
1

R-CODES
Supplementary material

ABSTRACT

The Moon as Semaphore: Occupancy Modeling
Reveals Contrasting Lunar Responses in Elusive
Terraranas of a Tropical Montane Forest

VICTOR ACOSTA CHAVES ET AL.

Contents
OCCUPANCY MODELING AND RELATIVE IMPORTANCE ANALYSIS FOR PRISTIMANTIS 2

OCCUPANCY MODELING AND RELATIVE IMPORTANCE ANALYSIS FOR DIASPORUS 25

#RELATIVE IMPORTANCE OF COVARIATES IN MODELS (FINAL VISUALIZATION) 42

#FINAL PLOTS FOR VISUALIZATION (OCCUPANCY) ... 55

OCCUPANCY MODELING AND RELATIVE
IMPORTANCE ANALYSIS FOR PRISTIMANTIS
#==

This script performs single-season occupancy modeling for two Pristimantis
frog species to evaluate environmental and sampling covariates affecting
detection and occupancy probabilities. The analysis follows the
single-species, single-season occupancy modeling framework of MacKenzie et al. (2002).

Species: Pristimantis caryophyllaceus and Pristimantis cruentus
Study System: Tropical montane forest, Costa Rica

Covariates:
- Detection: absolute humidity, lunar cycle
- Occupancy: tree diameter (DBH), tree richness, tree abundance

Analysis includes:
1. Data preparation and correlation analysis
2. Model selection using AIC
3. Prediction plots with back-transformed scales
4. Relative importance of covariates

#==

Load required libraries for ecological analysis
library(tidyverse) # Data manipulation and visualization
library(readxl) # Excel file reading
library(unmarked) # Occupancy modeling framework
library(patchwork) # Plot arrangement and composition
library(showtext) # Custom fonts for publication-quality figures
library(corrplot) # Correlation matrix visualization
library(conflicted) # Conflict resolution for function names
library(correlation) # Advanced correlation analysis
library(ggcorrplot) # ggplot2-based correlation plots

Resolve common function conflicts in ecological analysis

conflicts_prefer(
 dplyr::filter, # Prefer dplyr filter over stats
 dplyr::lag, # Prefer dplyr lag over stats
 dplyr::select, # Prefer dplyr select over MASS
 dplyr::mutate, # Ensure dplyr mutate is used
 dplyr::arrange, # Ensure dplyr arrange is used
 dplyr::summarize # Ensure dplyr summarize is used
)

Configure publication-quality typography
showtext_auto()
font_add_google("Lato", "lato")

#==
ABSOLUTE HUMIDITY CALCULATION FUNCTION
#==

Function to calculate absolute humidity (g/m³) from temperature (°C) and relative humidity (%)
calculate_absolute_humidity <- function(temp_c, rh_percent) {
 # Convert temperature to Kelvin
 temp_k <- temp_c + 273.15

 # Saturation vapor pressure (Tetens equation) in hPa
 es_hpa <- 6.112 * exp((17.67 * temp_c) / (temp_c + 243.5))

 # Actual vapor pressure in hPa
 ea_hpa <- (rh_percent / 100) * es_hpa

 # Absolute humidity in g/m³
 absolute_humidity <- (216.7 * ea_hpa) / temp_k

 return(absolute_humidity)
}

#==
DATA IMPORT AND PREPARATION
#==

Read ecological survey data from original Excel file
file_path <- "C:/Users/Victor Acosta/Desktop/ecologyandevolution/especies_modelos_RM.xlsx"
data <- read_excel(file_path)

Calculate absolute humidity for each temperature/humidity pair
data_with_ah <- data %>%
 # Convert to numeric and clean data
 mutate(across(starts_with("temp"), ~as.numeric(gsub(",", ".", .)))) %>%
 mutate(across(starts_with("hum"), ~as.numeric(gsub(",", ".", .)))) %>%
 # Calculate absolute humidity for each temp/hum pair

 mutate(across(starts_with("temp"),
 ~calculate_absolute_humidity(., get(paste0("hum", str_sub(cur_column(), 5)))),
 .names = "ah_{str_sub(.col, 5)}"))

Use the data with absolute humidity for analysis
data <- data_with_ah

#---
FUNCTION: PREPARE UNMARKED DATA FOR SINGLE-SPECIES OCCUPANCY ANALYSIS

This function formats detection/non-detection data into the unmarked framework
for occupancy modeling. It handles scaling of continuous covariates and
preserves original values for back-transformation of predictions.

Parameters:
species_name: Character string of target species name

Returns:
List containing:
- umf: unmarkedFrame for occupancy modeling
- original_values: Means and SDs for back-transformation
#---

prepare_species_data <- function(species_name) {
 # Filter data for focal species
 species_data <- data %>% filter(especie == species_name)

 # Store original values before scaling for ecological interpretation
 original_values <- list()

 # Extract detection history (oc1 to oc10) - binary detection matrix
 y <- species_data %>%
 select(starts_with("oc")) %>%
 as.matrix()

 # Extract and clean site covariates (habitat characteristics)
 siteCovs <- species_data %>%
 select(area, dap, tree_rich, tree_abu) %>%
 mutate(across(c(dap, tree_rich, tree_abu), ~ as.numeric(gsub(",", ".", .x))))

 # Extract and scale observation covariates (absolute humidity and moon)
 ah_data <- species_data %>%
 select(starts_with("ah")) %>%
 mutate(across(everything(), ~as.numeric(gsub(",", ".", .)))) %>%
 as.matrix()

 moon_data <- species_data %>%
 select(starts_with("moon")) %>%

 mutate(across(everything(), ~as.numeric(gsub(",", ".", .)))) %>%
 as.matrix()

 # Store original ecological values for meaningful interpretation
 original_values$ah <- c(mean = mean(ah_data, na.rm = TRUE),
 sd = sd(ah_data, na.rm = TRUE))
 original_values$moon <- c(mean = mean(moon_data, na.rm = TRUE),
 sd = sd(moon_data, na.rm = TRUE))
 original_values$dap <- c(mean = mean(siteCovs$dap, na.rm = TRUE),
 sd = sd(siteCovs$dap, na.rm = TRUE))

 obsCovs <- list(ah = ah_data, moon = moon_data)

 # Create unmarked frame for occupancy analysis
 umf <- unmarkedFrameOccu(y = y, siteCovs = siteCovs, obsCovs = obsCovs)

 # Scale covariates for model convergence and comparison
 umf@siteCovs$dap <- scale(umf@siteCovs$dap)
 umf@siteCovs$tree_rich <- scale(umf@siteCovs$tree_rich)
 umf@siteCovs$tree_abu <- scale(umf@siteCovs$tree_abu)

 umf@obsCovs$ah <- scale(umf@obsCovs$ah)
 umf@obsCovs$moon <- scale(umf@obsCovs$moon)

 return(list(umf = umf, original_values = original_values))
}

#==
CORRELATION ANALYSIS AMONG ECOLOGICAL COVARIATES
#==

#---
FUNCTION: CORRELATION ANALYSIS FOR MULTICOLLINEARITY ASSESSMENT

Evaluates pairwise correlations among environmental covariates to identify
potential multicollinearity issues before occupancy modeling. High correlations
(>0.7) may require careful model selection to avoid overparameterization.

Parameters:
species_name: Character string of target species name

Returns:
List containing correlation matrix and complete cases data
#---

correlation_analysis <- function(species_name) {
 # Get the species data
 species_data <- data %>%

 filter(especie == species_name) %>%
 mutate(across(c(dap, tree_rich, tree_abu), ~ as.numeric(gsub(",", ".", .x))))

 # Select site-level habitat covariates
 site_covs <- species_data %>%
 select(dap, tree_rich, tree_abu)

 # Calculate mean values for observation covariates across surveys
 obs_covs <- species_data %>%
 rowwise() %>%
 mutate(
 ah_mean = mean(c_across(starts_with("ah")), na.rm = TRUE),
 moon_mean = mean(c_across(starts_with("moon")), na.rm = TRUE)
) %>%
 ungroup() %>%
 select(ah_mean, moon_mean) %>%
 mutate(across(everything(), ~ as.numeric(gsub(",", ".", .))))

 # Combine all covariates for correlation assessment
 all_covs <- bind_cols(site_covs, obs_covs)

 # Remove any rows with missing values for correlation analysis
 all_covs_complete <- all_covs %>% filter(complete.cases(.))

 # Run correlation analysis using robust methods
 cor_results <- correlation::correlation(all_covs_complete)

 return(list(
 correlation_matrix = cor_results,
 data = all_covs_complete
))
}

Execute correlation analysis for both focal species
cat("=== CORRELATION ANALYSIS - P. caryophyllaceus ===\n")
cor_ca <- correlation_analysis("caryophyllaceus")
print(cor_ca$correlation_matrix)

cat("\n=== CORRELATION ANALYSIS - P. cruentus ===\n")
cor_cru <- correlation_analysis("cruentus")
print(cor_cru$correlation_matrix)

#---
FUNCTION: CREATE CORRELATION VISUALIZATION FOR PUBLICATION

Generates correlation matrices using hierarchical clustering to visualize
relationships among ecological covariates. Helps identify correlated variable
groups that may affect model selection.

Parameters:
cor_data: Output from correlation_analysis function
species_name: Character string for plot title
#---

create_correlation_plot <- function(cor_data, species_name) {
 # Extract correlation matrix from the ecological data
 corr_matrix <- cor(cor_data$data, use = "complete.obs")

 # Create meaningful ecological variable names for visualization
 colnames(corr_matrix) <- rownames(corr_matrix) <- c(
 "DAP", "Tree Richness", "Tree Abundance",
 "Absolute Humidity", "Moon"
)

 # Create correlation plot using hierarchical clustering
 corrplot(corr_matrix,
 method = "color",
 type = "lower",
 order = "hclust",
 tl.col = "black",
 tl.srt = 45,
 title = paste("Variable Correlations -", species_name),
 mar = c(0, 0, 2, 0))
}

Generate correlation plots for both species
par(mfrow = c(1, 2))
create_correlation_plot(cor_ca, "P. caryophyllaceus")
create_correlation_plot(cor_cru, "P. cruentus")
par(mfrow = c(1, 1))

Alternative ggplot2 version for publication flexibility
create_correlation_plot_gg <- function(cor_data, species_name) {
 corr_matrix <- cor(cor_data$data, use = "complete.obs")

 colnames(corr_matrix) <- rownames(corr_matrix) <- c(
 "DAP", "Tree Richness", "Tree Abundance",
 "Absolute Humidity", "Moon"
)

 ggcorrplot(corr_matrix,
 method = "circle",
 type = "lower",
 lab = TRUE,
 lab_size = 3,
 colors = c("#6D9EC1", "white", "#E46726"),

 title = paste("Variable Correlations -", species_name)) +
 theme(plot.title = element_text(hjust = 0.5, face = "bold"),
 axis.text.x = element_text(angle = 45, hjust = 1))
}

Create and save ggplot2-style correlation plots
cor_plot_ca <- create_correlation_plot_gg(cor_ca, "P. caryophyllaceus")
cor_plot_cru <- create_correlation_plot_gg(cor_cru, "P. cruentus")

print(cor_plot_ca)
print(cor_plot_cru)

Save correlation plots for publication
ggsave("correlation_caryophyllaceus.png", cor_plot_ca, width = 8, height = 6, dpi = 300)
ggsave("correlation_cruentus.png", cor_plot_cru, width = 8, height = 6, dpi = 300)

#==
OCCUPANCY MODEL IMPLEMENTATION AND SELECTION
#==

Prepare unmarked data for both focal species
caryophyllaceus_data <- prepare_species_data("caryophyllaceus")
cruentus_data <- prepare_species_data("cruentus")

c <- caryophyllaceus_data$umf
cruentus_umf <- cruentus_data$umf

Store original values for ecological interpretation of predictions
c_original <- caryophyllaceus_data$original_values
cruentus_original <- cruentus_data$original_values

#---
FUNCTION: AUTOMATED MODEL SELECTION USING AIC FRAMEWORK

Implements a comprehensive model selection approach by fitting all combinations
of detection and occupancy covariates. Uses Akaike Information Criterion (AIC)
for model comparison and ranks models by parsimony and fit.

