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# OCCUPANCY MODELING AND RELATIVE 
IMPORTANCE ANALYSIS FOR PRISTIMANTIS 
#============================================================================== 
# 
# This script performs single-season occupancy modeling for two Pristimantis 
# frog species to evaluate environmental and sampling covariates affecting 
# detection and occupancy probabilities. The analysis follows the  
# single-species, single-season occupancy modeling framework of MacKenzie et al. (2002). 
# 
# Species: Pristimantis caryophyllaceus and Pristimantis cruentus 
# Study System: Tropical montane forest, Costa Rica 
# 
# Covariates: 
# - Detection: absolute humidity, lunar cycle 
# - Occupancy: tree diameter (DBH), tree richness, tree abundance 
# 
# Analysis includes: 
# 1. Data preparation and correlation analysis 
# 2. Model selection using AIC 
# 3. Prediction plots with back-transformed scales 
# 4. Relative importance of covariates 
# 
#============================================================================== 
 
# Load required libraries for ecological analysis 
library(tidyverse)      # Data manipulation and visualization 
library(readxl)         # Excel file reading 
library(unmarked)       # Occupancy modeling framework 
library(patchwork)      # Plot arrangement and composition 
library(showtext)       # Custom fonts for publication-quality figures 
library(corrplot)       # Correlation matrix visualization 
library(conflicted)     # Conflict resolution for function names 
library(correlation)    # Advanced correlation analysis 
library(ggcorrplot)     # ggplot2-based correlation plots 
 
# Resolve common function conflicts in ecological analysis 



conflicts_prefer( 
  dplyr::filter,    # Prefer dplyr filter over stats 
  dplyr::lag,       # Prefer dplyr lag over stats 
  dplyr::select,    # Prefer dplyr select over MASS 
  dplyr::mutate,    # Ensure dplyr mutate is used 
  dplyr::arrange,   # Ensure dplyr arrange is used 
  dplyr::summarize  # Ensure dplyr summarize is used 
) 
 
# Configure publication-quality typography 
showtext_auto() 
font_add_google("Lato", "lato") 
 
#============================================================================== 
# ABSOLUTE HUMIDITY CALCULATION FUNCTION 
#============================================================================== 
 
# Function to calculate absolute humidity (g/m³) from temperature (°C) and relative humidity (%) 
calculate_absolute_humidity <- function(temp_c, rh_percent) { 
  # Convert temperature to Kelvin 
  temp_k <- temp_c + 273.15 
   
  # Saturation vapor pressure (Tetens equation) in hPa 
  es_hpa <- 6.112 * exp((17.67 * temp_c) / (temp_c + 243.5)) 
   
  # Actual vapor pressure in hPa 
  ea_hpa <- (rh_percent / 100) * es_hpa 
   
  # Absolute humidity in g/m³ 
  absolute_humidity <- (216.7 * ea_hpa) / temp_k 
   
  return(absolute_humidity) 
} 
 
#============================================================================== 
# DATA IMPORT AND PREPARATION 
#============================================================================== 
 
# Read ecological survey data from original Excel file 
file_path <- "C:/Users/Victor Acosta/Desktop/ecologyandevolution/especies_modelos_RM.xlsx" 
data <- read_excel(file_path) 
 
# Calculate absolute humidity for each temperature/humidity pair 
data_with_ah <- data %>% 
  # Convert to numeric and clean data 
  mutate(across(starts_with("temp"), ~as.numeric(gsub(",", ".", .)))) %>% 
  mutate(across(starts_with("hum"), ~as.numeric(gsub(",", ".", .)))) %>% 
  # Calculate absolute humidity for each temp/hum pair 



  mutate(across(starts_with("temp"),  
                ~calculate_absolute_humidity(., get(paste0("hum", str_sub(cur_column(), 5)))), 
                .names = "ah_{str_sub(.col, 5)}")) 
 
# Use the data with absolute humidity for analysis 
data <- data_with_ah 
 
#------------------------------------------------------------------------------- 
# FUNCTION: PREPARE UNMARKED DATA FOR SINGLE-SPECIES OCCUPANCY ANALYSIS 
# 
# This function formats detection/non-detection data into the unmarked framework 
# for occupancy modeling. It handles scaling of continuous covariates and 
# preserves original values for back-transformation of predictions. 
# 
# Parameters: 
#   species_name: Character string of target species name 
# 
# Returns: 
#   List containing: 
#     - umf: unmarkedFrame for occupancy modeling 
#     - original_values: Means and SDs for back-transformation 
#------------------------------------------------------------------------------- 
 
prepare_species_data <- function(species_name) { 
  # Filter data for focal species 
  species_data <- data %>% filter(especie == species_name) 
   
