory
end for

end procedure

12

Algorithm 8 Select the top nisy transformation matrices

1: procedure GETTOPNTRANSFORMATIONS(nQ, NS, Next, Mtfm, Dsrt)

2 for all (¢,s) € [0,nq) x [0,ng) do in parallel

3: X4 —1y,;m< 0y

4 if byt = 1 then

5 Load (wgqs fcxt)?:f::_& from memory > TM-scores obtained by DP
6 X' <= SORT((Wgsfure) foxe) > Batcher’s sort [5] in O(log3 ney;) time
7 x (o) 8s bap=—1if wya, =0 (skip flag set)
8 else

9: for all (fext) € [0,next) do in parallel > approximation to partial sorting
10: continue if skip flag is set for configuration {q, s, foxt }

11: Load wgsy,,, from memory

12: Jm fext mod ngpm

13: [(M T) S (Wasfres fexe) I Mg, < Waspr Jmut

14: end for

15: end if

16: for all f € [0, n¢,) do in parallel

17: Set (zy < 0) or unset (x5 > 0) skip flag for configuration {g,s, f}

18: if z; > 0 then

19: Load (Rysa,tgse;) from memory

(Rl poth) (Rysey s tysa,)

21: Load Agsz, from memory into AZZS f if by =1 > chain assignments
22: end if

23: end for

24: for all f € [0, n¢,) do in parallel

25: if z; > 0 then

26: (Rqsf, thf) — (:]sf7 ti]sf)

27: Store (Rysf,tqsf) In memory

28: Store Agsf = A;Sf in memory if bgy =1

29: end if

30: end for

31: end for

32: end procedure

Algorithm 9 Compute chain-level TM-scores for the top nysy, transformation matrices

1. procedure COMPUTECHAINTMSCORES(nq, 15, Nttm, L, L, Cgoc)

2 for all (¢, s, f) € [0,nq) % [0,ng) X [0,7m) do in parallel

3 continue if skip flag is set for configuration {q, s, f}

4: Load (Rgsf,tqsf) from memory

5 for all (hy,hs) € [0,|L,.|) x [0,|Ls.|) do in parallel

6 Perform DP with gap open cost ¢goc on chain pair (hg, hs)
using (Rgsf, tqss) and the COMER2 DP algorithm [1]

7: Store the resulting TM-score in memory indexed by (g, s, f, kg, hs)
8: end for
9: end for

10: end procedure

Algorithm 10 Determine chain-to-chain assignments for the top ny, configurations

1: procedure MAKECHAIN2CHAINASSIGNMENTS(nq, NS, Ntfm, L, i)

2 for all (¢, s, f) € [0,nq) % [0,ns) X [0, n4m) do in parallel

3: continue if skip flag is set for configuration {q, s, f}

4: Apply a parallelized Hungarian algorithm to obtain the chain assignment A,y = {(h;, ﬁ:)}

.. in(|Lqg..|,|Ls..
that maximizes Z;Lmi% @ blks, D TM-score, . ¢ 17 (hy)

> Bs(hq) denotes a one-to-one mapping to unique ﬁs

q

5 Store Agsf in memory indexed by (g, s, f)

6 Store TM-scoregsf = Z(hq,ﬁs)eAqsf TM-score, ¢, 7, in memory indexed by (g,s,f)
7: end for

8: end procedure

13

Algorithm 11 Optimize ny,, selected alignments

1: procedure OPTIMIZESELECTEDALIGNMENTS(nq, ns, Mbm, C; C, brunDP)
2 for f=0,...,npm — 1 do
3 for all (¢,s) € [0,nq) x [0,ng) do in parallel
4 continue if skip flag is set for configuration {q, s, f}
5: Load transformation matrix (Rgss, tesr) from memory
6 Load chain assignments Ag,¢ from memory
7 if brunDP =1 then
8 Perform DP on chain pairs (hg, hs) € Agsy
using (Rgsf,tqss) and the COMER2 DP algorithm [1]
9: end if

10: Construct alignment integrating all chain pairs (hg, ﬁg) € Agss

using the COMER2 backtracking algorithm
11: Store coordinates (Cyg, C‘sl)w of IA(Rgsf,tqss) aligned residues in memory
12: Find optimal (Rysf,tesr) by calculating TM-scores

based on the superpositions obtained in parallel from
nalla(Rgsy,tqsy)] alignment fragments of varying lengths and positions
(similarly to “Search Engine” in [4])

13: end for
14: end for
15: for all (¢,s) € [0,nq) x [0,ng) do in parallel
16: Store (Rys, tqs)
= AUGWAX[(p TM-score(Rgsf, tgsf) in memory
17: end for

18: end procedure

Algorithm 12 Refine the best alignments

1. procedure REFINEBESTALIGNMENTS(nq, 15, Ny, L, L, C, C, Cgoc)

2 repeat n.q times

3 CoMPUTECHAINTMSCORES(nq, ns, Nitm=1, L, L, cgoc)

4: MAKECHAIN2CHAINASSIGNMENTS(nq, ns, Nim=1, L, i)

5 OPTIMIZESELECTEDALIGNMENTS(nq, ng, Nhm=1, C, C‘, brunpP=0)
6 end

7. end procedure

14

Bibliography

1]

[2]

Margelevicius, M. COMER2: GPU-accelerated sensitive and specific homology searches. Bioinformatics
36, 3570-3572 (2020).

Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32,
922-923 (1976).

Kabsch, W. A discussion of the solution for the best rotation to relate two sets of vectors. Acta
Crystallogr. A 34, 827-828 (1978).

Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template
quality. Proteins 57, 702-710 (2004).

Batcher, K. E. Sorting networks and their applications. Proceedings of the April 30-May 2, 1968, Spring
Joint Computer Conference 307-314 (1968).

15

	Supplementary results
	Supplementary figures
	

	Supplementary methods
	Efficient identification of optimal superpositions

	Bibliography

