
Supplementary Information for:

GTcomplex: Spatial indexing-powered search and alignment of

macromolecular complexes

Mindaugas Margelevičius1*

1*Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.

Corresponding author(s). E-mail(s): mindaugas.margelevicius@bti.vu.lt;

Contents

S1 Supplementary results 2
S1.1 Supplementary figures . 2

S2 Supplementary methods 9
S2.1 Efficient identification of optimal superpositions . 9

Bibliography 15

1

S1 Supplementary results

S1.1 Supplementary figures

0.0

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

0.0

0.2

0.4

0.6

103 104 105

Runtime (sec)

0.0

0.1

0.2

0.3

0.4

0.00 0.25 0.50 0.75 1.00
top hits (×103)

C
um

ul
at

ive
 G

D
T_

TS
 (

×
10

3)

Ref−2−100

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00
top hits (×103)

C
um

ul
at

ive
 R

M
SD

 (
×

10
3)

0

1

2

3

0 1 2 3 4 5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

0

1

2

3

103 104 105 106

Runtime (sec)

0.0

0.5

1.0

1.5

0 1 2 3 4 5
top hits (×103)

C
um

ul
at

ive
 G

D
T_

TS
 (

×
10

3)

Full−PDB

0

10

20

30

0 1 2 3 4 5
top hits (×103)

C
um

ul
at

ive
 R

M
SD

 (
×

10
3)

0

5

10

15

20

0 10 20 30 40
top hits

C
um

ul
at

ive
 T

M
−s

co
re

0

5

10

15

20

102 103 104

Runtime (sec)

1

2

0 10 20 30 40
top hits

C
um

ul
at

ive
 G

D
T_

TS

Viral−C

0

1000

2000

3000

0 10 20 30 40
top hits

C
um

ul
at

ive
 R

M
SD

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

0.0

0.5

1.0

1.5

101 102 103

Runtime (sec)

NA−2−100

0

2

4

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 R

M
SD

 (
×

10
3)

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

Foldseek−MM
Foldseek−MM−TM

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

Foldseek−MM
Foldseek−MM−TM

a

b

c

d

Fig. S1 Benchmarking results on the Ref-2-100 (a), Full-PDB (b), Viral-C (c), and NA-2-100 (d) datasets, evaluated using
TM-score and GDT TS metrics normalized by query length. Left panels show cumulative TM-score as a function of the number
of top-ranked alignments (ranked by TM-score). Vertical lines indicate the number of alignments with TM-score ≥ 0.5. Middle-
left panels in (a–c) and the central panel in (d) plot cumulative TM-score versus runtime (seconds). Middle-right panels in
(a–c) plot cumulative GDT TS, and right panels plot cumulative RMSD, each as a function of the number of top-ranked
alignments. Alignments are ranked by TM-score normalized by the length of the query complex. In the left, middle-left (a–c),
and central (d) panels, the TM-scores correspond to TM-align recalculations of the alignments, and the ranking of alignments
is based on these recalculated TM-scores.

2

Fig. S2 Example of spatial mismatches produced by Foldseek-MM and Foldseek-MM-TM. The figure shows the superim-
position of complexes 8ssz and 9gu1 as aligned by Foldseek-MM-TM. Spatially distant chains that are incorrectly paired and
aligned, resulting in a large RMSD of 36.60 Å (36.96 Å for Foldseek-MM), are highlighted in matching colors. All other chains
are shown in gray.