Parameters:
umf: unmarkedFrame for occupancy modeling
max_models: Optional limit on number of top models to return

Returns:
List containing ranked model results and fitted model objects
#---

model_selection_unmarked <- function(umf, max_models = NULL) {

 # Define all biologically plausible combinations of covariates
 det_forms <- c(
 "~1", "~ah", "~moon", "~ah + moon"
)

 occ_forms <- c(
 "~1", "~dap", "~tree_rich", "~tree_abu",
 "~dap + tree_rich", "~dap + tree_abu", "~tree_rich + tree_abu",
 "~dap + tree_rich + tree_abu"
)

 # Fit all models and store results
 results <- list()
 aic_values <- c()
 formulas <- c()
 k_values <- c() # Number of parameters for AIC calculation

 cat("Fitting", length(det_forms) * length(occ_forms), "model combinations...\n")

 model_count <- 0
 for(i in 1:length(det_forms)) {
 for(j in 1:length(occ_forms)) {
 formula_str <- paste(det_forms[i], occ_forms[j], sep = " ")
 model_count <- model_count + 1

 cat("Model", model_count, "of", length(det_forms) * length(occ_forms), ":", formula_str)

 tryCatch({
 mod <- occu(as.formula(formula_str), data = umf)

 # Extract AIC using unmarked's method
 aic_val <- mod@AIC

 results[[formula_str]] <- mod
 aic_values <- c(aic_values, aic_val)
 formulas <- c(formulas, formula_str)
 k_values <- c(k_values, length(coef(mod))) # Store number of parameters

 cat(" - AIC:", round(aic_val, 2), "\n")

 }, error = function(e) {
 cat(" - ERROR:", e$message, "\n")
 })
 }
 }

 # Create results dataframe using base R for reliability
 if (length(aic_values) > 0) {

 model_results <- data.frame(
 formula = formulas,
 k = k_values,
 AIC = aic_values,
 stringsAsFactors = FALSE
)

 # Order by AIC (lowest AIC indicates best model)
 model_results <- model_results[order(model_results$AIC),]

 # Calculate delta AIC and Akaike weights for model comparison
 model_results$delta_AIC <- model_results$AIC - min(model_results$AIC)
 model_results$weight <- exp(-0.5 * model_results$delta_AIC) / sum(exp(-0.5 *
model_results$delta_AIC))
 model_results$CumW <- cumsum(model_results$weight)

 # Reset row names for clean output
 rownames(model_results) <- NULL

 } else {
 stop("No models were successfully fitted. Check your data and formulas.")
 }

 # Limit to top models if specified
 if(!is.null(max_models)) {
 model_results <- model_results[1:min(max_models, nrow(model_results)),]
 }

 return(list(
 results = model_results,
 models = results
))
}

Execute model selection for both focal species
cat("=== RUNNING MODEL SELECTION FOR P. caryophyllaceus ===\n")
selection_ca <- model_selection_unmarked(c)

Extract best model using AIC criterion
if (nrow(selection_ca$results) > 0) {
 best_formula_ca <- selection_ca$results$formula[1]
 best_ca <- selection_ca$models[[best_formula_ca]]
 cat("Best model for P. caryophyllaceus:", best_formula_ca, "\n")
} else {
 stop("No successful models for P. caryophyllaceus")
}
Display top models with delta AIC ≤ 2 for P. caryophyllaceus
cat("\n=== TOP MODELS FOR P. caryophyllaceus (delta AIC ≤ 2) ===\n")

top_models_ca <- selection_ca$results %>%
 filter(delta_AIC <= 2) %>%
 select(formula, AIC, delta_AIC, weight)

print(top_models_ca)

Cruentus model selection
cat("\n=== RUNNING MODEL SELECTION FOR P. cruentus ===\n")
selection_cru <- model_selection_unmarked(cruentus_umf)

if (nrow(selection_cru$results) > 0) {
 best_formula_cru <- selection_cru$results$formula[1]
 best_cru <- selection_cru$models[[best_formula_cru]]
 cat("Best model for P. cruentus:", best_formula_cru, "\n")
} else {
 stop("No successful models for P. cruentus")
}
Display top models with delta AIC ≤ 2 for P. cruentus
cat("\n=== TOP MODELS FOR P. cruentus (delta AIC ≤ 2) ===\n")
top_models_cru <- selection_cru$results %>%
 filter(delta_AIC <= 2) %>%
 select(formula, AIC, delta_AIC, weight)

print(top_models_cru)

#==
ECOLOGICAL PREDICTION AND VISUALIZATION
#==

#---
FUNCTION: CREATE PREDICTION PLOTS WITH ECOLOGICAL SCALES

Generates partial dependence plots showing how detection and occupancy
probabilities vary with environmental covariates. Back-transforms scaled
covariates to original ecological units for meaningful interpretation.

Parameters:
best_model: Top-ranked occupancy model from AIC selection
best_formula: Formula of the best model
umf: unmarkedFrame used for modeling
original_values: Means and SDs for back-transformation
species_name: Character string for plot labeling

Returns:
List of ggplot objects showing covariate effects
#---

create_prediction_plots_original_scale <- function(best_model, best_formula, umf, original_values,
species_name) {

 # Convert scaled ranges back to original ecological scales
 ah_range_scaled <- seq(min(umf@obsCovs$ah, na.rm = TRUE),
 max(umf@obsCovs$ah, na.rm = TRUE),
 length.out = 100)
 ah_range_original <- ah_range_scaled * original_values$ah["sd"] + original_values$ah["mean"]

 moon_range_scaled <- seq(min(umf@obsCovs$moon, na.rm = TRUE),
 max(umf@obsCovs$moon, na.rm = TRUE),
 length.out = 100)
 moon_range_original <- moon_range_scaled * original_values$moon["sd"] +
original_values$moon["mean"]

 # For DAP (tree diameter at breast height)
 dap_range_scaled <- seq(min(umf@siteCovs$dap, na.rm = TRUE),
 max(umf@siteCovs$dap, na.rm = TRUE),
 length.out = 100)
 dap_range_original <- dap_range_scaled * original_values$dap["sd"] +
original_values$dap["mean"]

 plots_list <- list()

 # ABSOLUTE HUMIDITY EFFECT ON DETECTION PROBABILITY
 if(grepl("ah", best_formula)) {
 new_data_ah <- data.frame(
 ah = ah_range_scaled,
 moon = ifelse(grepl("moon", best_formula), mean(umf@obsCovs$moon, na.rm = TRUE), 0)
)

 pred_ah <- predict(best_model, type = 'det', newdata = new_data_ah, appendData = TRUE)
 pred_ah$ah_original <- ah_range_original

 p_ah <- ggplot(pred_ah, aes(ah_original, Predicted)) +
 geom_ribbon(aes(ymin = lower, ymax = upper), fill = "#1B9E77", alpha = 0.3) +
 geom_line(color = "#1B9E77", linewidth = 1.5) +
 scale_y_continuous(limits = c(0, 1)) +
 labs(
 x = "Absolute Humidity (g/m³)",
 y = "Detection Probability"
) +
 theme_minimal() +
 theme(
 axis.title.x = element_text(size = 16, face = "bold", margin = margin(t = 10)),
 axis.title.y = element_text(size = 16, face = "bold", margin = margin(r = 10)),
 axis.text.x = element_text(size = 14, color = "black"),
 axis.text.y = element_text(size = 14, color = "black"),

 panel.grid.minor = element_blank(),
 panel.grid.major = element_line(color = "grey90", linewidth = 0.5),
 plot.background = element_rect(fill = "white", color = NA)
)

 plots_list[["absolute_humidity"]] <- p_ah
 }

 # LUNAR CYCLE EFFECT ON DETECTION PROBABILITY
 if(grepl("moon", best_formula)) {
 new_data_moon <- data.frame(
 ah = ifelse(grepl("ah", best_formula), mean(umf@obsCovs$ah, na.rm = TRUE), 0),
 moon = moon_range_scaled
)

 pred_moon <- predict(best_model, type = 'det', newdata = new_data_moon, appendData = TRUE)
 pred_moon$moon_original <- moon_range_original

 # Create ecologically meaningful moon phase labels
 moon_breaks <- seq(min(pred_moon$moon_original), max(pred_moon$moon_original),
length.out = 5)
 moon_labels <- c("New Moon", "First Quarter", "Waxing Gibbous", "Waning Gibbous", "Full Moon")

 p_moon <- ggplot(pred_moon, aes(moon_original, Predicted)) +
 geom_ribbon(aes(ymin = lower, ymax = upper), fill = "#7570B3", alpha = 0.3) +
 geom_line(color = "#7570B3", linewidth = 1.5) +
 scale_y_continuous(limits = c(0, 1)) +
 scale_x_continuous(
 name = "Moon Phase",
 breaks = moon_breaks,
 labels = moon_labels
) +
 labs(y = "Detection Probability") +
 theme_minimal() +
 theme(
 axis.title.x = element_text(size = 16, face = "bold", margin = margin(t = 10)),
 axis.title.y = element_text(size = 16, face = "bold", margin = margin(r = 10)),
 axis.text.x = element_text(size = 12, color = "black", angle = 45, hjust = 1),
 axis.text.y = element_text(size = 14, color = "black"),
 panel.grid.minor = element_blank(),
 panel.grid.major = element_line(color = "grey90", linewidth = 0.5),
 plot.background = element_rect(fill = "white", color = NA)
)

 plots_list[["moon"]] <- p_moon
 }

 # TREE DIAMETER (DAP) EFFECT ON OCCUPANCY PROBABILITY

 if(grepl("dap", best_formula)) {
 new_data_dap <- data.frame(
 dap = dap_range_scaled,
 tree_rich = ifelse(grepl("tree_rich", best_formula), mean(umf@siteCovs$tree_rich, na.rm =
TRUE), 0),
 tree_abu = ifelse(grepl("tree_abu", best_formula), mean(umf@siteCovs$tree_abu, na.rm =
TRUE), 0)
)

 pred_dap <- predict(best_model, type = 'state', newdata = new_data_dap, appendData = TRUE)
 pred_dap$dap_original <- dap_range_original

 p_dap <- ggplot(pred_dap, aes(dap_original, Predicted)) +
 geom_ribbon(aes(ymin = lower, ymax = upper), fill = "#33a02c", alpha = 0.3) +
 geom_line(color = "#33a02c", linewidth = 1.5) +
 scale_y_continuous(limits = c(0, 1)) +
 labs(
 x = "Tree Diameter at Breast Height (DBH, cm)",
 y = "Occupancy Probability"
) +
 theme_minimal() +
 theme(
 axis.title.x = element_text(size = 16, face = "bold", margin = margin(t = 10)),
 axis.title.y = element_text(size = 16, face = "bold", margin = margin(r = 10)),
 axis.text.x = element_text(size = 14, color = "black"),
 axis.text.y = element_text(size = 14, color = "black"),
 panel.grid.minor = element_blank(),
 panel.grid.major = element_line(color = "grey90", linewidth = 0.5),
 plot.background = element_rect(fill = "white", color = NA)
)

 plots_list[["dap"]] <- p_dap
 }

 return(plots_list)
}

Generate ecological prediction plots for both species
plots_ca <- create_prediction_plots_original_scale(best_ca, best_formula_ca, c, c_original,
"Pristimantis caryophyllaceus")
plots_cru <- create_prediction_plots_original_scale(best_cru, best_formula_cru, cruentus_umf,
cruentus_original, "Pristimantis cruentus")

#---
FUNCTION: CREATE INTERSPECIFIC COMPARISON FIGURES

Generates side-by-side comparison plots to visualize differences in ecological
responses between the two Pristimantis species. Facilitates comparative

ecological inference.

Parameters:
plots_ca: Prediction plots for P. caryophyllaceus
plots_cru: Prediction plots for P. cruentus
covariate_name: Specific covariate to compare
title: Plot title
#---

create_comparison_figure <- function(plots_ca, plots_cru, covariate_name, title) {
 if(covariate_name %in% names(plots_ca) && covariate_name %in% names(plots_cru)) {

 p_ca <- plots_ca[[covariate_name]] +
 labs(subtitle = expression(italic("Pristimantis caryophyllaceus"))) +
 theme(plot.subtitle = element_text(face = "italic", hjust = 0.5, size = 14))

 p_cru <- plots_cru[[covariate_name]] +
 labs(subtitle = expression(italic("Pristimantis cruentus"))) +
 theme(plot.subtitle = element_text(face = "italic", hjust = 0.5, size = 14))

 combined <- p_ca + p_cru +
 plot_layout(ncol = 2) +
 plot_annotation(
 title = title,
 theme = theme(
 plot.title = element_text(hjust = 0.5, face = "bold", size = 18)
)
)

 return(combined)
 }
 return(NULL)
}

Create and save interspecific comparison figures
if("moon" %in% names(plots_ca) && "moon" %in% names(plots_cru)) {
 moon_comparison <- create_comparison_figure(plots_ca, plots_cru, "moon", "Effect of Moon
Phase on Detection Probability")
 ggsave("moon_comparison.png", moon_comparison, width = 16, height = 8, dpi = 300, bg =
"white")
}

if("absolute_humidity" %in% names(plots_ca) && "absolute_humidity" %in% names(plots_cru)) {
 ah_comparison <- create_comparison_figure(plots_ca, plots_cru, "absolute_humidity", "Effect of
Absolute Humidity on Detection Probability")
 ggsave("absolute_humidity_comparison.png", ah_comparison, width = 16, height = 8, dpi = 300, bg
= "white")
}

if("dap" %in% names(plots_ca) && "dap" %in% names(plots_cru)) {
 dap_comparison <- create_comparison_figure(plots_ca, plots_cru, "dap", "Effect of Tree Diameter
on Occupancy Probability")
 ggsave("dap_comparison.png", dap_comparison, width = 16, height = 8, dpi = 300, bg = "white")
}

Save individual species plots for publication
for(plot_name in names(plots_ca)) {
 filename <- paste0("caryophyllaceus_", plot_name, ".png")
 ggsave(filename, plots_ca[[plot_name]], width = 10, height = 8, dpi = 300, bg = "white")
}

for(plot_name in names(plots_cru)) {
 filename <- paste0("cruentus_", plot_name, ".png")
 ggsave(filename, plots_cru[[plot_name]], width = 10, height = 8, dpi = 300, bg = "white")
}

#==
RELATIVE IMPORTANCE ANALYSIS
#==

#---
FUNCTION: CALCULATE RELATIVE IMPORTANCE OF ECOLOGICAL COVARIATES

Computes relative importance values by summing Akaike weights across all
models containing each covariate. Provides inference about which ecological
factors most strongly influence occupancy and detection.