  # Store original values before scaling for ecological interpretation 
  original_values <- list() 
   
  # Extract detection history (oc1 to oc10) - binary detection matrix 
  y <- species_data %>%  
    select(starts_with("oc")) %>%  
    as.matrix() 
   
  # Extract and clean site covariates (habitat characteristics) 
  siteCovs <- species_data %>% 
    select(area, dap, tree_rich, tree_abu) %>% 
    mutate(across(c(dap, tree_rich, tree_abu), ~ as.numeric(gsub(",", ".", .x)))) 
   
  # Extract and scale observation covariates (absolute humidity and moon) 
  ah_data <- species_data %>%  
    select(starts_with("ah")) %>%  
    mutate(across(everything(), ~as.numeric(gsub(",", ".", .)))) %>% 
    as.matrix() 
   
  moon_data <- species_data %>%  
    select(starts_with("moon")) %>%  



    mutate(across(everything(), ~as.numeric(gsub(",", ".", .)))) %>% 
    as.matrix() 
   
  # Store original ecological values for meaningful interpretation 
  original_values$ah <- c(mean = mean(ah_data, na.rm = TRUE),  
                          sd = sd(ah_data, na.rm = TRUE)) 
  original_values$moon <- c(mean = mean(moon_data, na.rm = TRUE),  
                            sd = sd(moon_data, na.rm = TRUE)) 
  original_values$dap <- c(mean = mean(siteCovs$dap, na.rm = TRUE),  
                           sd = sd(siteCovs$dap, na.rm = TRUE)) 
   
  obsCovs <- list(ah = ah_data, moon = moon_data) 
   
  # Create unmarked frame for occupancy analysis 
  umf <- unmarkedFrameOccu(y = y, siteCovs = siteCovs, obsCovs = obsCovs) 
   
  # Scale covariates for model convergence and comparison 
  umf@siteCovs$dap <- scale(umf@siteCovs$dap) 
  umf@siteCovs$tree_rich <- scale(umf@siteCovs$tree_rich) 
  umf@siteCovs$tree_abu <- scale(umf@siteCovs$tree_abu) 
   
  umf@obsCovs$ah <- scale(umf@obsCovs$ah) 
  umf@obsCovs$moon <- scale(umf@obsCovs$moon) 
   
  return(list(umf = umf, original_values = original_values)) 
} 
 
#============================================================================== 
# CORRELATION ANALYSIS AMONG ECOLOGICAL COVARIATES 
#============================================================================== 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CORRELATION ANALYSIS FOR MULTICOLLINEARITY ASSESSMENT 
# 
# Evaluates pairwise correlations among environmental covariates to identify 
# potential multicollinearity issues before occupancy modeling. High correlations 
# (>0.7) may require careful model selection to avoid overparameterization. 
# 
# Parameters: 
#   species_name: Character string of target species name 
# 
# Returns: 
#   List containing correlation matrix and complete cases data 
#------------------------------------------------------------------------------- 
 
correlation_analysis <- function(species_name) { 
  # Get the species data 
  species_data <- data %>%  



    filter(especie == species_name) %>% 
    mutate(across(c(dap, tree_rich, tree_abu), ~ as.numeric(gsub(",", ".", .x)))) 
   
  # Select site-level habitat covariates 
  site_covs <- species_data %>% 
    select(dap, tree_rich, tree_abu) 
   
  # Calculate mean values for observation covariates across surveys 
  obs_covs <- species_data %>% 
    rowwise() %>% 
    mutate( 
      ah_mean = mean(c_across(starts_with("ah")), na.rm = TRUE), 
      moon_mean = mean(c_across(starts_with("moon")), na.rm = TRUE) 
    ) %>% 
    ungroup() %>% 
    select(ah_mean, moon_mean) %>% 
    mutate(across(everything(), ~ as.numeric(gsub(",", ".", .)))) 
   
  # Combine all covariates for correlation assessment 
  all_covs <- bind_cols(site_covs, obs_covs) 
   
  # Remove any rows with missing values for correlation analysis 
  all_covs_complete <- all_covs %>% filter(complete.cases(.)) 
   