3

0

5

10

15

20

25

0 10 20 30 40
top hits

C
um

ul
at

ive
 T

M
−s

co
re

0

5

10

15

20

25

102 103 104

Runtime (sec)

0

1

2

3

0 10 20 30 40
top hits

C
um

ul
at

ive
 G

D
T_

TS

Viral−C

0

1000

2000

3000

0 10 20 30 40
top hits

C
um

ul
at

ive
 R

M
SD

0

5

10

15

20

25

0 10 20 30 40
top hits

C
um

ul
at

ive
 T

M
−s

co
re

0

5

10

15

20

25

102 103 104

Runtime (sec)

0

1

2

3

0 10 20 30 40
top hits

C
um

ul
at

ive
 G

D
T_

TS

Viral−C

0

1000

2000

3000

0 10 20 30 40
top hits

C
um

ul
at

ive
 R

M
SD

0

5

10

15

20

25

0 10 20 30 40
top hits

C
um

ul
at

ive
 T

M
−s

co
re

0

5

10

15

20

25

102 103 104

Runtime (sec)

0

1

2

3

0 10 20 30 40
top hits

C
um

ul
at

ive
 G

D
T_

TS
Viral−C

0

1000

2000

3000

0 10 20 30 40
top hits

C
um

ul
at

ive
 R

M
SD

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

Foldseek−MM
Foldseek−MM−TM

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

Foldseek−MM
Foldseek−MM−TM

a

b

c
--pre-score=0.2

--pre-score=0.3

--pre-score=0.38

Fig. S3 Benchmarking results on the Viral-C dataset for three different prefiltering settings: --pre-score=0.38 (a),
--pre-score=0.3 (b), and --pre-score=0.2 (c). Alignments are ranked by TM-score normalized by the length of the shorter
complex. Panel definitions follow those in Fig. 2 of the main text.

4

0

5

10

15

20

0 10 20 30 40
top hits

C
um

ul
at

ive
 T

M
−s

co
re

0

5

10

15

20

102 103 104

Runtime (sec)

1

2

0 10 20 30 40
top hits

C
um

ul
at

ive
 G

D
T_

TS

Viral−C

0

1000

2000

3000

0 10 20 30 40
top hits

C
um

ul
at

ive
 R

M
SD

0

5

10

15

20

0 10 20 30 40
top hits

C
um

ul
at

ive
 T

M
−s

co
re

0

5

10

15

20

102 103 104

Runtime (sec)

1

2

0 10 20 30 40
top hits

C
um

ul
at

ive
 G

D
T_

TS

Viral−C

0

1000

2000

3000

0 10 20 30 40
top hits

C
um

ul
at

ive
 R

M
SD

0

5

10

15

20

0 10 20 30 40
top hits

C
um

ul
at

ive
 T

M
−s

co
re

0

5

10

15

20

102 103 104

Runtime (sec)

1

2

0 10 20 30 40
top hits

C
um

ul
at

ive
 G

D
T_

TS

Viral−C

0

1000

2000

3000

0 10 20 30 40
top hits

C
um

ul
at

ive
 R

M
SD

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

Foldseek−MM
Foldseek−MM−TM

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

Foldseek−MM
Foldseek−MM−TM

a

b

c
--pre-score=0.2

--pre-score=0.3

--pre-score=0.38

Fig. S4 Benchmarking results on the Viral-C dataset for three different prefiltering settings: --pre-score=0.38 (a),
--pre-score=0.3 (b), and --pre-score=0.2 (c). Alignments are ranked by TM-score normalized by the length of the query
complex. Panel definitions follow those in Fig. S1.

5

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

0.0

0.5

1.0

1.5

2.0

101 102 103

Runtime (sec)

NA−2−100

0

2

4

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 R

M
SD

 (
×

10
3)

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

0.0

0.5

1.0

1.5

2.0

101 102 103

Runtime (sec)

NA−2−100

0

2

4

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 R

M
SD

 (
×

10
3)

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

0.0

0.5

1.0

1.5

2.0

101 102 103

Runtime (sec)

NA−2−100

0

2

4

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 R

M
SD

 (
×

10
3)

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

a

b

c
--pre-score=0.2

--pre-score=0.3

--pre-score=0.38

Fig. S5 Benchmarking results on the NA-2-100 dataset for three different prefiltering settings: --pre-score=0.38 (a),
--pre-score=0.3 (b), and --pre-score=0.2 (c). Alignments are ranked by TM-score normalized by the length of the shorter
complex. Panel definitions follow those in Fig. 2d of the main text.