Parameters:
selection_results: Output from model_selection_unmarked function

Returns:
Dataframe with covariates ranked by relative importance
#---

calculate_relative_importance <- function(selection_results) {
 # Extract model results
 model_results <- selection_results$results

 # Define all ecological covariates considered
 all_covariates <- c("ah", "moon", "dap", "tree_rich", "tree_abu")

 # Calculate importance for each covariate
 importance_list <- list()

 for(covariate in all_covariates) {
 # Find models that contain this covariate

 if(covariate %in% c("ah", "moon")) {
 # Detection covariates
 models_with_covariate <- grepl(covariate, model_results$formula)
 } else {
 # Occupancy covariates
 models_with_covariate <- grepl(covariate, model_results$formula)
 }

 # Sum Akaike weights of models containing this covariate
 total_weight <- sum(model_results$weight[models_with_covariate])

 importance_list[[covariate]] <- data.frame(
 covariate = covariate,
 importance = total_weight
)
 }

 # Combine all importance values and rank by importance
 importance_df <- bind_rows(importance_list) %>%
 arrange(desc(importance))

 return(importance_df)
}

Calculate relative importance for both species
importance_ca <- calculate_relative_importance(selection_ca)
importance_cru <- calculate_relative_importance(selection_cru)

cat("✓ Relative importance data calculated\n")

#---
FUNCTION: CLUSTERED RELATIVE IMPORTANCE PLOT

Creates a grouped bar chart showing relative importance values for both
species together, facilitating direct comparison of ecological drivers
between species.

Parameters:
importance_ca: Importance data for P. caryophyllaceus
importance_cru: Importance data for P. cruentus
#---

create_clustered_relimp_plot <- function(importance_ca, importance_cru) {
 # Combine both species' data
 combined_data <- bind_rows(
 importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"),
 importance_cru %>% mutate(species = "Pristimantis cruentus")
)

 # Define ecological color scheme
 colors <- c("ah" = "#35978f", "moon" = "#b0b0b0",
 "dap" = "#bf812d", "tree_rich" = "#66A61E", "tree_abu" = "#01665e")

 # Create meaningful ecological labels
 pretty_labels <- c(
 "ah" = "Absolute Humidity",
 "moon" = "Lunar cycle",
 "dap" = "Tree diameter (DBH)",
 "tree_rich" = "Tree richness",
 "tree_abu" = "Tree abundance"
)

 combined_data <- combined_data %>%
 mutate(
 label = pretty_labels[covariate],
 species = factor(species, levels = c("Pristimantis caryophyllaceus", "Pristimantis cruentus")),
 # Short names for clustering
 species_short = ifelse(species == "Pristimantis caryophyllaceus", "P. caryophyllaceus", "P.
cruentus")
)

 ggplot(combined_data, aes(x = importance, y = reorder(label, importance), fill = species_short)) +
 geom_col(position = position_dodge(0.8), width = 0.7, alpha = 0.8) +
 geom_text(aes(label = sprintf("%.2f", importance)),
 position = position_dodge(0.8),
 hjust = -0.2, size = 5, color = "black") +
 scale_fill_manual(values = c("P. caryophyllaceus" = "#1f78b4", "P. cruentus" = "#33a02c")) +
 scale_x_continuous(
 limits = c(0, 1.1),
 expand = expansion(mult = c(0, 0.05)),
 breaks = seq(0, 1, 0.2)
) +
 labs(
 x = "Relative Importance",
 y = NULL,
 title = "Relative Importance of Covariates in Occupancy Models",
 subtitle = "Based on model weights across all candidate models",
 fill = "Species"
) +
 theme_minimal() +
 theme(
 legend.position = "top",
 legend.title = element_text(face = "bold", size = 14),
 legend.text = element_text(face = "italic", size = 12),
 plot.title = element_text(hjust = 0.5, face = "bold", size = 20, margin = margin(b = 15)),
 plot.subtitle = element_text(hjust = 0.5, size = 16, color = "grey40", margin = margin(b = 20)),

 axis.title.x = element_text(face = "bold", size = 18, margin = margin(t = 15)),
 axis.text.y = element_text(face = "bold", size = 16, color = "black"),
 axis.text.x = element_text(size = 14),
 # Add black axis lines
 axis.line = element_line(color = "black", linewidth = 0.5),
 axis.ticks = element_line(color = "black"),
 panel.grid.major.y = element_blank(),
 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_line(color = "grey90"),
 panel.grid.minor.x = element_blank(),
 panel.border = element_blank(),
 plot.background = element_rect(fill = "white", color = NA)
) +
 coord_cartesian(clip = "off")
}

Create and save clustered relative importance plot
clustered_relimp <- create_clustered_relimp_plot(importance_ca, importance_cru)
ggsave("relative_importance_clustered.png", clustered_relimp,
 width = 18, height = 10, dpi = 300, bg = "white")

cat("✓ Clustered relative importance plot saved\n")

#---
FUNCTION: COMBINED RELATIVE IMPORTANCE PLOT

Creates side-by-side facet plot showing relative importance for both species
separately but in a single figure for comparative assessment.

Parameters:
importance_ca: Importance data for P. caryophyllaceus
importance_cru: Importance data for P. cruentus
#---

create_combined_relimp_plot <- function(importance_ca, importance_cru) {
 # Combine both species' data
 combined_data <- bind_rows(
 importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"),
 importance_cru %>% mutate(species = "Pristimantis cruentus")
)

 # Define ecological color scheme
 colors <- c("ah" = "#35978f", "moon" = "#b0b0b0",
 "dap" = "#bf812d", "tree_rich" = "#66A61E", "tree_abu" = "#01665e")

 # Create meaningful ecological labels
 pretty_labels <- c(
 "ah" = "Absolute Humidity",

 "moon" = "Lunar cycle",
 "dap" = "Tree diameter (DBH)",
 "tree_rich" = "Tree richness",
 "tree_abu" = "Tree abundance"
)

 combined_data <- combined_data %>%
 mutate(
 label = pretty_labels[covariate],
 species = factor(species, levels = c("Pristimantis caryophyllaceus", "Pristimantis cruentus"))
)

 ggplot(combined_data, aes(x = importance, y = reorder(label, importance))) +
 geom_col(aes(fill = covariate), width = 0.7, alpha = 0.8, position = "dodge") +
 geom_text(aes(label = sprintf("%.2f", importance)),
 position = position_dodge(width = 0.7),
 hjust = -0.2, size = 5, color = "black") +
 scale_fill_manual(values = colors) +
 scale_x_continuous(
 limits = c(0, 1.1),
 expand = expansion(mult = c(0, 0.05)),
 breaks = seq(0, 1, 0.2)
) +
 facet_wrap(~ species, ncol = 2) +
 labs(
 x = "Relative Importance",
 y = NULL,
 title = "Relative Importance of Covariates in Occupancy Models",
 subtitle = "Based on model weights across all candidate models"
) +
 theme_minimal() +
 theme(
 legend.position = "none",
 plot.title = element_text(hjust = 0.5, face = "bold", size = 20, margin = margin(b = 15)),
 plot.subtitle = element_text(hjust = 0.5, size = 16, color = "grey40", margin = margin(b = 20)),
 axis.title.x = element_text(face = "bold", size = 18, margin = margin(t = 15)),
 axis.text.y = element_text(face = "bold", size = 16, color = "black"),
 axis.text.x = element_text(size = 14),
 strip.text = element_text(face = "italic", size = 16, color = "black"),
 # Add black axis lines
 axis.line = element_line(color = "black", linewidth = 0.5),
 axis.ticks = element_line(color = "black"),
 panel.grid.major.y = element_blank(),
 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_line(color = "grey90"),
 panel.grid.minor.x = element_blank(),
 panel.border = element_blank(),
 plot.background = element_rect(fill = "white", color = NA)

) +
 coord_cartesian(clip = "off")
}

Create and save combined relative importance plot
combined_relimp_single <- create_combined_relimp_plot(importance_ca, importance_cru)
ggsave("relative_importance_both_species.png", combined_relimp_single,
 width = 18, height = 10, dpi = 300, bg = "white")

cat("✓ Combined relative importance plot saved with proper font sizes\n")

#---
FUNCTION: INDIVIDUAL SPECIES RELATIVE IMPORTANCE PLOTS

Creates separate relative importance plots for each species with consistent
color scheme for individual species assessment.

Parameters:
importance_df: Importance data for a single species
species_name: Character string for plot title
#---

create_single_relimp_plot <- function(importance_df, species_name) {
 # Use consistent ecological color scheme
 colors <- c("ah" = "#35978f", "moon" = "#b0b0b0",
 "dap" = "#bf812d", "tree_rich" = "#66A61E", "tree_abu" = "#01665e")

 # Create meaningful ecological labels
 pretty_labels <- c(
 "ah" = "Absolute Humidity",
 "moon" = "Lunar cycle",
 "dap" = "Tree diameter (DBH)",
 "tree_rich" = "Tree richness",
 "tree_abu" = "Tree abundance"
)

 importance_df <- importance_df %>%
 mutate(label = pretty_labels[covariate])

 ggplot(importance_df, aes(x = importance, y = reorder(label, importance))) +
 geom_col(aes(fill = covariate), width = 0.7, alpha = 0.8) +
 geom_text(aes(label = sprintf("%.2f", importance)),
 hjust = -0.2, size = 5, color = "black") +
 scale_fill_manual(values = colors) +
 scale_x_continuous(
 limits = c(0, 1.1),
 expand = expansion(mult = c(0, 0.05)),
 breaks = seq(0, 1, 0.2)

) +
 labs(
 x = "Relative Importance",
 y = NULL,
 title = species_name,
 subtitle = "Relative importance of covariates"
) +
 theme_minimal() +
 theme(
 legend.position = "none",
 plot.title = element_text(face = "italic", hjust = 0.5, size = 18, margin = margin(b = 10)),
 plot.subtitle = element_text(hjust = 0.5, size = 14, color = "grey40", margin = margin(b = 15)),
 axis.title.x = element_text(face = "bold", size = 16, margin = margin(t = 10)),
 axis.text.y = element_text(face = "bold", size = 14, color = "black"),
 axis.text.x = element_text(size = 12),
 # Add black axis lines
 axis.line = element_line(color = "black", linewidth = 0.5),
 axis.ticks = element_line(color = "black"),
 panel.grid.major.y = element_blank(),
 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_line(color = "grey90"),
 panel.grid.minor.x = element_blank(),
 panel.border = element_blank(),
 plot.background = element_rect(fill = "white", color = NA)
) +
 coord_cartesian(clip = "off")
}

Create individual species relative importance plots
relimp_ca <- create_single_relimp_plot(importance_ca, "Pristimantis caryophyllaceus")
relimp_cru <- create_single_relimp_plot(importance_cru, "Pristimantis cruentus")

Save individual plots
ggsave("relative_importance_caryophyllaceus.png", relimp_ca,
 width = 10, height = 8, dpi = 300, bg = "white")
ggsave("relative_importance_cruentus.png", relimp_cru,
 width = 10, height = 8, dpi = 300, bg = "white")

cat("✓ Individual relative importance plots saved\n")

#==
RESULTS DISPLAY AND SUMMARY
#==

Display all generated plots in R graphics device
cat("\n=== QUICK DISPLAY OF ALL ECOLOGICAL PLOTS ===\n")

Display individual species prediction plots

cat("\n--- Pristimantis caryophyllaceus ---\n")
for(plot_name in names(plots_ca)) {
 cat("Displaying:", plot_name, "\n")
 print(plots_ca[[plot_name]])
}

cat("\n--- Pristimantis cruentus ---\n")
for(plot_name in names(plots_cru)) {
 cat("Displaying:", plot_name, "\n")
 print(plots_cru[[plot_name]])
}

Display comparison plots
cat("\n--- Interspecific Comparison Plots ---\n")
comparison_plots <- ls(pattern = "_comparison$")
for(plot_name in comparison_plots) {
 cat("Displaying:", plot_name, "\n")
 print(get(plot_name))
}

Display relative importance plots
cat("\n--- Relative Importance Analysis ---\n")
if(exists("relimp_ca")) {
 cat("Displaying: P. caryophyllaceus Relative Importance\n")
 print(relimp_ca)
}
if(exists("relimp_cru")) {
 cat("Displaying: P. cruentus Relative Importance\n")
 print(relimp_cru)
}
if(exists("combined_relimp_single")) {
 cat("Displaying: Combined Relative Importance (Side by Side)\n")
 print(combined_relimp_single)
}
if(exists("clustered_relimp")) {
 cat("Displaying: Clustered Relative Importance (Both Species Together)\n")
 print(clustered_relimp)
}

#---
ECOLOGICAL ANALYSIS SUMMARY

Provides concise summary of key findings for both focal species, including
best models, AIC values, and ecological interpretation of results.
#---

cat("\n=== ECOLOGICAL ANALYSIS SUMMARY ===\n")
cat("Pristimantis caryophyllaceus:\n")

cat(" Best model:", best_formula_ca, "\n")
cat(" AIC:", round(best_ca@AIC, 2), "\n")
cat(" Ecological drivers identified:", names(plots_ca), "\n\n")

cat("Pristimantis cruentus:\n")
cat(" Best model:", best_formula_cru, "\n")
cat(" AIC:", round(best_cru@AIC, 2), "\n")
cat(" Ecological drivers identified:", names(plots_cru), "\n\n")

cat("Comparative figures generated:\n")
if(!is.null(moon_comparison)) cat("- Lunar cycle effects on detection\n")
if(!is.null(ah_comparison)) cat("- Absolute humidity effects on detection\n")
if(!is.null(dap_comparison)) cat("- Tree diameter effects on occupancy\n")

cat("\nRelative importance analyses completed:\n")
cat("- Clustered bar chart (both species)\n")
cat("- Combined facet plot\n")
cat("- Individual species plots\n")

cat("\n OCCUPANCY MODELING ANALYSIS COMPLETE\n")
cat("All ecological plots and analyses saved for publication.\n")

OCCUPANCY MODELING AND RELATIVE
IMPORTANCE ANALYSIS FOR DIASPORUS
#==

This script performs single-season occupancy modeling for Diasporus diastema
to evaluate environmental and sampling covariates affecting detection and
occupancy probabilities. The analysis follows the single-species, single-season
occupancy modeling framework of MacKenzie et al. (2002).