  # Run correlation analysis using robust methods 
  cor_results <- correlation::correlation(all_covs_complete) 
   
  return(list( 
    correlation_matrix = cor_results, 
    data = all_covs_complete 
  )) 
} 
 
# Execute correlation analysis for both focal species 
cat("=== CORRELATION ANALYSIS - P. caryophyllaceus ===\n") 
cor_ca <- correlation_analysis("caryophyllaceus") 
print(cor_ca$correlation_matrix) 
 
cat("\n=== CORRELATION ANALYSIS - P. cruentus ===\n") 
cor_cru <- correlation_analysis("cruentus") 
print(cor_cru$correlation_matrix) 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CREATE CORRELATION VISUALIZATION FOR PUBLICATION 
# 
# Generates correlation matrices using hierarchical clustering to visualize 
# relationships among ecological covariates. Helps identify correlated variable 
# groups that may affect model selection. 



# 
# Parameters: 
#   cor_data: Output from correlation_analysis function 
#   species_name: Character string for plot title 
#------------------------------------------------------------------------------- 
 
create_correlation_plot <- function(cor_data, species_name) { 
  # Extract correlation matrix from the ecological data 
  corr_matrix <- cor(cor_data$data, use = "complete.obs") 
   
  # Create meaningful ecological variable names for visualization 
  colnames(corr_matrix) <- rownames(corr_matrix) <- c( 
    "DAP", "Tree Richness", "Tree Abundance",  
    "Absolute Humidity", "Moon" 
  ) 
   
  # Create correlation plot using hierarchical clustering 
  corrplot(corr_matrix, 
           method = "color", 
           type = "lower", 
           order = "hclust", 
           tl.col = "black", 
           tl.srt = 45, 
           title = paste("Variable Correlations -", species_name), 
           mar = c(0, 0, 2, 0)) 
} 
 
# Generate correlation plots for both species 
par(mfrow = c(1, 2)) 
create_correlation_plot(cor_ca, "P. caryophyllaceus") 
create_correlation_plot(cor_cru, "P. cruentus") 
par(mfrow = c(1, 1)) 
 
# Alternative ggplot2 version for publication flexibility 
create_correlation_plot_gg <- function(cor_data, species_name) { 
  corr_matrix <- cor(cor_data$data, use = "complete.obs") 
   
  colnames(corr_matrix) <- rownames(corr_matrix) <- c( 
    "DAP", "Tree Richness", "Tree Abundance",  
    "Absolute Humidity", "Moon" 
  ) 
   
  ggcorrplot(corr_matrix, 
             method = "circle", 
             type = "lower", 
             lab = TRUE, 
             lab_size = 3, 
             colors = c("#6D9EC1", "white", "#E46726"), 



             title = paste("Variable Correlations -", species_name)) + 
    theme(plot.title = element_text(hjust = 0.5, face = "bold"), 
          axis.text.x = element_text(angle = 45, hjust = 1)) 
} 
 
# Create and save ggplot2-style correlation plots 
cor_plot_ca <- create_correlation_plot_gg(cor_ca, "P. caryophyllaceus") 
cor_plot_cru <- create_correlation_plot_gg(cor_cru, "P. cruentus") 
 
print(cor_plot_ca) 
print(cor_plot_cru) 
 
# Save correlation plots for publication 
ggsave("correlation_caryophyllaceus.png", cor_plot_ca, width = 8, height = 6, dpi = 300) 
ggsave("correlation_cruentus.png", cor_plot_cru, width = 8, height = 6, dpi = 300) 
 
#============================================================================== 
# OCCUPANCY MODEL IMPLEMENTATION AND SELECTION 
#============================================================================== 
 
# Prepare unmarked data for both focal species 
caryophyllaceus_data <- prepare_species_data("caryophyllaceus") 
cruentus_data <- prepare_species_data("cruentus") 
 
c <- caryophyllaceus_data$umf 
cruentus_umf <- cruentus_data$umf 
 
# Store original values for ecological interpretation of predictions 
c_original <- caryophyllaceus_data$original_values 
cruentus_original <- cruentus_data$original_values 
 
#------------------------------------------------------------------------------- 
# FUNCTION: AUTOMATED MODEL SELECTION USING AIC FRAMEWORK 
# 
# Implements a comprehensive model selection approach by fitting all combinations 
# of detection and occupancy covariates. Uses Akaike Information Criterion (AIC) 
# for model comparison and ranks models by parsimony and fit. 
# 
# Parameters: 
#   umf: unmarkedFrame for occupancy modeling 
#   max_models: Optional limit on number of top models to return 
# 
# Returns: 
#   List containing ranked model results and fitted model objects 
#------------------------------------------------------------------------------- 
 
model_selection_unmarked <- function(umf, max_models = NULL) { 
   



  # Define all biologically plausible combinations of covariates 
  det_forms <- c( 
    "~1", "~ah", "~moon", "~ah + moon" 
  ) 
   
  occ_forms <- c( 
    "~1", "~dap", "~tree_rich", "~tree_abu", 
    "~dap + tree_rich", "~dap + tree_abu", "~tree_rich + tree_abu", 
    "~dap + tree_rich + tree_abu" 
  ) 
   