6

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

0.0

0.5

1.0

1.5

101 102 103

Runtime (sec)

NA−2−100

0

2

4

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 R

M
SD

 (
×

10
3)

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

0.0

0.5

1.0

1.5

101 102 103

Runtime (sec)

NA−2−100

0

2

4

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 R

M
SD

 (
×

10
3)

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

0.0

0.5

1.0

1.5

101 102 103

Runtime (sec)

NA−2−100

0

2

4

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 R

M
SD

 (
×

10
3)

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

a

b

c
--pre-score=0.2

--pre-score=0.3

--pre-score=0.38

Fig. S6 Benchmarking results on the NA-2-100 dataset for three different prefiltering settings: --pre-score=0.38 (a),
--pre-score=0.3 (b), and --pre-score=0.2 (c). Alignments are ranked by TM-score normalized by the length of the query
complex. Panel definitions follow those in Fig. S1d.

7

Ref−2−100

0

1

2

3

4

0 2 4 6 8
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

Ref−2−100

0.0

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

Foldseek−MM
Foldseek−MM−TM

GTcomplex −−speed=0
GTcomplex −−speed=4

GTcomplex −−speed=9
GTcomplex −−speed=10

GTcomplex −−speed=12
GTcomplex −−speed=16

US−align
US−align −fast

Foldseek−MM
Foldseek−MM−TM

a

b

Full−PDB

0

1

2

3

0 1 2 3 4 5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

Viral−C

0

5

10

15

20

0 10 20 30 40
top hits

C
um

ul
at

ive
 T

M
−s

co
re NA−2−100

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

Full−PDB

0

5

10

15

20

0 10 20 30 40
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

Viral−C

0

5

10

15

20

25

0 10 20 30 40
top hits

C
um

ul
at

ive
 T

M
−s

co
re NA−2−100

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5
top hits (×103)

C
um

ul
at

ive
 T

M
−s

co
re

 (
×

10
3)

Fig. S7 Rate of accurate alignments, evaluated by cumulative TM-score as a function of the number of top-ranked alignments
for the Ref-2-100, Full-PDB, Viral-C, and NA-2-100 datasets. Unlike the left panels of Fig. 2 in the main text and Fig. S1, here
TM-scores computed by each tool are used to rank alignments. a, Alignments ranked by TM-score normalized by the length
of the shorter complex. b, Alignments ranked by TM-score normalized by the length of the query complex.

8

S2 Supplementary methods

S2.1 Efficient identification of optimal superpositions

This section describes the core algorithms that enable GTcomplex to identify optimal structural superposi-
tions of macromolecular complexes. To efficiently explore vast superposition space and converge on the most
consistent superpositions, GTcomplex employs spatial indexing to generate candidate transformations, fol-
lowed by iterative alignment, chain assignment, and refinement steps. Highly customizable, these algorithms
enable sensitive and scalable structure alignment across large datasets.

The top-level algorithm is presented in Algorithm 1. It accepts as input two batches of macromolecular
complex structures, associated structural descriptors, and user-defined parameters, and it produces as output
optimal superpositions, expressed as rigid-body transformation matrices (R, t), for all pairs of structures
drawn from distinct batches. The two batches, representing the sets of query and subject structures, are
processed in parallel.

In the algorithmic specification, bold lowercase letters denote vectors, and italic uppercase letters denote
multi-dimensional matrices or collections. The operator [·]mut indicates a mutually exclusive operation
preventing concurrent access to the same data by different threads.