Species: Diasporus diastema
Study System: Tropical montane forest, Costa Rica

Covariates:
- Detection: absolute humidity, lunar cycle
- Occupancy: tree diameter (DBH), tree richness, tree abundance

Analysis includes:
1. Data preparation and correlation analysis
2. Model selection using AIC
3. Prediction plots with back-transformed scales
4. Relative importance of covariates

#==

Load required libraries for ecological analysis
library(tidyverse) # Data manipulation and visualization
library(readxl) # Excel file reading
library(unmarked) # Occupancy modeling framework
library(patchwork) # Plot arrangement and composition
library(showtext) # Custom fonts for publication-quality figures
library(corrplot) # Correlation matrix visualization
library(conflicted) # Conflict resolution for function names
library(correlation) # Advanced correlation analysis
library(ggcorrplot) # ggplot2-based correlation plots

Resolve common function conflicts in ecological analysis
conflicts_prefer(
 dplyr::filter, # Prefer dplyr filter over stats
 dplyr::lag, # Prefer dplyr lag over stats
 dplyr::select, # Prefer dplyr select over MASS
 dplyr::mutate, # Ensure dplyr mutate is used
 dplyr::arrange, # Ensure dplyr arrange is used
 dplyr::summarize # Ensure dplyr summarize is used
)

Configure publication-quality typography

showtext_auto()
font_add_google("Lato", "lato")

#==
ABSOLUTE HUMIDITY CALCULATION FUNCTION
#==

Function to calculate absolute humidity (g/m³) from temperature (°C) and relative humidity (%)
calculate_absolute_humidity <- function(temp_c, rh_percent) {
 # Convert temperature to Kelvin
 temp_k <- temp_c + 273.15

 # Saturation vapor pressure (Tetens equation) in hPa
 es_hpa <- 6.112 * exp((17.67 * temp_c) / (temp_c + 243.5))

 # Actual vapor pressure in hPa
 ea_hpa <- (rh_percent / 100) * es_hpa

 # Absolute humidity in g/m³
 absolute_humidity <- (216.7 * ea_hpa) / temp_k

 return(absolute_humidity)
}

#==
DATA IMPORT AND PREPARATION
#==

Read ecological survey data from Excel file
file_path <- "C:/Users/Victor Acosta/Desktop/ecologyandevolution/especies_modelos_RM.xlsx"
data <- read_excel(file_path)

Calculate absolute humidity for each temperature/humidity pair
data_with_ah <- data %>%
 # Convert to numeric and clean data
 mutate(across(starts_with("temp"), ~as.numeric(gsub(",", ".", .)))) %>%
 mutate(across(starts_with("hum"), ~as.numeric(gsub(",", ".", .)))) %>%
 # Calculate absolute humidity for each temp/hum pair
 mutate(across(starts_with("temp"),
 ~calculate_absolute_humidity(., get(paste0("hum", str_sub(cur_column(), 5)))),
 .names = "ah_{str_sub(.col, 5)}"))

Use the data with absolute humidity for analysis
data <- data_with_ah

#---
FUNCTION: PREPARE UNMARKED DATA FOR SINGLE-SPECIES OCCUPANCY ANALYSIS

This function formats detection/non-detection data into the unmarked framework
for occupancy modeling. It handles scaling of continuous covariates and
preserves original values for back-transformation of predictions.

Parameters:
species_name: Character string of target species name

Returns:
List containing:
- umf: unmarkedFrame for occupancy modeling
- original_values: Means and SDs for back-transformation
#---

prepare_species_data <- function(species_name) {
 # Filter data for focal species
 species_data <- data %>% filter(especie == species_name)

 # Store original values before scaling for ecological interpretation
 original_values <- list()

 # Extract detection history (oc1 to oc10) - binary detection matrix
 y <- species_data %>%
 select(starts_with("oc")) %>%
 as.matrix()

 # Extract and clean site covariates (habitat characteristics)
 siteCovs <- species_data %>%
 select(area, dap, tree_rich, tree_abu) %>%
 mutate(across(c(dap, tree_rich, tree_abu), ~ as.numeric(gsub(",", ".", .x))))

 # Extract and scale observation covariates (absolute humidity and moon)
 ah_data <- species_data %>%
 select(starts_with("ah")) %>%
 mutate(across(everything(), ~as.numeric(gsub(",", ".", .)))) %>%
 as.matrix()

 moon_data <- species_data %>%
 select(starts_with("moon")) %>%
 mutate(across(everything(), ~as.numeric(gsub(",", ".", .)))) %>%
 as.matrix()

 # Store original ecological values for meaningful interpretation
 original_values$ah <- c(mean = mean(ah_data, na.rm = TRUE),
 sd = sd(ah_data, na.rm = TRUE))
 original_values$moon <- c(mean = mean(moon_data, na.rm = TRUE),
 sd = sd(moon_data, na.rm = TRUE))
 original_values$dap <- c(mean = mean(siteCovs$dap, na.rm = TRUE),
 sd = sd(siteCovs$dap, na.rm = TRUE))

 obsCovs <- list(ah = ah_data, moon = moon_data)

 # Create unmarked frame for occupancy analysis
 umf <- unmarkedFrameOccu(y = y, siteCovs = siteCovs, obsCovs = obsCovs)

 # Scale covariates for model convergence and comparison
 umf@siteCovs$dap <- scale(umf@siteCovs$dap)
 umf@siteCovs$tree_rich <- scale(umf@siteCovs$tree_rich)
 umf@siteCovs$tree_abu <- scale(umf@siteCovs$tree_abu)

 umf@obsCovs$ah <- scale(umf@obsCovs$ah)
 umf@obsCovs$moon <- scale(umf@obsCovs$moon)

 return(list(umf = umf, original_values = original_values))
}

#==
CORRELATION ANALYSIS AMONG ECOLOGICAL COVARIATES
#==

#---
FUNCTION: CORRELATION ANALYSIS FOR MULTICOLLINEARITY ASSESSMENT

Evaluates pairwise correlations among environmental covariates to identify
potential multicollinearity issues before occupancy modeling. High correlations
(>0.7) may require careful model selection to avoid overparameterization.

Parameters:
species_name: Character string of target species name

Returns:
List containing correlation matrix and complete cases data
#---

correlation_analysis <- function(species_name) {
 # Get the species data
 species_data <- data %>%
 filter(especie == species_name) %>%
 mutate(across(c(dap, tree_rich, tree_abu), ~ as.numeric(gsub(",", ".", .x))))

 # Select site-level habitat covariates
 site_covs <- species_data %>%
 select(dap, tree_rich, tree_abu)

 # Calculate mean values for observation covariates across surveys
 obs_covs <- species_data %>%
 rowwise() %>%

 mutate(
 ah_mean = mean(c_across(starts_with("ah")), na.rm = TRUE),
 moon_mean = mean(c_across(starts_with("moon")), na.rm = TRUE)
) %>%
 ungroup() %>%
 select(ah_mean, moon_mean) %>%
 mutate(across(everything(), ~ as.numeric(gsub(",", ".", .))))

 # Combine all covariates for correlation assessment
 all_covs <- bind_cols(site_covs, obs_covs)

 # Remove any rows with missing values for correlation analysis
 all_covs_complete <- all_covs %>% filter(complete.cases(.))

 # Run correlation analysis using robust methods
 cor_results <- correlation::correlation(all_covs_complete)

 return(list(
 correlation_matrix = cor_results,
 data = all_covs_complete
))
}

Execute correlation analysis for Diasporus diastema
cat("=== CORRELATION ANALYSIS - Diasporus diastema ===\n")
cor_diastema <- correlation_analysis("diastema")
print(cor_diastema$correlation_matrix)

#---
FUNCTION: CREATE CORRELATION VISUALIZATION FOR PUBLICATION

Generates correlation matrices using hierarchical clustering to visualize
relationships among ecological covariates. Helps identify correlated variable
groups that may affect model selection.

Parameters:
cor_data: Output from correlation_analysis function
species_name: Character string for plot title
#---

create_correlation_plot <- function(cor_data, species_name) {
 # Extract correlation matrix from the ecological data
 corr_matrix <- cor(cor_data$data, use = "complete.obs")

 # Create meaningful ecological variable names for visualization
 colnames(corr_matrix) <- rownames(corr_matrix) <- c(
 "DAP", "Tree Richness", "Tree Abundance",
 "Absolute Humidity", "Moon"

)

 # Create correlation plot using hierarchical clustering
 corrplot(corr_matrix,
 method = "color",
 type = "lower",
 order = "hclust",
 tl.col = "black",
 tl.srt = 45,
 title = paste("Variable Correlations -", species_name),
 mar = c(0, 0, 2, 0))
}

Generate correlation plot for Diasporus diastema
create_correlation_plot(cor_diastema, "Diasporus diastema")

Alternative ggplot2 version for publication flexibility
create_correlation_plot_gg <- function(cor_data, species_name) {
 corr_matrix <- cor(cor_data$data, use = "complete.obs")

 colnames(corr_matrix) <- rownames(corr_matrix) <- c(
 "DAP", "Tree Richness", "Tree Abundance",
 "Absolute Humidity", "Moon"
)

 ggcorrplot(corr_matrix,
 method = "circle",
 type = "lower",
 lab = TRUE,
 lab_size = 3,
 colors = c("#6D9EC1", "white", "#E46726"),
 title = paste("Variable Correlations -", species_name)) +
 theme(plot.title = element_text(hjust = 0.5, face = "bold"),
 axis.text.x = element_text(angle = 45, hjust = 1))
}

Create and save ggplot2-style correlation plot
cor_plot_diastema <- create_correlation_plot_gg(cor_diastema, "Diasporus diastema")
print(cor_plot_diastema)

Save correlation plot for publication
ggsave("correlation_diastema.png", cor_plot_diastema, width = 8, height = 6, dpi = 300)

#==
OCCUPANCY MODEL IMPLEMENTATION AND SELECTION
#==

Prepare unmarked data for Diasporus diastema

diastema_data <- prepare_species_data("diastema")
d <- diastema_data$umf

Store original values for ecological interpretation of predictions
diastema_original <- diastema_data$original_values

#---
FUNCTION: AUTOMATED MODEL SELECTION USING AIC FRAMEWORK

Implements a comprehensive model selection approach by fitting all combinations
of detection and occupancy covariates. Uses Akaike Information Criterion (AIC)
for model comparison and ranks models by parsimony and fit.

Parameters:
umf: unmarkedFrame for occupancy modeling
max_models: Optional limit on number of top models to return

Returns:
List containing ranked model results and fitted model objects
#---

model_selection_unmarked <- function(umf, max_models = NULL) {

 # Define all biologically plausible combinations of covariates
 det_forms <- c(
 "~1", "~ah", "~moon", "~ah + moon"
)

 occ_forms <- c(
 "~1", "~dap", "~tree_rich", "~tree_abu",
 "~dap + tree_rich", "~dap + tree_abu", "~tree_rich + tree_abu",
 "~dap + tree_rich + tree_abu"
)

 # Fit all models and store results
 results <- list()
 aic_values <- c()
 formulas <- c()
 k_values <- c() # Number of parameters for AIC calculation

 cat("Fitting", length(det_forms) * length(occ_forms), "model combinations...\n")

 model_count <- 0
 for(i in 1:length(det_forms)) {
 for(j in 1:length(occ_forms)) {
 formula_str <- paste(det_forms[i], occ_forms[j], sep = " ")
 model_count <- model_count + 1

 cat("Model", model_count, "of", length(det_forms) * length(occ_forms), ":", formula_str)

 tryCatch({
 mod <- occu(as.formula(formula_str), data = umf)

 # Extract AIC using unmarked's method
 aic_val <- mod@AIC

 results[[formula_str]] <- mod
 aic_values <- c(aic_values, aic_val)
 formulas <- c(formulas, formula_str)
 k_values <- c(k_values, length(coef(mod))) # Store number of parameters

 cat(" - AIC:", round(aic_val, 2), "\n")

 }, error = function(e) {
 cat(" - ERROR:", e$message, "\n")
 })
 }
 }

 # Create results dataframe using base R for reliability
 if (length(aic_values) > 0) {
 model_results <- data.frame(
 formula = formulas,
 k = k_values,
 AIC = aic_values,
 stringsAsFactors = FALSE
)

 # Order by AIC (lowest AIC indicates best model)
 model_results <- model_results[order(model_results$AIC),]

 # Calculate delta AIC and Akaike weights for model comparison
 model_results$delta_AIC <- model_results$AIC - min(model_results$AIC)
 model_results$weight <- exp(-0.5 * model_results$delta_AIC) / sum(exp(-0.5 *
model_results$delta_AIC))
 model_results$CumW <- cumsum(model_results$weight)

 # Reset row names for clean output
 rownames(model_results) <- NULL

 } else {
 stop("No models were successfully fitted. Check your data and formulas.")
 }

 # Limit to top models if specified
 if(!is.null(max_models)) {

 model_results <- model_results[1:min(max_models, nrow(model_results)),]
 }

 return(list(
 results = model_results,
 models = results
))
}

Execute model selection for Diasporus diastema
cat("=== RUNNING MODEL SELECTION FOR Diasporus diastema ===\n")
selection_diastema <- model_selection_unmarked(d)

Extract best model using AIC criterion
if (nrow(selection_diastema$results) > 0) {
 best_formula_diastema <- selection_diastema$results$formula[1]
 best_diastema <- selection_diastema$models[[best_formula_diastema]]
 cat("Best model for Diasporus diastema:", best_formula_diastema, "\n")
 cat("AIC:", round(best_diastema@AIC, 2), "\n")
} else {
 stop("No successful models for Diasporus diastema")
}

Display top models
cat("\n=== TOP MODELS FOR Diasporus diastema ===\n")
print(head(selection_diastema$results, 10))

#---
FUNCTION: CREATE PREDICTION PLOTS WITH ECOLOGICAL SCALES

Generates partial dependence plots showing how detection and occupancy
probabilities vary with environmental covariates. Back-transforms scaled
covariates to original ecological units for meaningful interpretation.
Only creates plots for covariates that are actually in the best model.