  # Fit all models and store results 
  results <- list() 
  aic_values <- c() 
  formulas <- c() 
  k_values <- c()  # Number of parameters for AIC calculation 
   
  cat("Fitting", length(det_forms) * length(occ_forms), "model combinations...\n") 
   
  model_count <- 0 
  for(i in 1:length(det_forms)) { 
    for(j in 1:length(occ_forms)) { 
      formula_str <- paste(det_forms[i], occ_forms[j], sep = " ") 
      model_count <- model_count + 1 
       
      cat("Model", model_count, "of", length(det_forms) * length(occ_forms), ":", formula_str) 
       
      tryCatch({ 
        mod <- occu(as.formula(formula_str), data = umf) 
         
        # Extract AIC using unmarked's method 
        aic_val <- mod@AIC 
         
        results[[formula_str]] <- mod 
        aic_values <- c(aic_values, aic_val) 
        formulas <- c(formulas, formula_str) 
        k_values <- c(k_values, length(coef(mod)))  # Store number of parameters 
         
        cat(" - AIC:", round(aic_val, 2), "\n") 
         
      }, error = function(e) { 
        cat(" - ERROR:", e$message, "\n") 
      }) 
    } 
  } 
   
  # Create results dataframe using base R for reliability 
  if (length(aic_values) > 0) { 



    model_results <- data.frame( 
      formula = formulas, 
      k = k_values, 
      AIC = aic_values, 
      stringsAsFactors = FALSE 
    ) 
     
    # Order by AIC (lowest AIC indicates best model) 
    model_results <- model_results[order(model_results$AIC), ] 
     
    # Calculate delta AIC and Akaike weights for model comparison 
    model_results$delta_AIC <- model_results$AIC - min(model_results$AIC) 
    model_results$weight <- exp(-0.5 * model_results$delta_AIC) / sum(exp(-0.5 * 
model_results$delta_AIC)) 
    model_results$CumW <- cumsum(model_results$weight) 
     
    # Reset row names for clean output 
    rownames(model_results) <- NULL 
     
  } else { 
    stop("No models were successfully fitted. Check your data and formulas.") 
  } 
   
  # Limit to top models if specified 
  if(!is.null(max_models)) { 
    model_results <- model_results[1:min(max_models, nrow(model_results)), ] 
  } 
   
  return(list( 
    results = model_results, 
    models = results 
  )) 
} 
 
# Execute model selection for both focal species 
cat("=== RUNNING MODEL SELECTION FOR P. caryophyllaceus ===\n") 
selection_ca <- model_selection_unmarked(c) 
 
# Extract best model using AIC criterion 
if (nrow(selection_ca$results) > 0) { 
  best_formula_ca <- selection_ca$results$formula[1] 
  best_ca <- selection_ca$models[[best_formula_ca]] 
  cat("Best model for P. caryophyllaceus:", best_formula_ca, "\n") 
} else { 
  stop("No successful models for P. caryophyllaceus") 
} 
# Display top models with delta AIC ≤ 2 for P. caryophyllaceus 
cat("\n=== TOP MODELS FOR P. caryophyllaceus (delta AIC ≤ 2) ===\n") 



top_models_ca <- selection_ca$results %>%  
  filter(delta_AIC <= 2) %>% 
  select(formula, AIC, delta_AIC, weight) 
 
print(top_models_ca) 
 
# Cruentus model selection 
cat("\n=== RUNNING MODEL SELECTION FOR P. cruentus ===\n") 
selection_cru <- model_selection_unmarked(cruentus_umf) 
 
if (nrow(selection_cru$results) > 0) { 
  best_formula_cru <- selection_cru$results$formula[1] 
  best_cru <- selection_cru$models[[best_formula_cru]] 
  cat("Best model for P. cruentus:", best_formula_cru, "\n") 
} else { 
  stop("No successful models for P. cruentus") 
} 
# Display top models with delta AIC ≤ 2 for P. cruentus 
cat("\n=== TOP MODELS FOR P. cruentus (delta AIC ≤ 2) ===\n") 
top_models_cru <- selection_cru$results %>%  
  filter(delta_AIC <= 2) %>% 
  select(formula, AIC, delta_AIC, weight) 
 
print(top_models_cru) 
 