Algorithm 1 Find optimal structural superpositions through deep search

1: procedure DeepSuperpositionSearch(nQ, nS, l, l̃, lf , L, L̃, C, C̃, T , T̃ , nits, nbrn, nrfn, cthr)
2: Calculate Λ using Eq. (S1) in parallel for all 0 ≤ q < nQ and 0 ≤ s < nS
3: Determine next from maxq lq, maxs l̃s and depth specification
4: Set ntfm to 32, 64, or 96 depending on depth specification
5: CalculateLocalSimilarity(nQ, nS, next, l, l̃, lf , Λ, cthr) . Algorithm 2

6: CalculateLocalXCovariances(nQ, nS, next, l, l̃, lf , Λ, C, C̃) . Algorithm 3

7: CalculateTransformations(nQ, nS, next, l, l̃, bdyn=1) . Algorithm 4
8: for i = 0, . . . , nits − 1 do
9: AlignInConstantTime(nQ, nS, next, l, l̃, C, C̃, T , T̃ , cthr, [i+ 1 < nits]) . Algorithm 5

10: CalculateXCovariancesA(nQ, nS, next, l, l̃) . Algorithm 6

11: CalculateTransformations(nQ, nS, next, l, l̃, [i+ 1 < nits]) . Algorithm 4
12: end for
13: CalculateApproxScores(nQ, nS, next, l, l̃, L, L̃) . Algorithm 7
14: GetTopNTransformations(nQ, nS, next, ntfm, bsrt=0) . Algorithm 8

15: ComputeChainTMscores(nQ, nS, ntfm, L, L̃, cgoc=0) . Algorithm 9

16: MakeChain2ChainAssignments(nQ, nS, ntfm, L, L̃) . Algorithm 10
17: GetTopNTransformations(nQ, nS, ntfm, nbrn, bsrt=1) . Algorithm 8

18: OptimizeSelectedAlignments(nQ, nS, nbrn, C, C̃, brunDP=1) . Algorithm 11

19: RefineBestAlignments(nQ, nS, nrfn, L, L̃, C, C̃, cgoc=− 0.6) . Algorithm 12

20: RefineBestAlignments(nQ, nS, nrfn, L, L̃, C, C̃, cgoc=0) . Algorithm 12
21: end procedure

The parameters used in Algorithm 1 are defined as follows. nQ and nS denote the numbers of query and

subject complex structures in their respective batches. l and l̃ represent the lengths of the query and subject
complexes, respectively. lf specifies the context size used for local similarity evaluation and the generation
of initial local alignment-based superpositions.

L and L̃ denote the chain-level lengths of the query and subject complexes, respectively, where Lq,hq is

the length of chain hq of query complex q, and L̃s,h̃s
is defined analogously for subject complex s. C and C̃

represent the Cartesian coordinates of the query and subject structures. Specifically, Cq,pq ∈ R3×1 denotes

the coordinates of residue or nucleotide pq in query structure q, and C̃s,p̃s ∈ R3×1 has the corresponding
meaning for subject structure s. The position indices pq and p̃s increase continuously along the entire
complexes, spanning all constituent chains.

T and T̃ represent secondary structure assignments for protein query and subject complexes or nucleotide
sequences for nucleic acid complexes. The complex type, protein or nucleic acid, is determined based on the
predominant atom type, i.e., whether amino acids or nucleotides constitute the majority of the structure.

nits, nbrn, and nrfn are configurable parameters representing the number of deep, spatial index-driven
superposition search iterations, top-performing superposition branches explored in detail, and refinement
rounds, respectively. The parameter cthr defines the local structural similarity threshold that triggers
superposition analysis.

9

The algorithm operates on complete macromolecular complexes rather than treating them as separate
chains. Chain-to-chain assignments are subsequently derived from the optimal complex-level superpositions
identified during the search.

The algorithm begins by computing a dynamic programming (DP) matrix of local scores (line 2) using
the following recursive relation:

Λqsij = max{Λq,s,i−1,j−1 + 2 · 1Tqi=T̃sj
− 1, Λq,s,i−1,j − cgap, Λq,s,i,j−1 − cgap, 0}. (S1)

The one-byte variables Λqsij are capped at a maximum value of 252, with the two least significant bits
reserved for backtracking information. Initial superpositions (lines 6–7) are then identified based on struc-
tural regions exhibiting high local similarity (line 5). The total number of regions, next, is determined by
the lengths of the structures, and the regions are distributed evenly along them.