Parameters:
best_model: Top-ranked occupancy model from AIC selection
best_formula: Formula of the best model
umf: unmarkedFrame used for modeling
original_values: Means and SDs for back-transformation
species_name: Character string for plot labeling

Returns:
List of ggplot objects showing covariate effects
#---

create_prediction_plots_original_scale <- function(best_model, best_formula, umf, original_values,
species_name) {

 plots_list <- list()

 # ABSOLUTE HUMIDITY EFFECT ON DETECTION PROBABILITY
 if(grepl("ah", best_formula)) {
 # Convert scaled ranges back to original ecological scales
 ah_range_scaled <- seq(min(umf@obsCovs$ah, na.rm = TRUE),
 max(umf@obsCovs$ah, na.rm = TRUE),
 length.out = 100)
 ah_range_original <- ah_range_scaled * original_values$ah["sd"] + original_values$ah["mean"]

 new_data_ah <- data.frame(
 ah = ah_range_scaled,
 moon = ifelse(grepl("moon", best_formula), mean(umf@obsCovs$moon, na.rm = TRUE), 0)
)

 pred_ah <- predict(best_model, type = 'det', newdata = new_data_ah, appendData = TRUE)
 pred_ah$ah_original <- ah_range_original

 p_ah <- ggplot(pred_ah, aes(ah_original, Predicted)) +
 geom_ribbon(aes(ymin = lower, ymax = upper), fill = "#1B9E77", alpha = 0.3) +
 geom_line(color = "#1B9E77", linewidth = 1.5) +
 scale_y_continuous(limits = c(0, 1)) +
 labs(
 x = "Absolute Humidity (g/m³)",
 y = "Detection Probability",
 title = expression(paste(italic("Diasporus diastema"), ": Absolute Humidity Effect"))
) +
 theme_minimal() +
 theme(
 plot.title = element_text(size = 16, face = "bold", hjust = 0.5, margin = margin(b = 10)),
 axis.title.x = element_text(size = 14, face = "bold", margin = margin(t = 10)),
 axis.title.y = element_text(size = 14, face = "bold", margin = margin(r = 10)),
 axis.text.x = element_text(size = 12, color = "black"),
 axis.text.y = element_text(size = 12, color = "black"),
 panel.grid.minor = element_blank(),
 panel.grid.major = element_line(color = "grey90", linewidth = 0.5),
 plot.background = element_rect(fill = "white", color = NA)
)

 plots_list[["absolute_humidity"]] <- p_ah
 }

 # LUNAR CYCLE EFFECT ON DETECTION PROBABILITY
 if(grepl("moon", best_formula)) {
 # Convert scaled ranges back to original ecological scales
 moon_range_scaled <- seq(min(umf@obsCovs$moon, na.rm = TRUE),
 max(umf@obsCovs$moon, na.rm = TRUE),

 length.out = 100)
 moon_range_original <- moon_range_scaled * original_values$moon["sd"] +
original_values$moon["mean"]

 new_data_moon <- data.frame(
 ah = ifelse(grepl("ah", best_formula), mean(umf@obsCovs$ah, na.rm = TRUE), 0),
 moon = moon_range_scaled
)

 pred_moon <- predict(best_model, type = 'det', newdata = new_data_moon, appendData = TRUE)
 pred_moon$moon_original <- moon_range_original

 # Create ecologically meaningful moon phase labels (using your original labels)
 moon_breaks <- seq(min(pred_moon$moon_original), max(pred_moon$moon_original),
length.out = 5)
 moon_labels <- c("New Moon", "First Quarter", "Waxing Gibbous", "Waning Gibbous", "Full Moon")

 p_moon <- ggplot(pred_moon, aes(moon_original, Predicted)) +
 geom_ribbon(aes(ymin = lower, ymax = upper), fill = "#7570B3", alpha = 0.3) +
 geom_line(color = "#7570B3", linewidth = 1.5) +
 scale_y_continuous(limits = c(0, 1)) +
 scale_x_continuous(
 name = "Moon Phase",
 breaks = moon_breaks,
 labels = moon_labels
) +
 labs(
 y = "Detection Probability",
 title = expression(paste(italic("Diasporus diastema"), ": Lunar Cycle Effect"))
) +
 theme_minimal() +
 theme(
 plot.title = element_text(size = 16, face = "bold", hjust = 0.5, margin = margin(b = 10)),
 axis.title.x = element_text(size = 14, face = "bold", margin = margin(t = 10)),
 axis.title.y = element_text(size = 14, face = "bold", margin = margin(r = 10)),
 axis.text.x = element_text(size = 11, color = "black", angle = 45, hjust = 1),
 axis.text.y = element_text(size = 12, color = "black"),
 panel.grid.minor = element_blank(),
 panel.grid.major = element_line(color = "grey90", linewidth = 0.5),
 plot.background = element_rect(fill = "white", color = NA)
)

 plots_list[["moon"]] <- p_moon
 }

 return(plots_list)
}

Generate ecological prediction plots for Diasporus diastema
diastema_plots <- create_prediction_plots_original_scale(best_diastema, best_formula_diastema,
d, diastema_original, "Diasporus diastema")

Display all generated plots
cat("\n=== GENERATED PLOTS FOR Diasporus diastema ===\n")
for(plot_name in names(diastema_plots)) {
 cat("Displaying:", plot_name, "\n")
 print(diastema_plots[[plot_name]])
}

Save individual species plots for publication
for(plot_name in names(diastema_plots)) {
 filename <- paste0("diastema_", plot_name, ".png")
 ggsave(filename, diastema_plots[[plot_name]], width = 10, height = 8, dpi = 300, bg = "white")
 cat("Saved:", filename, "\n")
}

#==
RELATIVE IMPORTANCE ANALYSIS
#==

#---
FUNCTION: CALCULATE RELATIVE IMPORTANCE OF ECOLOGICAL COVARIATES

Computes relative importance values by summing Akaike weights across all
models containing each covariate. Provides inference about which ecological
factors most strongly influence occupancy and detection.

Parameters:
selection_results: Output from model_selection_unmarked function

Returns:
Dataframe with covariates ranked by relative importance
#---

calculate_relative_importance <- function(selection_results) {
 # Extract model results
 model_results <- selection_results$results

 # Define all ecological covariates considered
 all_covariates <- c("ah", "moon", "dap", "tree_rich", "tree_abu")

 # Calculate importance for each covariate
 importance_list <- list()

 for(covariate in all_covariates) {
 # Find models that contain this covariate

 if(covariate %in% c("ah", "moon")) {
 # Detection covariates
 models_with_covariate <- grepl(covariate, model_results$formula)
 } else {
 # Occupancy covariates
 models_with_covariate <- grepl(covariate, model_results$formula)
 }

 # Sum Akaike weights of models containing this covariate
 total_weight <- sum(model_results$weight[models_with_covariate])

 importance_list[[covariate]] <- data.frame(
 covariate = covariate,
 importance = total_weight
)
 }

 # Combine all importance values and rank by importance
 importance_df <- bind_rows(importance_list) %>%
 arrange(desc(importance))

 return(importance_df)
}

Calculate relative importance for Diasporus diastema
importance_diastema <- calculate_relative_importance(selection_diastema)

cat("\n=== RELATIVE IMPORTANCE FOR Diasporus diastema ===\n")
print(importance_diastema)

#---
FUNCTION: INDIVIDUAL SPECIES RELATIVE IMPORTANCE PLOTS

Creates separate relative importance plots with consistent color scheme
for individual species assessment.

Parameters:
importance_df: Importance data for a single species
species_name: Character string for plot title
#---

create_single_relimp_plot <- function(importance_df, species_name) {
 # Use consistent ecological color scheme
 colors <- c("ah" = "#35978f", "moon" = "#b0b0b0",
 "dap" = "#bf812d", "tree_rich" = "#66A61E", "tree_abu" = "#01665e")

 # Create meaningful ecological labels
 pretty_labels <- c(

 "ah" = "Absolute Humidity",
 "moon" = "Lunar cycle",
 "dap" = "Tree diameter (DBH)",
 "tree_rich" = "Tree richness",
 "tree_abu" = "Tree abundance"
)

 importance_df <- importance_df %>%
 mutate(label = pretty_labels[covariate])

 ggplot(importance_df, aes(x = importance, y = reorder(label, importance))) +
 geom_col(aes(fill = covariate), width = 0.7, alpha = 0.8) +
 geom_text(aes(label = sprintf("%.2f", importance)),
 hjust = -0.2, size = 5, color = "black") +
 scale_fill_manual(values = colors) +
 scale_x_continuous(
 limits = c(0, 1.1),
 expand = expansion(mult = c(0, 0.05)),
 breaks = seq(0, 1, 0.2)
) +
 labs(
 x = "Relative Importance",
 y = NULL,
 title = species_name,
 subtitle = "Relative importance of covariates"
) +
 theme_minimal() +
 theme(
 legend.position = "none",
 plot.title = element_text(face = "italic", hjust = 0.5, size = 18, margin = margin(b = 10)),
 plot.subtitle = element_text(hjust = 0.5, size = 14, color = "grey40", margin = margin(b = 15)),
 axis.title.x = element_text(face = "bold", size = 16, margin = margin(t = 10)),
 axis.text.y = element_text(face = "bold", size = 14, color = "black"),
 axis.text.x = element_text(size = 12),
 # Add black axis lines
 axis.line = element_line(color = "black", linewidth = 0.5),
 axis.ticks = element_line(color = "black"),
 panel.grid.major.y = element_blank(),
 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_line(color = "grey90"),
 panel.grid.minor.x = element_blank(),
 panel.border = element_blank(),
 plot.background = element_rect(fill = "white", color = NA)
) +
 coord_cartesian(clip = "off")
}

Create individual species relative importance plot

relimp_diastema <- create_single_relimp_plot(importance_diastema, "Diasporus diastema")

Display and save relative importance plot
print(relimp_diastema)
ggsave("relative_importance_diastema.png", relimp_diastema,
 width = 10, height = 8, dpi = 300, bg = "white")

#==
RESULTS DISPLAY AND SUMMARY
#==

Display all generated plots in R graphics device
cat("\n=== FINAL DISPLAY OF ALL ECOLOGICAL PLOTS ===\n")

Display individual species prediction plots
cat("\n--- Diasporus diastema ---\n")
for(plot_name in names(diastema_plots)) {
 cat("Displaying:", plot_name, "\n")
 print(diastema_plots[[plot_name]])
}

Display relative importance plot
cat("\n--- Relative Importance Analysis ---\n")
print(relimp_diastema)

#---
ECOLOGICAL ANALYSIS SUMMARY

Provides concise summary of key findings for Diasporus diastema, including
best models, AIC values, and ecological interpretation of results.
#---

cat("\n=== ECOLOGICAL ANALYSIS SUMMARY ===\n")
cat("Diasporus diastema:\n")
cat(" Best model:", best_formula_diastema, "\n")
cat(" AIC:", round(best_diastema@AIC, 2), "\n")
cat(" Ecological drivers identified:", names(diastema_plots), "\n\n")

cat("Relative importance of covariates:\n")
for(i in 1:nrow(importance_diastema)) {
 cat(" ", importance_diastema$covariate[i], ":", round(importance_diastema$importance[i], 3),
"\n")
}

cat("\nFiles generated:\n")
cat("- correlation_diastema.png\n")
for(plot_name in names(diastema_plots)) {
 cat("- diastema_", plot_name, ".png\n", sep = "")

}
cat("- relative_importance_diastema.png\n")

#---
FUNCTION: CREATE COMBINED FIGURE FOR DIASPORUS DIASTEMA

Generates a side-by-side figure showing both absolute humidity and moon effects
for clean figure organization in publications.