 
#============================================================================== 
# ECOLOGICAL PREDICTION AND VISUALIZATION 
#============================================================================== 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CREATE PREDICTION PLOTS WITH ECOLOGICAL SCALES 
# 
# Generates partial dependence plots showing how detection and occupancy 
# probabilities vary with environmental covariates. Back-transforms scaled 
# covariates to original ecological units for meaningful interpretation. 
# 
# Parameters: 
#   best_model: Top-ranked occupancy model from AIC selection 
#   best_formula: Formula of the best model 
#   umf: unmarkedFrame used for modeling 
#   original_values: Means and SDs for back-transformation 
#   species_name: Character string for plot labeling 
# 
# Returns: 
#   List of ggplot objects showing covariate effects 
#------------------------------------------------------------------------------- 
 



create_prediction_plots_original_scale <- function(best_model, best_formula, umf, original_values, 
species_name) { 
   
  # Convert scaled ranges back to original ecological scales 
  ah_range_scaled <- seq(min(umf@obsCovs$ah, na.rm = TRUE),  
                         max(umf@obsCovs$ah, na.rm = TRUE),  
                         length.out = 100) 
  ah_range_original <- ah_range_scaled * original_values$ah["sd"] + original_values$ah["mean"] 
   
  moon_range_scaled <- seq(min(umf@obsCovs$moon, na.rm = TRUE),  
                           max(umf@obsCovs$moon, na.rm = TRUE),  
                           length.out = 100) 
  moon_range_original <- moon_range_scaled * original_values$moon["sd"] + 
original_values$moon["mean"] 
   
  # For DAP (tree diameter at breast height) 
  dap_range_scaled <- seq(min(umf@siteCovs$dap, na.rm = TRUE),  
                          max(umf@siteCovs$dap, na.rm = TRUE),  
                          length.out = 100) 
  dap_range_original <- dap_range_scaled * original_values$dap["sd"] + 
original_values$dap["mean"] 
   
  plots_list <- list() 
   
  # ABSOLUTE HUMIDITY EFFECT ON DETECTION PROBABILITY 
  if(grepl("ah", best_formula)) { 
    new_data_ah <- data.frame( 
      ah = ah_range_scaled, 
      moon = ifelse(grepl("moon", best_formula), mean(umf@obsCovs$moon, na.rm = TRUE), 0) 
    ) 
     
    pred_ah <- predict(best_model, type = 'det', newdata = new_data_ah, appendData = TRUE) 
    pred_ah$ah_original <- ah_range_original 
     
    p_ah <- ggplot(pred_ah, aes(ah_original, Predicted)) + 
      geom_ribbon(aes(ymin = lower, ymax = upper), fill = "#1B9E77", alpha = 0.3) + 
      geom_line(color = "#1B9E77", linewidth = 1.5) + 
      scale_y_continuous(limits = c(0, 1)) + 
      labs( 
        x = "Absolute Humidity (g/m³)", 
        y = "Detection Probability" 
      ) + 
      theme_minimal() + 
      theme( 
        axis.title.x = element_text(size = 16, face = "bold", margin = margin(t = 10)), 
        axis.title.y = element_text(size = 16, face = "bold", margin = margin(r = 10)), 
        axis.text.x = element_text(size = 14, color = "black"), 
        axis.text.y = element_text(size = 14, color = "black"), 



        panel.grid.minor = element_blank(), 
        panel.grid.major = element_line(color = "grey90", linewidth = 0.5), 
        plot.background = element_rect(fill = "white", color = NA) 
      ) 
     
    plots_list[["absolute_humidity"]] <- p_ah 
  } 
   
  # LUNAR CYCLE EFFECT ON DETECTION PROBABILITY 
  if(grepl("moon", best_formula)) { 
    new_data_moon <- data.frame( 
      ah = ifelse(grepl("ah", best_formula), mean(umf@obsCovs$ah, na.rm = TRUE), 0), 
      moon = moon_range_scaled 
    ) 
     
    pred_moon <- predict(best_model, type = 'det', newdata = new_data_moon, appendData = TRUE) 
    pred_moon$moon_original <- moon_range_original 
     