After the initial superpositions are computed, several rounds of constant-time, spatial index-driven align-
ment are performed to generate the corresponding superpositions (lines 9–11). These steps form the core
of the algorithm, treating each position independently and enabling rapid exploration of the superposition
space across different configurations.

The atom-independent structural analysis produces sequence-order-independent alignments that capture
spatial correspondence but not topological similarity. To account for structural topology, a post-processing
step is applied.

The post-processing step (line 13) converts sequence-order-independent alignments into approximate
order-dependent TM-scores computed in sublinear time. A small number of transformation matrices (ntfm)
with the highest approximate scores are then selected (line 14) to calculate chain-level TM-scores (line 15)
using the parallel COMER2 DP algorithm [1]. Note that only complex-level transformation matrices are
used throughout all algorithmic stages.

After determining chain-to-chain correspondences by maximizing the sum of chain-level TM-scores
(line 16), a smaller number of transformation matrices (nbrn < ntfm) corresponding to the highest TM-scores
are selected (line 17) for further optimization of the associated structural alignments (line 18). Finally, the
best-performing alignments—each representing a unique query-subject pair—are refined through iterative
complex alignment, chain reassignment, and optimization of the resulting complex alignments (lines 19–20).

Algorithm 1 produces transformation matrices for each query-subject complex pair, which are subse-
quently used in the final stages for fine-grained alignment refinement. The procedure for such refinement is
summarized in Algorithm 12.

Algorithm 2 Calculate local similarity

1: procedure CalculateLocalSimilarity(nQ, nS, next, l, l̃, lf , Λ, cthr)
2: for all (q, s, fext) ∈ [0, nQ)× [0, nS)× [0, next) do in parallel
3: Calculate query and subject structure positions pq and p̃s from index fext
4: if pq + lf > lq or p̃s + lf > l̃s then
5: Set skip flag for configuration {q, s, fext}
6: return
7: end if
8: S ← 032,32

9: for all i ∈ [0,min{96, lq − pq}) do in parallel

10: for all j ∈ [0,min{128, l̃s − p̃s}) do in parallel
11: [Si mod 32,j mod 32 ← max{Si mod 32,j mod 32, Λq,s,pq+i,p̃s+j ∧ 0xfc}]mut

12: end for
13: end for
14: m← maxi,j Sij . two-dimensional parallel reduction
15: if m < lf × cthr then . fragment length fraction as a similarity threshold
16: Set skip flag for configuration {q, s, fext}
17: end if
18: end for
19: end procedure

10

Algorithm 3 Calculate local alignment-based cross-covariance matrices

1: procedure CalculateLocalXCovariances(nQ, nS, next, l, l̃, lf , Λ, C, C̃)
2: for all (q, s, fext) ∈ [0, nQ)× [0, nS)× [0, next) do in parallel
3: continue if skip flag is set for configuration {q, s, fext}
4: Calculate query and subject structure positions pq and p̃s from index fext
5: (p∗q , p̃

∗
s)← argmax

1≤x≤4, pq+lf/x<lq, p̃s+lf/x<ls
(Λq, s, pq+lf/x, p̃s+lf/x ∧ 0xfc) . parallel reduction

6: Construct the set of matched positions P = {(i, ι̃) ∈ N2}
by backtracking from (p∗q , p̃

∗
s) to (pq, p̃s) in Λq,s,·,·

7: (Kqsfext , cqfext , c̃sfext)

←
∑

(i,ι̃)∈P
(
Cq,pq+iC̃

T
s,p̃s+ι̃

, Cq,pq+i, C̃s,p̃s+ι̃
)