Parameters:
plots_list: List of ggplot objects from create_prediction_plots_original_scale
species_name: Character string for plot title
#---

create_combined_diastema_figure <- function(plots_list, species_name) {
 # Check if we have both absolute humidity and moon plots
 has_ah <- "absolute_humidity" %in% names(plots_list)
 has_moon <- "moon" %in% names(plots_list)

 if(has_ah && has_moon) {
 # Get the individual plots
 p_ah <- plots_list[["absolute_humidity"]]
 p_moon <- plots_list[["moon"]]

 # Remove individual titles since we'll have a combined title
 p_ah <- p_ah + labs(title = NULL)
 p_moon <- p_moon + labs(title = NULL)

 # Combine using patchwork
 combined <- p_ah + p_moon +
 plot_layout(ncol = 2) +
 plot_annotation(
 title = paste("Environmental Effects on Detection Probability -", species_name),
 theme = theme(
 plot.title = element_text(hjust = 0.5, face = "bold", size = 18)
)
)

 return(combined)
 } else {
 cat("Cannot create combined figure: missing absolute humidity or moon plot\n")
 return(NULL)
 }
}

Create and save combined figure for Diasporus diastema
combined_diastema <- create_combined_diastema_figure(diastema_plots, "Diasporus diastema")

if(!is.null(combined_diastema)) {
 print(combined_diastema)
 ggsave("diastema_combined_effects.png", combined_diastema,
 width = 16, height = 8, dpi = 300, bg = "white")
 cat("Saved: diastema_combined_effects.png\n")
}

cat("\n OCCUPANCY MODELING ANALYSIS FOR DIASPORUS DIASTEMA COMPLETE\n")
cat("All ecological plots and analyses saved for publication.\n")

#RELATIVE IMPORTANCE OF COVARIATES IN MODELS (FINAL VISUALIZATION)
#==

LIBRARIES
library(ggplot2)
library(dplyr)
library(tidyr)
library(tibble)
library(scales)
library(fmsb)
library(patchwork) # For combining plots

===
DATA PREPARATION - Combine all three species
===

Assuming you have these data frames from your modeling:
importance_ca, importance_cru, importance_diastema

Combine all species into one data frame
all_importance <- bind_rows(
 importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"),
 importance_cru %>% mutate(species = "Pristimantis cruentus"),
 importance_diastema %>% mutate(species = "Diasporus diastema")
)

Define consistent ecological color scheme
covariate_colors <- c(
 "ah" = "#35978f", # Teal for absolute humidity
 "moon" = "#b0b0b0", # Gray for moon
 "dap" = "#bf812d", # Brown for tree diameter
 "tree_rich" = "#66A61E", # Green for tree richness
 "tree_abu" = "#01665e" # Dark green for tree abundance
)

Create meaningful ecological labels
pretty_labels <- c(
 "ah" = "Absolute Humidity",
 "moon" = "Lunar cycle",
 "dap" = "Tree diameter (DBH)",
 "tree_rich" = "Tree richness",
 "tree_abu" = "Tree abundance"
)

Apply labels to the combined data
all_importance <- all_importance %>%
 mutate(

 label = pretty_labels[covariate],
 species = factor(species, levels = c("Pristimantis caryophyllaceus",
 "Pristimantis cruentus",
 "Diasporus diastema"))
)

===
SMALL MULTIPLES PLOT - Three species together
===

p_small_multiples <- ggplot(all_importance, aes(x = importance, y = reorder(label, importance))) +
 geom_col(aes(fill = covariate), width = 0.7, alpha = 0.8) +
 geom_text(aes(label = sprintf("%.2f", importance)),
 hjust = -0.2, size = 3.5, color = "black") +
 facet_wrap(~ species, ncol = 3, scales = "free_y") +
 scale_fill_manual(values = covariate_colors) +
 scale_x_continuous(
 limits = c(0, 1.1),
 expand = expansion(mult = c(0, 0.05)),
 breaks = seq(0, 1, 0.2)
) +
 labs(
 x = "Relative Importance",
 y = NULL,
 title = "Relative Importance of Ecological Covariates",
 subtitle = "Comparison across three amphibian species"
) +
 theme_minimal() +
 theme(
 legend.position = "none",
 plot.title = element_text(face = "bold", hjust = 0.5, size = 16, margin = margin(b = 10)),
 plot.subtitle = element_text(hjust = 0.5, size = 12, color = "grey40", margin = margin(b = 15)),
 axis.title.x = element_text(face = "bold", size = 12, margin = margin(t = 10)),
 axis.text.y = element_text(face = "bold", size = 10, color = "black"),
 axis.text.x = element_text(size = 9),
 axis.line = element_line(color = "black", linewidth = 0.5),
 axis.ticks = element_line(color = "black"),
 panel.grid.major.y = element_blank(),
 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_line(color = "grey90"),
 panel.grid.minor.x = element_blank(),
 panel.border = element_blank(),
 strip.text = element_text(face = "italic", size = 10, color = "black"),
 strip.background = element_rect(fill = "grey90", color = NA),
 plot.background = element_rect(fill = "white", color = NA)
) +
 coord_cartesian(clip = "off")

Save small multiples at 300 DPI
ggsave("SmallMultiples_RelativeImportance_300dpi.png",
 plot = p_small_multiples,
 width = 14,
 height = 6,
 dpi = 300,
 bg = "white")

===
RADAR CHART - Three species comparison
===

Prepare data for radar chart
radar_data <- all_importance %>%
 select(covariate, species, importance) %>%
 pivot_wider(names_from = covariate, values_from = importance) %>%
 as.data.frame() %>%
 column_to_rownames("species")

Normalize data for radar chart (0-1 scale) - optional but good for comparison
normalize <- function(x) {
 (x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
}

radar_normalized <- as.data.frame(lapply(radar_data, normalize))
radar_normalized$species <- rownames(radar_data)

Prepare data for fmsb (first row max, second row min, then actual data)
radar_plot_data <- rbind(rep(1, ncol(radar_normalized)-1),
 rep(0, ncol(radar_normalized)-1),
 radar_normalized[,-ncol(radar_normalized)])

Define species colors for radar chart
species_colors <- c(
 "Pristimantis caryophyllaceus" = "#E41A1C", # Red
 "Pristimantis cruentus" = "#377EB8", # Blue
 "Diasporus diastema" = "#4DAF4A" # Green
)

species_colors_alpha <- c(
 alpha("#E41A1C", 0.3),
 alpha("#377EB8", 0.3),
 alpha("#4DAF4A", 0.3)
)

Create and save radar chart at 300 DPI
png("RadarChart_RelativeImportance_300dpi.png", width = 10, height = 8, units = "in", res = 300)

Set margins and create radar chart
par(mar = c(2, 2, 3, 2))
radarchart(radar_plot_data,
 axistype = 1,
 pcol = species_colors,
 pfcol = species_colors_alpha,
 plwd = 3,
 plty = 1,
 cglcol = "darkgray",
 cglty = 1,
 axislabcol = "black",
 caxislabels = seq(0, 1, 0.2),
 cglwd = 1.2,
 vlcex = 1.1,
 calcex = 1.0,
 title = "Relative Importance of Covariates\nThree Amphibian Species Comparison")

Add legend
legend("topright",
 legend = rownames(radar_data),
 bty = "o",
 bg = "white",
 pch = 20,
 col = species_colors,
 text.col = "black",
 cex = 1.1,
 pt.cex = 2.5)

dev.off()

===
DISPLAY PLOTS
===

cat("✓ Small multiples plot saved: SmallMultiples_RelativeImportance_300dpi.png\n")
cat("✓ Radar chart saved: RadarChart_RelativeImportance_300dpi.png\n")

Display plots in R
print(p_small_multiples)

For radar chart display (will create in plot window)
par(mar = c(2, 2, 3, 2))
radarchart(radar_plot_data,
 axistype = 1,
 pcol = species_colors,
 pfcol = species_colors_alpha,
 plwd = 3,
 plty = 1,

 cglcol = "darkgray",
 cglty = 1,
 axislabcol = "black",
 caxislabels = seq(0, 1, 0.2),
 cglwd = 1.2,
 vlcex = 1.1,
 calcex = 1.0,
 title = "Relative Importance of Covariates\nThree Amphibian Species Comparison")

legend("topright",
 legend = rownames(radar_data),
 bty = "o",
 bg = "white",
 pch = 20,
 col = species_colors,
 text.col = "black",
 cex = 1.1,
 pt.cex = 2.5)

#FINALVERSIONFORPAPERSINGLEMULTIPLES
LIBRARIES
library(ggplot2)
library(dplyr)
library(tidyr)

===
DATA PREPARATION - Combine all three species
===

Combine all species into one data frame
all_importance <- bind_rows(
 importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"),
 importance_cru %>% mutate(species = "Pristimantis cruentus"),
 importance_diastema %>% mutate(species = "Diasporus diastema")
)

Create meaningful ecological labels (changed "Lunar cycle" to "moon")
pretty_labels <- c(
 "ah" = "Absolute Humidity",
 "moon" = "Moon illumination",
 "dap" = "Tree diameter (dbh)",
 "tree_rich" = "Tree richness",
 "tree_abu" = "Tree abundance"
)

Apply labels to the combined data and set species order
all_importance <- all_importance %>%
 mutate(

 label = pretty_labels[covariate],
 species = factor(species, levels = c("Pristimantis caryophyllaceus",
 "Pristimantis cruentus",
 "Diasporus diastema"))
) %>%
 # Reorder the labels by their mean importance across all species
 mutate(label = factor(label, levels = unique(label[order(importance)])))

Define species colors as requested
species_colors <- c(
 "Pristimantis caryophyllaceus" = "#dfc27d", # Tan
 "Pristimantis cruentus" = "#bf812d", # Brownish
 "Diasporus diastema" = "#377EB8" # Blue
)

===
SMALL MULTIPLES PLOT - Revised version
===

p_small_multiples <- ggplot(all_importance, aes(x = importance, y = label)) +
 geom_col(aes(fill = species), width = 0.7, alpha = 0.8, position = position_dodge(0.8)) +
 geom_text(aes(label = sprintf("%.2f", importance)),
 position = position_dodge(0.8),
 hjust = -0.2, size = 3.5, color = "black") +
 facet_wrap(~ species, ncol = 3) +
 scale_fill_manual(values = species_colors) +
 scale_x_continuous(
 limits = c(0, 1.1),
 expand = expansion(mult = c(0, 0.05)),
 breaks = seq(0, 1, 0.2)
) +
 labs(
 x = "Relative Importance",
 y = NULL,
 title = "",
 subtitle = ""
) +
 theme_minimal() +
 theme(
 legend.position = "none",
 plot.title = element_text(face = "bold", hjust = 0.5, size = 16, margin = margin(b = 10)),
 plot.subtitle = element_text(hjust = 0.5, size = 12, color = "grey40", margin = margin(b = 15)),
 axis.title.x = element_text(face = "bold", size = 12, margin = margin(t = 10)),
 axis.text.y = element_text(face = "bold", size = 10, color = "black"),
 axis.text.x = element_text(size = 9),
 axis.line = element_line(color = "black", linewidth = 0.5),
 axis.ticks = element_line(color = "black"),
 panel.grid.major.y = element_blank(),

 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_line(color = "grey90"),
 panel.grid.minor.x = element_blank(),
 panel.border = element_blank(),
 strip.text = element_text(face = "italic", size = 10, color = "black"),
 strip.background = element_rect(fill = "grey90", color = NA),
 plot.background = element_rect(fill = "white", color = NA)
) +
 coord_cartesian(clip = "off")

Save small multiples at 300 DPI
ggsave("SmallMultiples_RelativeImportance_300dpi.png",
 plot = p_small_multiples,
 width = 14,
 height = 6,
 dpi = 300,
 bg = "white")

Display the plot
print(p_small_multiples)

cat("✓ Small multiples plot saved: SmallMultiples_RelativeImportance_300dpi.png\n")

#DOTPLOT
LIBRARIES
library(ggplot2)
library(dplyr)
library(tidyr)

===
DATA PREPARATION - Combine all three species
===

Combine all species into one data frame
all_importance <- bind_rows(
 importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"),
 importance_cru %>% mutate(species = "Pristimantis cruentus"),
 importance_diastema %>% mutate(species = "Diasporus diastema")
)

Create meaningful ecological labels (changed "Lunar cycle" to "moon")
pretty_labels <- c(
 "ah" = "Absolute Humidity",
 "moon" = "Moon illumination",
 "dap" = "Tree diameter (DBH)",
 "tree_rich" = "Tree richness",
 "tree_abu" = "Tree abundance"
)

Apply labels to the combined data and set species order
all_importance <- all_importance %>%
 mutate(
 label = pretty_labels[covariate],
 species = factor(species, levels = c("Pristimantis caryophyllaceus",
 "Pristimantis cruentus",
 "Diasporus diastema"))
) %>%
 # Reorder the labels by their mean importance across all species
 mutate(label = factor(label, levels = unique(label[order(importance)])))

Define species colors as requested
species_colors <- c(
 "Pristimantis caryophyllaceus" = "#dfc27d", # Tan
 "Pristimantis cruentus" = "#bf812d", # Brownish
 "Diasporus diastema" = "#377EB8" # Blue
)