    # Create ecologically meaningful moon phase labels 
    moon_breaks <- seq(min(pred_moon$moon_original), max(pred_moon$moon_original), 
length.out = 5) 
    moon_labels <- c("New Moon", "First Quarter", "Waxing Gibbous", "Waning Gibbous", "Full Moon") 
     
    p_moon <- ggplot(pred_moon, aes(moon_original, Predicted)) + 
      geom_ribbon(aes(ymin = lower, ymax = upper), fill = "#7570B3", alpha = 0.3) + 
      geom_line(color = "#7570B3", linewidth = 1.5) + 
      scale_y_continuous(limits = c(0, 1)) + 
      scale_x_continuous( 
        name = "Moon Phase", 
        breaks = moon_breaks, 
        labels = moon_labels 
      ) + 
      labs(y = "Detection Probability") + 
      theme_minimal() + 
      theme( 
        axis.title.x = element_text(size = 16, face = "bold", margin = margin(t = 10)), 
        axis.title.y = element_text(size = 16, face = "bold", margin = margin(r = 10)), 
        axis.text.x = element_text(size = 12, color = "black", angle = 45, hjust = 1), 
        axis.text.y = element_text(size = 14, color = "black"), 
        panel.grid.minor = element_blank(), 
        panel.grid.major = element_line(color = "grey90", linewidth = 0.5), 
        plot.background = element_rect(fill = "white", color = NA) 
      ) 
     
    plots_list[["moon"]] <- p_moon 
  } 
   
  # TREE DIAMETER (DAP) EFFECT ON OCCUPANCY PROBABILITY 



  if(grepl("dap", best_formula)) { 
    new_data_dap <- data.frame( 
      dap = dap_range_scaled, 
      tree_rich = ifelse(grepl("tree_rich", best_formula), mean(umf@siteCovs$tree_rich, na.rm = 
TRUE), 0), 
      tree_abu = ifelse(grepl("tree_abu", best_formula), mean(umf@siteCovs$tree_abu, na.rm = 
TRUE), 0) 
    ) 
     
    pred_dap <- predict(best_model, type = 'state', newdata = new_data_dap, appendData = TRUE) 
    pred_dap$dap_original <- dap_range_original 
     
    p_dap <- ggplot(pred_dap, aes(dap_original, Predicted)) + 
      geom_ribbon(aes(ymin = lower, ymax = upper), fill = "#33a02c", alpha = 0.3) + 
      geom_line(color = "#33a02c", linewidth = 1.5) + 
      scale_y_continuous(limits = c(0, 1)) + 
      labs( 
        x = "Tree Diameter at Breast Height (DBH, cm)", 
        y = "Occupancy Probability" 
      ) + 
      theme_minimal() + 
      theme( 
        axis.title.x = element_text(size = 16, face = "bold", margin = margin(t = 10)), 
        axis.title.y = element_text(size = 16, face = "bold", margin = margin(r = 10)), 
        axis.text.x = element_text(size = 14, color = "black"), 
        axis.text.y = element_text(size = 14, color = "black"), 
        panel.grid.minor = element_blank(), 
        panel.grid.major = element_line(color = "grey90", linewidth = 0.5), 
        plot.background = element_rect(fill = "white", color = NA) 
      ) 
     
    plots_list[["dap"]] <- p_dap 
  } 
   
  return(plots_list) 
} 
 
# Generate ecological prediction plots for both species 
plots_ca <- create_prediction_plots_original_scale(best_ca, best_formula_ca, c, c_original, 
"Pristimantis caryophyllaceus") 
plots_cru <- create_prediction_plots_original_scale(best_cru, best_formula_cru, cruentus_umf, 
cruentus_original, "Pristimantis cruentus") 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CREATE INTERSPECIFIC COMPARISON FIGURES 
# 
# Generates side-by-side comparison plots to visualize differences in ecological 
# responses between the two Pristimantis species. Facilitates comparative 



# ecological inference. 
# 
# Parameters: 
#   plots_ca: Prediction plots for P. caryophyllaceus 
#   plots_cru: Prediction plots for P. cruentus 
#   covariate_name: Specific covariate to compare 
#   title: Plot title 
#------------------------------------------------------------------------------- 
 
create_comparison_figure <- function(plots_ca, plots_cru, covariate_name, title) { 
  if(covariate_name %in% names(plots_ca) && covariate_name %in% names(plots_cru)) { 
     
    p_ca <- plots_ca[[covariate_name]] +  
      labs(subtitle = expression(italic("Pristimantis caryophyllaceus"))) + 
      theme(plot.subtitle = element_text(face = "italic", hjust = 0.5, size = 14)) 
     
    p_cru <- plots_cru[[covariate_name]] +  
      labs(subtitle = expression(italic("Pristimantis cruentus"))) + 
      theme(plot.subtitle = element_text(face = "italic", hjust = 0.5, size = 14)) 
     