. parallel sum reduction

8: Store (Kqsfext , cqfext , c̃sfext) in memory
9: end for

10: end procedure

Algorithm 4 Calculate transformation matrices

1: procedure CalculateTransformations(nQ, nS, next, l, l̃, bdyn)
2: for all (q, s, fext) ∈ [0, nQ)× [0, nS)× [0, next) do in parallel
3: continue if skip flag is set for configuration {q, s, fext}
4: Load (Kqsfext , cqfext , c̃sfext) from memory

5: if bdyn = 1 and lq ≥ l̃s then
6: (Kqsfext , cqfext , c̃sfext)← (KT

qsfext
, c̃sfext , cqfext)

7: end if
8: Calculate Rqsfext by the Kabsch algorithm [2, 3]

based on (Kqsfext , cqfext , c̃sfext)
9: tqsfext ← ¯̃csfext −Rqsfext c̄qfext

10: Store (Rqsfext , tqsfext) in memory
11: end for
12: end procedure

Algorithm 5 Produce pilot alignments in constant time using spatial indices

1: procedure AlignInConstantTime(nQ, nS, next, l, l̃, C, C̃, T , T̃ , cthr, bSSM)
2: for all (q, s, fext) ∈ [0, nQ)× [0, nS)× [0, next) do in parallel
3: continue if skip flag is set for configuration {q, s, fext}
4: Calculate query and subject structure positions pq and p̃s from index fext
5: bSSM ← 0 if structure q or s does not represent a protein
6: lf ← min{256, lq, l̃s}
7: if lq ≥ l̃s then . always search in the larger structure

8: r ← max{0,min{l̃s − lf , p̃s − lf/2}}
9: D ← C̃s,r:r+lf−1; D̃, D̃′ ← Cq; θ ← T̃s,r:r+lf−1

10: else
11: r ← max{0,min{lq − lf , pq − lf/2}}
12: D ← Cq,r:r+lf−1; D̃, D̃′ ← C̃s; θ ← Tq,r:r+lf−1
13: end if
14: Load (Rqsfext , tqsfext) from memory
15: for all i ∈ [0, lf) do in parallel
16: D′i ← RqsfextDi + tqsfext . transformation

17: j ← nearest neighbour in D̃ for D′i using index
with (bSSM = 1) or without (bSSM = 0) information θi . O(1) time complexity

18: Swap(Di, D̃j) if lq ≥ l̃s
19: Store (Di, D̃j , j) in memory indexed by (q, s, fext, i)
20: end for
21: if bSSM = 1 and

∑
i∈[0,lf) [‖D′i − D̃′j(i)‖ > 8] > lf × (1− cthr) then . parallel reduction

22: Set skip flag for configuration {q, s, fext}
23: end if
24: end for
25: end procedure

11

Algorithm 6 Calculate cross-covariance matrices from alignments

1: procedure CalculateXCovariancesA(nQ, nS, next, l, l̃)
2: for all (q, s, fext) ∈ [0, nQ)× [0, nS)× [0, next) do in parallel
3: continue if skip flag is set for configuration {q, s, fext}
4: lf ← min{256, lq, l̃s}
5: Load (Di, D̃i, ·)lf−1i=0 from memory at (q, s, fext, i)

lf−1
i=0

6: (Kqsfext , cqfext , c̃sfext) ←
∑lf−1
i=0 (DiD̃

T
i , Di, D̃i) . parallel sum reduction

7: Store (Kqsfext , cqfext , c̃sfext) in memory
8: end for
9: end procedure

Algorithm 7 Calculate approximate sequence-order-dependent scores

1: procedure CalculateApproxScores(nQ, nS, next, l, l̃, L, L̃)
2: for all (q, s, fext) ∈ [0, nQ)× [0, nS)× [0, next) do in parallel
3: continue if skip flag is set for configuration {q, s, fext}
4: Calculate query and subject structure positions pq and p̃s from index fext
5: lf ← min{256, lq, l̃s}
6: x← −1512; m← 0512; ν ← 0|Lq,·|
7: Load (Rqsfext , tqsfext) from memory
8: for all i ∈ [0, lf) do in parallel
9: Load (Di, D̃i, j) from memory at (q, s, fext, i)