===
DOT PLOT - Publication Quality
===

p_dot <- ggplot(all_importance, aes(x = importance, y = label, color = species)) +
 geom_point(size = 3.5, position = position_dodge(width = 0.5)) +
 geom_linerange(aes(xmin = 0, xmax = importance),
 position = position_dodge(width = 0.5), linewidth = 1.2) +
 geom_text(aes(label = sprintf("%.2f", importance)),
 position = position_dodge(width = 0.5),
 hjust = -0.3, size = 3.2, color = "black", fontface = "bold") +
 scale_color_manual(values = species_colors, name = "Species") +
 scale_x_continuous(
 limits = c(0, 1.2),
 breaks = seq(0, 1, 0.2),
 expand = expansion(mult = c(0, 0.1))
) +
 labs(
 x = "Relative Importance",
 y = NULL,
 title = "",
 subtitle = ""
) +
 theme_minimal() +
 theme(
 legend.position = "bottom",
 plot.title = element_text(face = "bold", hjust = 0.5, size = 16, margin = margin(b = 8)),
 plot.subtitle = element_text(hjust = 0.5, size = 12, color = "grey40", margin = margin(b = 12)),
 axis.title.x = element_text(face = "bold", size = 12, margin = margin(t = 10)),

 axis.text.y = element_text(face = "bold", size = 11, color = "black"),
 axis.text.x = element_text(size = 10),
 axis.line = element_line(color = "black", linewidth = 0.5),
 axis.ticks = element_line(color = "black"),
 panel.grid.major.y = element_line(color = "grey90"),
 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_line(color = "grey90"),
 panel.grid.minor.x = element_blank(),
 legend.text = element_text(face = "italic", size = 10),
 legend.title = element_text(face = "bold", size = 11),
 plot.background = element_rect(fill = "white", color = NA)
)

Save dot plot at 300 DPI
ggsave("DotPlot_RelativeImportance_300dpi.png",
 plot = p_dot,
 width = 10,
 height = 6,
 dpi = 300,
 bg = "white")

Display the plot
print(p_dot)

cat("✓ Dot plot saved: DotPlot_RelativeImportance_300dpi.png\n")
cat("✓ File dimensions: 10 x 6 inches at 300 DPI\n")
cat("✓ Species colors: Tan (P. caryophyllaceus), Brown (P. cruentus), Blue (D. diastema)\n")

LIBRARIES
library(ggplot2)
library(dplyr)
library(tidyr)

===
DATA PREPARATION - Combine all three species
===

Combine all species into one data frame
all_importance <- bind_rows(
 importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"),
 importance_cru %>% mutate(species = "Pristimantis cruentus"),
 importance_diastema %>% mutate(species = "Diasporus diastema")
)

Create meaningful ecological labels (changed "Lunar cycle" to "moon")
pretty_labels <- c(
 "ah" = "Absolute Humidity",
 "moon" = "Moon",

 "dap" = "Tree diameter (DBH)",
 "tree_rich" = "Tree richness",
 "tree_abu" = "Tree abundance"
)

Apply labels to the combined data and set species order
all_importance <- all_importance %>%
 mutate(
 label = pretty_labels[covariate],
 species = factor(species, levels = c("Pristimantis caryophyllaceus",
 "Pristimantis cruentus",
 "Diasporus diastema"))
)

===
SLOPE GRAPH - Publication Quality
===

p_slope <- ggplot(all_importance, aes(x = species, y = importance, group = label)) +
 geom_line(aes(color = label), alpha = 0.7, linewidth = 1.2) +
 geom_point(aes(color = label), size = 3) +
 geom_text(data = filter(all_importance, species == "Pristimantis caryophyllaceus"),
 aes(label = label, x = 0.9), hjust = 1, size = 3.5, check_overlap = TRUE) +
 scale_color_brewer(palette = "Dark2", name = "Covariates") +
 scale_y_continuous(
 limits = c(0, 1.1),
 breaks = seq(0, 1, 0.2)
) +
 labs(
 x = NULL,
 y = "Relative Importance",
 title = "Relative Importance Patterns Across Species",
 subtitle = "Slope graph showing covariate importance trends"
) +
 theme_minimal() +
 theme(
 axis.text.x = element_text(face = "italic", size = 11, color = "black"),
 axis.text.y = element_text(size = 10, color = "black"),
 axis.title.y = element_text(face = "bold", size = 12, margin = margin(r = 10)),
 axis.line = element_line(color = "black", linewidth = 0.5),
 axis.ticks = element_line(color = "black"),
 panel.grid.major.y = element_line(color = "grey90"),
 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_blank(),
 panel.grid.minor.x = element_blank(),
 plot.title = element_text(face = "bold", hjust = 0.5, size = 16, margin = margin(b = 8)),
 plot.subtitle = element_text(hjust = 0.5, size = 12, color = "grey40", margin = margin(b = 15)),
 legend.position = "none",

 plot.background = element_rect(fill = "white", color = NA)
)

Save slope graph at 300 DPI
ggsave("SlopePlot_RelativeImportance_300dpi.png",
 plot = p_slope,
 width = 10,
 height = 6,
 dpi = 300,
 bg = "white")

Display the plot
print(p_slope)

cat("✓ Slope graph saved: SlopePlot_RelativeImportance_300dpi.png\n")
cat("✓ File dimensions: 10 x 6 inches at 300 DPI\n")
cat("✓ Features: Shows trends in covariate importance across species\n")

LIBRARIES
library(ggplot2)
library(dplyr)
library(tidyr)

===
DATA PREPARATION - Combine all three species
===

Combine all species into one data frame
all_importance <- bind_rows(
 importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"),
 importance_cru %>% mutate(species = "Pristimantis cruentus"),
 importance_diastema %>% mutate(species = "Diasporus diastema")
)

Create meaningful ecological labels (changed "Lunar cycle" to "moon")
pretty_labels <- c(
 "ah" = "Absolute Humidity",
 "moon" = "Moon",
 "dap" = "Tree diameter (DBH)",
 "tree_rich" = "Tree richness",
 "tree_abu" = "Tree abundance"
)

Apply labels to the combined data and set species order
all_importance <- all_importance %>%
 mutate(
 label = pretty_labels[covariate],
 species = factor(species, levels = c("Pristimantis caryophyllaceus",

 "Pristimantis cruentus",
 "Diasporus diastema"))
) %>%
 # Order covariates by their mean importance for better visualization
 mutate(label = factor(label, levels = unique(label[order(-importance)])))

Define species colors as requested
species_colors <- c(
 "Pristimantis caryophyllaceus" = "#dfc27d", # Tan
 "Pristimantis cruentus" = "#bf812d", # Brownish
 "Diasporus diastema" = "#377EB8" # Blue
)

===
GROUPED BARS - Publication Quality
===

p_grouped <- ggplot(all_importance, aes(x = label, y = importance, fill = species)) +
 geom_col(position = position_dodge(0.8), width = 0.7, alpha = 0.9) +
 geom_text(aes(label = sprintf("%.2f", importance)),
 position = position_dodge(0.8),
 vjust = -0.5, size = 3.2, fontface = "bold") +
 scale_fill_manual(values = species_colors, name = "Species") +
 scale_y_continuous(
 limits = c(0, 1.1),
 breaks = seq(0, 1, 0.2),
 expand = expansion(mult = c(0, 0.05))
) +
 labs(
 x = NULL,
 y = "Relative Importance",
 title = "",
 subtitle = ""
) +
 theme_minimal() +
 theme(
 axis.text.x = element_text(face = "bold", size = 11, angle = 45, hjust = 1, color = "black"),
 axis.text.y = element_text(size = 10, color = "black"),
 axis.title.y = element_text(face = "bold", size = 12, margin = margin(r = 10)),
 axis.line = element_line(color = "black", linewidth = 0.5),
 axis.ticks = element_line(color = "black"),
 panel.grid.major.y = element_line(color = "grey90"),
 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_blank(),
 panel.grid.minor.x = element_blank(),
 plot.title = element_text(face = "bold", hjust = 0.5, size = 16, margin = margin(b = 8)),
 plot.subtitle = element_text(hjust = 0.5, size = 12, color = "grey40", margin = margin(b = 15)),
 legend.position = "bottom",

 legend.text = element_text(face = "italic", size = 10),
 legend.title = element_text(face = "bold", size = 11),
 plot.background = element_rect(fill = "white", color = NA)
)

Save grouped bars at 300 DPI
ggsave("GroupedBars_RelativeImportance_300dpi.png",
 plot = p_grouped,
 width = 11,
 height = 7,
 dpi = 300,
 bg = "white")

Display the plot
print(p_grouped)

cat("✓ Grouped bars saved: GroupedBars_RelativeImportance_300dpi.png\n")
cat("✓ File dimensions: 11 x 7 inches at 300 DPI\n")
cat("✓ Species colors: Tan (P. caryophyllaceus), Brown (P. cruentus), Blue (D. diastema)\n")
cat("✓ Features: Classic grouped bar chart for clear comparison\n")

#FINAL PLOTS FOR VISUALIZATION (OCCUPANCY)
#==

Packages
library(ggplot2)
library(dplyr)
library(tidyr)
library(cowplot)

--- DATA (means and SE as provided) ---
data <- tibble(
 Covariate = c("Tree abundance", "Tree diameter (cm)", "Tree richness",
 "Air temperature (°C)", "Relative humidity (%)"),
 Old_Mean = c(12.00, 51.34, 7.29, 18.34, 83.34),
 Old_SE = c(5.29, 20.61, 2.93, 1.63, 27.36),
 Sec_Mean = c(38.14, 11.48, 4.86, 17.90, 72.63),
 Sec_SE = c(13.25, 9.22, 2.04, 2.13, 26.68)
)

--- FUNCTIONS FOR ABSOLUTE HUMIDITY AND DERIVATIVES ---
AH (g/m^3) based on Tetens formula:
AH = C * es(T) * RH_frac / (273.15 + T)
where es(T) = 6.112 * exp(17.67*T/(T+243.5)) (hPa),
C = 2.1674 (conversion factor to g/m3 when es in hPa and T in °C)
AH_from_T_RH <- function(T_degC, RH_percent) {
 RH_frac <- RH_percent / 100
 es <- 6.112 * exp((17.67 * T_degC) / (T_degC + 243.5))
 C <- 2.1674
 AH <- C * es * RH_frac / (273.15 + T_degC)
 return(AH)
}

Partial derivatives for delta-method variance propagation
AH_partials <- function(T_degC, RH_percent) {
 # Constants
 b <- 243.5
 C <- 2.1674
 RH_frac <- RH_percent / 100

 # es and derivative df/dT
 es <- 6.112 * exp((17.67 * T_degC) / (T_degC + b))
 a_prime <- 17.67 * b / (T_degC + b)^2 # derivative of exponent a(T)
 des_dT <- es * a_prime # derivative of es w.r.t. T

 # AH = C * es * RH_frac / (273.15 + T)
 denom <- 273.15 + T_degC

 # derivative wrt T (°C)
 dAH_dT <- C * RH_frac * (des_dT / denom - es / denom^2)

 # derivative wrt RH percent (because input RH is in %)
 # d(AH)/d(RH_percent) = C * es / denom * d(RH_frac)/d(RH_percent)
 # d(RH_frac)/d(RH_percent) = 1/100
 dAH_dRHpct <- C * es / denom * (1/100)

 return(list(dAH_dT = dAH_dT, dAH_dRHpct = dAH_dRHpct))
}

--- CALCULATE MEAN AND SE OF ABSOLUTE HUMIDITY ---
Take means and SEs of T and RH (SE of RH in percentage points)
T_old <- data$Old_Mean[data$Covariate == "Air temperature (°C)"]
SE_T_old <- data$Old_SE[data$Covariate == "Air temperature (°C)"]
RH_old <- data$Old_Mean[data$Covariate == "Relative humidity (%)"]
SE_RH_old <- data$Old_SE[data$Covariate == "Relative humidity (%)"]

T_sec <- data$Sec_Mean[data$Covariate == "Air temperature (°C)"]
SE_T_sec <- data$Sec_SE[data$Covariate == "Air temperature (°C)"]
RH_sec <- data$Sec_Mean[data$Covariate == "Relative humidity (%)"]
SE_RH_sec <- data$Sec_SE[data$Covariate == "Relative humidity (%)"]

Compute AH means
AH_old_mean <- AH_from_T_RH(T_old, RH_old)
AH_sec_mean <- AH_from_T_RH(T_sec, RH_sec)

Compute partials and use delta method for variance (Var ≈ (d/dT)^2 Var(T) + (d/dRH%)^2
Var(RH%))
partials_old <- AH_partials(T_old, RH_old)
partials_sec <- AH_partials(T_sec, RH_sec)

var_AH_old <- (partials_old$dAH_dT^2) * (SE_T_old^2) + (partials_old$dAH_dRHpct^2) *
(SE_RH_old^2)
var_AH_sec <- (partials_sec$dAH_dT^2) * (SE_T_sec^2) + (partials_sec$dAH_dRHpct^2) *
(SE_RH_sec^2)

AH_old_se <- sqrt(var_AH_old)
AH_sec_se <- sqrt(var_AH_sec)

Print results for check
cat("Estimated Absolute Humidity (Old Forest):", round(AH_old_mean, 3), "g/m³ ±",
round(AH_old_se, 3), " (SE)\n")
cat("Estimated Absolute Humidity (Secondary):", round(AH_sec_mean, 3), "g/m³ ±",
round(AH_sec_se, 3), " (SE)\n")

--- ADD AH TO ORIGINAL DATAFRAME (for plotting) ---
data2 <- data %>%

 add_row(
 Covariate = "Absolute humidity",
 Old_Mean = AH_old_mean,
 Old_SE = AH_old_se,
 Sec_Mean = AH_sec_mean,
 Sec_SE = AH_sec_se
)