    combined <- p_ca + p_cru + 
      plot_layout(ncol = 2) + 
      plot_annotation( 
        title = title, 
        theme = theme( 
          plot.title = element_text(hjust = 0.5, face = "bold", size = 18) 
        ) 
      ) 
     
    return(combined) 
  } 
  return(NULL) 
} 
 
# Create and save interspecific comparison figures 
if("moon" %in% names(plots_ca) && "moon" %in% names(plots_cru)) { 
  moon_comparison <- create_comparison_figure(plots_ca, plots_cru, "moon", "Effect of Moon 
Phase on Detection Probability") 
  ggsave("moon_comparison.png", moon_comparison, width = 16, height = 8, dpi = 300, bg = 
"white") 
} 
 
if("absolute_humidity" %in% names(plots_ca) && "absolute_humidity" %in% names(plots_cru)) { 
  ah_comparison <- create_comparison_figure(plots_ca, plots_cru, "absolute_humidity", "Effect of 
Absolute Humidity on Detection Probability") 
  ggsave("absolute_humidity_comparison.png", ah_comparison, width = 16, height = 8, dpi = 300, bg 
= "white") 
} 



 
if("dap" %in% names(plots_ca) && "dap" %in% names(plots_cru)) { 
  dap_comparison <- create_comparison_figure(plots_ca, plots_cru, "dap", "Effect of Tree Diameter 
on Occupancy Probability") 
  ggsave("dap_comparison.png", dap_comparison, width = 16, height = 8, dpi = 300, bg = "white") 
} 
 
# Save individual species plots for publication 
for(plot_name in names(plots_ca)) { 
  filename <- paste0("caryophyllaceus_", plot_name, ".png") 
  ggsave(filename, plots_ca[[plot_name]], width = 10, height = 8, dpi = 300, bg = "white") 
} 
 
for(plot_name in names(plots_cru)) { 
  filename <- paste0("cruentus_", plot_name, ".png") 
  ggsave(filename, plots_cru[[plot_name]], width = 10, height = 8, dpi = 300, bg = "white") 
} 
 
#============================================================================== 
# RELATIVE IMPORTANCE ANALYSIS 
#============================================================================== 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CALCULATE RELATIVE IMPORTANCE OF ECOLOGICAL COVARIATES 
# 
# Computes relative importance values by summing Akaike weights across all 
# models containing each covariate. Provides inference about which ecological 
# factors most strongly influence occupancy and detection. 
# 
# Parameters: 
#   selection_results: Output from model_selection_unmarked function 
# 
# Returns: 
#   Dataframe with covariates ranked by relative importance 
#------------------------------------------------------------------------------- 
 
calculate_relative_importance <- function(selection_results) { 
  # Extract model results 
  model_results <- selection_results$results 
   
  # Define all ecological covariates considered 
  all_covariates <- c("ah", "moon", "dap", "tree_rich", "tree_abu") 
   
  # Calculate importance for each covariate 
  importance_list <- list() 
   
  for(covariate in all_covariates) { 
    # Find models that contain this covariate 



    if(covariate %in% c("ah", "moon")) { 
      # Detection covariates 
      models_with_covariate <- grepl(covariate, model_results$formula) 
    } else { 
      # Occupancy covariates 
      models_with_covariate <- grepl(covariate, model_results$formula) 
    } 
     
    # Sum Akaike weights of models containing this covariate 
    total_weight <- sum(model_results$weight[models_with_covariate]) 
     
    importance_list[[covariate]] <- data.frame( 
      covariate = covariate, 
      importance = total_weight 
    ) 
  } 
   
  # Combine all importance values and rank by importance 
  importance_df <- bind_rows(importance_list) %>% 
    arrange(desc(importance)) 
   
  return(importance_df) 
} 
 
# Calculate relative importance for both species 
importance_ca <- calculate_relative_importance(selection_ca) 
importance_cru <- calculate_relative_importance(selection_cru) 
 
cat("✓ Relative importance data calculated\n") 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CLUSTERED RELATIVE IMPORTANCE PLOT 
# 
# Creates a grouped bar chart showing relative importance values for both 
# species together, facilitating direct comparison of ecological drivers 
# between species. 
# 
# Parameters: 
#   importance_ca: Importance data for P. caryophyllaceus 
#   importance_cru: Importance data for P. cruentus 
#------------------------------------------------------------------------------- 
 
create_clustered_relimp_plot <- function(importance_ca, importance_cru) { 
  # Combine both species' data 
  combined_data <- bind_rows( 
    importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"), 
    importance_cru %>% mutate(species = "Pristimantis cruentus") 
  ) 