10: D′i ← RqsfextDi + tqsfext . transformation

11: zi ← j; ai ← d20/(d
2
0 + ‖D′i − D̃i‖2) . d0 defined as in [4]

. For clarity, indices j and i are assumed to correspond to the query and subject

. structures, respectively, according to the condition lq ≥ l̃s in Algorithm 5
12: gi ← hq(j) . get q’s chain index from position j
13: end for
14: for i = 0, . . . , lf − 1 do
15: if i > 0 and h̃s(p̃s + i) 6= h̃s(p̃s + i− 1) then . check for a different chain index value
16: continue if νgi > 0.2× L̃s,h̃s(p̃s+i)

. >20% of subject chain length
17: end if
18: νgi ← νgi + 1 . #aligned positions for the query chain
19: ω ← maxj:xj<zi mj . parallel max reduction
20: c← zi mod 512 . trivial hash function
21: if xc < 0 or (xc = zi and mc < ω + ai) or

((i > lf/2)? xc < zi: xc > zi) . heuristics upon hash collision
then

22: xc ← zi; mc ← ω + ai
23: end if
24: end for
25: wqsfext ← maxjmj . parallel reduction
26: Store wqsfext in memory
27: end for
28: end procedure

12

Algorithm 8 Select the top ntfm transformation matrices

1: procedure GetTopNTransformations(nQ, nS, next, ntfm, bsrt)
2: for all (q, s) ∈ [0, nQ)× [0, nS) do in parallel
3: x← −1ntfm

; m← 0ntfm

4: if bsrt = 1 then
5: Load (wqsfext)

next−1
fext=0 from memory . TM-scores obtained by DP

6: x′ ← Sort((wqsfext)fext) . Batcher’s sort [5] in O(log2
2 next) time

7: x← (x′f)ntfm−1
f=0 . xf = −1 if wqsx′f = 0 (skip flag set)

8: else
9: for all (fext) ∈ [0, next) do in parallel . approximation to partial sorting

10: continue if skip flag is set for configuration {q, s, fext}
11: Load wqsfext from memory
12: fm ← fext mod ntfm
13: [(mfm , xfm)← (wqsfext , fext) if mfm < wqsfext]mut

14: end for
15: end if
16: for all f ∈ [0, ntfm) do in parallel
17: Set (xf < 0) or unset (xf ≥ 0) skip flag for configuration {q, s, f}
18: if xf ≥ 0 then
19: Load (Rqsxf

, tqsxf
) from memory

20: (R′qsf , t
′
qsf)← (Rqsxf

, tqsxf
)

21: Load Aqsxf
from memory into A′qsf if bsrt = 1 . chain assignments

22: end if
23: end for
24: for all f ∈ [0, ntfm) do in parallel
25: if xf ≥ 0 then
26: (Rqsf , tqsf)← (R′qsf , t

′
qsf)

27: Store (Rqsf , tqsf) in memory
28: Store Aqsf = A′qsf in memory if bsrt = 1
29: end if
30: end for
31: end for
32: end procedure

Algorithm 9 Compute chain-level TM-scores for the top ntfm transformation matrices

1: procedure ComputeChainTMscores(nQ, nS, ntfm, L, L̃, cgoc)
2: for all (q, s, f) ∈ [0, nQ)× [0, nS)× [0, ntfm) do in parallel
3: continue if skip flag is set for configuration {q, s, f}
4: Load (Rqsf , tqsf) from memory

5: for all (hq, h̃s) ∈ [0, |Lq,·|)× [0, |L̃s,·|) do in parallel

6: Perform DP with gap open cost cgoc on chain pair (hq, h̃s)
using (Rqsf , tqsf) and the Comer2 DP algorithm [1]