Reshape to long format for ggplot
data_long <- data2 %>%
 pivot_longer(cols = c(Old_Mean, Sec_Mean, Old_SE, Sec_SE),
 names_to = c("Forest", ".value"),
 names_pattern = "(Old|Sec)_(.*)") %>%
 mutate(Forest = ifelse(Forest == "Old", "Old Forest", "Secondary Forest"))

--- GRAPH 1: Tree Abundance and Richness (dark colors for contrast) ---
tree_covs <- c("Tree abundance", "Tree richness")
tree_df <- filter(data_long, Covariate %in% tree_covs)

p_tree <- ggplot(tree_df, aes(x = Covariate, y = Mean, fill = Forest)) +
 geom_col(position = position_dodge(width = 0.8), width = 0.7) +
 geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE),
 position = position_dodge(width = 0.8), width = 0.15, size = 0.7) +
 scale_fill_manual(values = c("Old Forest" = "#1b5e20", "Secondary Forest" = "#81c784")) +
 labs(title = "", y = "Quantity", x = "") +
 theme_minimal(base_size = 13) +
 theme(axis.text.x = element_text(angle = 0, hjust = 0.5),
 panel.grid.major = element_blank(),
 panel.grid.minor = element_blank(),
 axis.line = element_line(color = "darkgrey", size = 0.5),
 axis.ticks = element_line(color = "darkgrey"),
 legend.position = "bottom",
 legend.title = element_blank())

--- GRAPH 2: Tree Diameter (dark colors for contrast) ---
dbh_covs <- c("Tree diameter (cm)")
dbh_df <- filter(data_long, Covariate %in% dbh_covs)

p_dbh <- ggplot(dbh_df, aes(x = Covariate, y = Mean, fill = Forest)) +
 geom_col(position = position_dodge(width = 0.8), width = 0.7) +
 geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE),
 position = position_dodge(width = 0.8), width = 0.15, size = 0.7) +
 scale_fill_manual(values = c("Old Forest" = "#004d40", "Secondary Forest" = "#4db6ac")) +
 labs(title = "", y = "Diameter (cm)", x = "") +
 theme_minimal(base_size = 13) +
 theme(axis.text.x = element_text(angle = 0, hjust = 0.5),
 panel.grid.major = element_blank(),
 panel.grid.minor = element_blank(),

 axis.line = element_line(color = "darkgrey", size = 0.5),
 axis.ticks = element_line(color = "darkgrey"),
 legend.position = "bottom",
 legend.title = element_blank())

--- GRAPH 3: Temperature (dark colors for contrast) ---
temp_covs <- c("Air temperature (°C)")
temp_df <- filter(data_long, Covariate %in% temp_covs)

p_temp <- ggplot(temp_df, aes(x = Covariate, y = Mean, fill = Forest)) +
 geom_col(position = position_dodge(width = 0.8), width = 0.7) +
 geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE),
 position = position_dodge(width = 0.8), width = 0.15, size = 0.7) +
 scale_fill_manual(values = c("Old Forest" = "#01579b", "Secondary Forest" = "#4fc3f7")) +
 labs(title = "", y = "Temperature (°C)", x = "") +
 theme_minimal(base_size = 13) +
 theme(axis.text.x = element_text(angle = 0, hjust = 0.5),
 panel.grid.major = element_blank(),
 panel.grid.minor = element_blank(),
 axis.line = element_line(color = "darkgrey", size = 0.5),
 axis.ticks = element_line(color = "darkgrey"),
 legend.position = "bottom",
 legend.title = element_blank())

--- GRAPH 4: Relative Humidity (dark colors for contrast) ---
rh_covs <- c("Relative humidity (%)")
rh_df <- filter(data_long, Covariate %in% rh_covs)

p_rh <- ggplot(rh_df, aes(x = Covariate, y = Mean, fill = Forest)) +
 geom_col(position = position_dodge(width = 0.8), width = 0.7) +
 geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE),
 position = position_dodge(width = 0.8), width = 0.15, size = 0.7) +
 scale_fill_manual(values = c("Old Forest" = "#006064", "Secondary Forest" = "#26c6da")) +
 labs(title = "", y = "Relative humidity (%)", x = "") +
 theme_minimal(base_size = 13) +
 theme(axis.text.x = element_text(angle = 0, hjust = 0.5),
 panel.grid.major = element_blank(),
 panel.grid.minor = element_blank(),
 axis.line = element_line(color = "darkgrey", size = 0.5),
 axis.ticks = element_line(color = "darkgrey"),
 legend.position = "bottom",
 legend.title = element_blank())

--- GRAPH 5: Absolute Humidity (dark colors for contrast) ---
ah_covs <- c("Absolute humidity")
ah_df <- filter(data_long, Covariate %in% ah_covs)

p_ah <- ggplot(ah_df, aes(x = Covariate, y = Mean, fill = Forest)) +

 geom_col(position = position_dodge(width = 0.8), width = 0.7) +
 geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE),
 position = position_dodge(width = 0.8), width = 0.15, size = 0.7) +
 scale_fill_manual(values = c("Old Forest" = "#4a148c", "Secondary Forest" = "#ba68c8")) +
 labs(title = "", y = "Absolute humidity (g/m³)", x = "") +
 theme_minimal(base_size = 13) +
 theme(axis.text.x = element_text(angle = 0, hjust = 0.5),
 panel.grid.major = element_blank(),
 panel.grid.minor = element_blank(),
 axis.line = element_line(color = "darkgrey", size = 0.5),
 axis.ticks = element_line(color = "darkgrey"),
 legend.position = "bottom",
 legend.title = element_blank())

Display graphs in graphics device
print(p_tree)
print(p_dbh)
print(p_temp)
print(p_rh)
print(p_ah)

Save graphs
ggsave("FigureA_TreeAbundanceRichness.png", plot = p_tree, width = 6, height = 5, dpi = 300)
ggsave("FigureB_TreeDiameter.png", plot = p_dbh, width = 6, height = 5, dpi = 300)
ggsave("FigureC_Temperature.png", plot = p_temp, width = 6, height = 5, dpi = 300)
ggsave("FigureD_RelativeHumidity.png", plot = p_rh, width = 6, height = 5, dpi = 300)
ggsave("FigureE_AbsoluteHumidity.png", plot = p_ah, width = 6, height = 5, dpi = 300)

Small multiples graph
data_long_updated <- data_long %>%
 mutate(Covariate = case_when(
 Covariate == "Tree abundance" ~ "Tree abundance (n)",
 Covariate == "Tree richness" ~ "Tree richness (S)",
 Covariate == "Tree diameter (cm)" ~ "Tree diameter (cm)",
 Covariate == "Air temperature (°C)" ~ "Air temperature (°C)",
 Covariate == "Relative humidity (%)" ~ "Relative humidity (%)",
 Covariate == "Absolute humidity" ~ "Absolute humidity (g/m³)",
 TRUE ~ Covariate
)) %>%
 # Create factor with specified order
 mutate(Covariate = factor(Covariate,
 levels = c("Air temperature (°C)",
 "Relative humidity (%)",
 "Absolute humidity (g/m³)",
 "Tree richness (S)",
 "Tree abundance (n)",
 "Tree diameter (cm)")))

Now create the plot with updated units and correct order
p_facets <- ggplot(data_long_updated, aes(x = Forest, y = Mean, fill = Forest)) +
 geom_col(width = 0.7) +
 geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE), width = 0.2) +
 facet_wrap(~ Covariate, scales = "free_y", ncol = 3) +
 scale_fill_manual(values = c("Old Forest" = "#006400", # Dark green
 "Secondary Forest" = "#90EE90")) + # Light green
 labs(title = "",
 y = "Mean ± SE",
 x = "") +
 theme_minimal() +
 theme(legend.position = "bottom",
 axis.text.x = element_blank(), # Remove x-axis text
 axis.ticks.x = element_blank(), # Remove x-axis ticks
 strip.background = element_rect(fill = "grey90"),
 panel.grid.major = element_blank(),
 panel.grid.minor = element_blank(),
 legend.title = element_blank()) # Remove legend title

Save at 400 DPI
ggsave("SmallMultiples_ForestCovariates_400dpi.tiff",
 plot = p_facets,
 width = 10,
 height = 8,
 dpi = 300)

Also save as high-quality PDF (vector format)
ggsave("SmallMultiples_ForestCovariates.pdf",
 plot = p_facets,
 width = 10,
 height = 8)

print(p_facets)

RADAR CHART
library(tibble) # Make sure tibble is loaded for column_to_rownames

radar_data <- data_long %>%
 select(Covariate, Forest, Mean) %>%
 pivot_wider(names_from = Covariate, values_from = Mean) %>%
 as.data.frame() %>% # Convert to data.frame first
 column_to_rownames("Forest")

Normalize data for radar chart (0-1 scale)
normalize <- function(x) {
 (x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))

}

radar_normalized <- as.data.frame(lapply(radar_data, normalize))
radar_normalized$Forest <- rownames(radar_data)

Create radar chart
library(fmsb)

Prepare data for fmsb (first row max, second row min, then actual data)
radar_plot_data <- rbind(rep(1, ncol(radar_normalized)-1),
 rep(0, ncol(radar_normalized)-1),
 radar_normalized[,-ncol(radar_normalized)])

Color vector - using dark green for OF and light green for SF
colors_border <- c("#006400", "#90EE90") # Dark green and light green
colors_in <- c(alpha("#006400", 0.3), alpha("#90EE90", 0.3))

Create radar chart
radarchart(radar_plot_data,
 axistype = 1,
 pcol = colors_border,
 pfcol = colors_in,
 plwd = 2,
 cglcol = "grey",
 cglty = 1,
 axislabcol = "grey",
 caxislabels = seq(0, 1, 0.2),
 cglwd = 0.8,
 vlcex = 0.8)

legend("topright",
 legend = radar_normalized$Forest,
 bty = "n",
 pch = 20,
 col = colors_border,
 text.col = "black", # Changed to black for better visibility
 cex = 1,
 pt.cex = 2)

Save radar chart at 400 DPI
png("RadarChart_ForestCovariates_400dpi.png", width = 8, height = 8, units = "in", res = 400)
radarchart(radar_plot_data,
 axistype = 1,
 pcol = colors_border,
 pfcol = colors_in,
 plwd = 2,
 cglcol = "grey",
 cglty = 1,

 axislabcol = "grey",
 caxislabels = seq(0, 1, 0.2),
 cglwd = 0.8,
 vlcex = 0.8)

legend("topright",
 legend = radar_normalized$Forest,
 bty = "n",
 pch = 20,
 col = colors_border,
 text.col = "black",
 cex = 1,
 pt.cex = 2)
dev.off()

RADAR CHART - IMPROVED VERSION
library(tibble)
library(tidyr)
library(dplyr)
library(scales)

radar_data <- data_long %>%
 select(Covariate, Forest, Mean) %>%
 pivot_wider(names_from = Covariate, values_from = Mean) %>%
 as.data.frame() %>%
 column_to_rownames("Forest")

Normalize data for radar chart (0-1 scale)
normalize <- function(x) {
 (x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
}

radar_normalized <- as.data.frame(lapply(radar_data, normalize))
radar_normalized$Forest <- rownames(radar_data)

Create radar chart
library(fmsb)

Prepare data for fmsb (first row max, second row min, then actual data)
radar_plot_data <- rbind(rep(1, ncol(radar_normalized)-1),
 rep(0, ncol(radar_normalized)-1),
 radar_normalized[,-ncol(radar_normalized)])

IMPROVED COLOR VECTOR - More contrasting colors
colors_border <- c("#006400", "#FF6B00") # Dark green and orange for high contrast
colors_in <- c(alpha("#006400", 0.4), alpha("#FF6B00", 0.4))

Create radar chart with larger size and better readability

par(mar = c(2, 2, 2, 2)) # Adjust margins
radarchart(radar_plot_data,
 axistype = 1,
 pcol = colors_border,
 pfcol = colors_in,
 plwd = 3, # Thicker lines
 plty = 1,
 cglcol = "darkgray", # Darker grid lines
 cglty = 1,
 axislabcol = "black", # Black axis labels for readability
 caxislabels = seq(0, 1, 0.2),
 cglwd = 1.2, # Thicker grid lines
 vlcex = 1.2, # Larger variable labels
 calcex = 1.1, # Larger axis labels
 title = "Forest Covariates Comparison") # Add title

legend("topright",
 legend = radar_normalized$Forest,
 bty = "o", # Box around legend
 bg = "white", # White background for legend
 pch = 20,
 col = colors_border,
 text.col = "black",
 cex = 1.3, # Larger legend text
 pt.cex = 3) # Larger legend points

Save radar chart at 400 DPI with larger dimensions
png("RadarChart_ForestCovariates_400dpi.png", width = 12, height = 10, units = "in", res = 400)

Set larger margins and recreate plot
par(mar = c(2, 2, 3, 2))
radarchart(radar_plot_data,
 axistype = 1,
 pcol = colors_border,
 pfcol = colors_in,
 plwd = 4, # Even thicker lines for high resolution
 plty = 1,
 cglcol = "darkgray",
 cglty = 1,
 axislabcol = "black",
 caxislabels = seq(0, 1, 0.2),
 cglwd = 1.5,
 vlcex = 1.5, # Larger variable labels
 calcex = 1.3, # Larger axis labels
 title = "Forest Covariates Comparison")

legend("topright",
 legend = radar_normalized$Forest,

 bty = "o",
 bg = "white",
 pch = 20,
 col = colors_border,
 text.col = "black",
 cex = 1.5, # Larger legend text
 pt.cex = 3.5) # Larger legend points

dev.off()