7: Store the resulting TM-score in memory indexed by (q, s, f, hq, h̃s)
8: end for
9: end for

10: end procedure

Algorithm 10 Determine chain-to-chain assignments for the top ntfm configurations

1: procedure MakeChain2ChainAssignments(nQ, nS, ntfm, L, L̃)
2: for all (q, s, f) ∈ [0, nQ)× [0, nS)× [0, ntfm) do in parallel
3: continue if skip flag is set for configuration {q, s, f}
4: Apply a parallelized Hungarian algorithm to obtain the chain assignment Aqsf = {(h∗q , h̃∗s)}

that maximizes
∑min(|Lq,·|,|L̃s,·|)
hq=0 TM-scoreq,s,f,hq,h̃s(hq)

. h̃s(hq) denotes a one-to-one mapping to unique h̃s
5: Store Aqsf in memory indexed by (q, s, f)
6: Store TM-scoreqsf =

∑
(hq,h̃s)∈Aqsf

TM-scoreq,s,f,hq,h̃s
in memory indexed by (q, s, f)

7: end for
8: end procedure

13

Algorithm 11 Optimize nbrn selected alignments

1: procedure OptimizeSelectedAlignments(nQ, nS, nbrn, C, C̃, brunDP)
2: for f = 0, . . . , nbrn − 1 do
3: for all (q, s) ∈ [0, nQ)× [0, nS) do in parallel
4: continue if skip flag is set for configuration {q, s, f}
5: Load transformation matrix (Rqsf , tqsf) from memory
6: Load chain assignments Aqsf from memory
7: if brunDP = 1 then
8: Perform DP on chain pairs (hq, h̃s) ∈ Aqsf

using (Rqsf , tqsf) and the Comer2 DP algorithm [1]
9: end if

10: Construct alignment integrating all chain pairs (hq, h̃s) ∈ Aqsf
using the Comer2 backtracking algorithm

11: Store coordinates (Cqk, C̃sl)k,l of lA(Rqsf , tqsf) aligned residues in memory
12: Find optimal (Rqsf , tqsf) by calculating TM-scores

based on the superpositions obtained in parallel from
nA[lA(Rqsf , tqsf)] alignment fragments of varying lengths and positions
(similarly to “Search Engine” in [4])

13: end for
14: end for
15: for all (q, s) ∈ [0, nQ)× [0, nS) do in parallel
16: Store (Rqs, tqs)

= argmax{(Rqsf ,tqsf)}
nbrn−1

f=0

TM-score(Rqsf , tqsf) in memory

17: end for
18: end procedure

Algorithm 12 Refine the best alignments

1: procedure RefineBestAlignments(nQ, nS, nrfn, L, L̃, C, C̃, cgoc)
2: repeat nrfn times
3: ComputeChainTMscores(nQ, nS, ntfm=1, L, L̃, cgoc)

4: MakeChain2ChainAssignments(nQ, nS, ntfm=1, L, L̃)

5: OptimizeSelectedAlignments(nQ, nS, nbrn=1, C, C̃, brunDP=0)
6: end
7: end procedure

14

Bibliography

[1] Margelevičius, M. COMER2: GPU-accelerated sensitive and specific homology searches. Bioinformatics
36, 3570–3572 (2020).

[2] Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32,
922–923 (1976).

[3] Kabsch, W. A discussion of the solution for the best rotation to relate two sets of vectors. Acta
Crystallogr. A 34, 827–828 (1978).

[4] Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template
quality. Proteins 57, 702–710 (2004).

[5] Batcher, K. E. Sorting networks and their applications. Proceedings of the April 30–May 2, 1968, Spring
Joint Computer Conference 307–314 (1968).

15

	Supplementary results
	Supplementary figures
	

	Supplementary methods
	Efficient identification of optimal superpositions

	Bibliography