   
  # Define ecological color scheme 
  colors <- c("ah" = "#35978f", "moon" = "#b0b0b0", 
              "dap" = "#bf812d", "tree_rich" = "#66A61E", "tree_abu" = "#01665e") 
   
  # Create meaningful ecological labels 
  pretty_labels <- c( 
    "ah" = "Absolute Humidity",  
    "moon" = "Lunar cycle", 
    "dap" = "Tree diameter (DBH)", 
    "tree_rich" = "Tree richness",  
    "tree_abu" = "Tree abundance" 
  ) 
   
  combined_data <- combined_data %>% 
    mutate( 
      label = pretty_labels[covariate], 
      species = factor(species, levels = c("Pristimantis caryophyllaceus", "Pristimantis cruentus")), 
      # Short names for clustering 
      species_short = ifelse(species == "Pristimantis caryophyllaceus", "P. caryophyllaceus", "P. 
cruentus") 
    ) 
   
  ggplot(combined_data, aes(x = importance, y = reorder(label, importance), fill = species_short)) + 
    geom_col(position = position_dodge(0.8), width = 0.7, alpha = 0.8) + 
    geom_text(aes(label = sprintf("%.2f", importance)),  
              position = position_dodge(0.8), 
              hjust = -0.2, size = 5, color = "black") + 
    scale_fill_manual(values = c("P. caryophyllaceus" = "#1f78b4", "P. cruentus" = "#33a02c")) + 
    scale_x_continuous( 
      limits = c(0, 1.1), 
      expand = expansion(mult = c(0, 0.05)), 
      breaks = seq(0, 1, 0.2) 
    ) + 
    labs( 
      x = "Relative Importance",  
      y = NULL, 
      title = "Relative Importance of Covariates in Occupancy Models", 
      subtitle = "Based on model weights across all candidate models", 
      fill = "Species" 
    ) + 
    theme_minimal() + 
    theme( 
      legend.position = "top", 
      legend.title = element_text(face = "bold", size = 14), 
      legend.text = element_text(face = "italic", size = 12), 
      plot.title = element_text(hjust = 0.5, face = "bold", size = 20, margin = margin(b = 15)), 
      plot.subtitle = element_text(hjust = 0.5, size = 16, color = "grey40", margin = margin(b = 20)), 



      axis.title.x = element_text(face = "bold", size = 18, margin = margin(t = 15)), 
      axis.text.y = element_text(face = "bold", size = 16, color = "black"), 
      axis.text.x = element_text(size = 14), 
      # Add black axis lines 
      axis.line = element_line(color = "black", linewidth = 0.5), 
      axis.ticks = element_line(color = "black"), 
      panel.grid.major.y = element_blank(), 
      panel.grid.minor.y = element_blank(), 
      panel.grid.major.x = element_line(color = "grey90"), 
      panel.grid.minor.x = element_blank(), 
      panel.border = element_blank(), 
      plot.background = element_rect(fill = "white", color = NA) 
    ) + 
    coord_cartesian(clip = "off") 
} 
 
# Create and save clustered relative importance plot 
clustered_relimp <- create_clustered_relimp_plot(importance_ca, importance_cru) 
ggsave("relative_importance_clustered.png", clustered_relimp,  
       width = 18, height = 10, dpi = 300, bg = "white") 
 
cat("✓ Clustered relative importance plot saved\n") 
 
#------------------------------------------------------------------------------- 
# FUNCTION: COMBINED RELATIVE IMPORTANCE PLOT 
# 
# Creates side-by-side facet plot showing relative importance for both species 
# separately but in a single figure for comparative assessment. 
# 
# Parameters: 
#   importance_ca: Importance data for P. caryophyllaceus 
#   importance_cru: Importance data for P. cruentus 
#------------------------------------------------------------------------------- 
 
create_combined_relimp_plot <- function(importance_ca, importance_cru) { 
  # Combine both species' data 
  combined_data <- bind_rows( 
    importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"), 
    importance_cru %>% mutate(species = "Pristimantis cruentus") 
  ) 
   
  # Define ecological color scheme 
  colors <- c("ah" = "#35978f", "moon" = "#b0b0b0", 
              "dap" = "#bf812d", "tree_rich" = "#66A61E", "tree_abu" = "#01665e") 
   
  # Create meaningful ecological labels 
  pretty_labels <- c( 
    "ah" = "Absolute Humidity",  



    "moon" = "Lunar cycle", 
    "dap" = "Tree diameter (DBH)", 
    "tree_rich" = "Tree richness",  
    "tree_abu" = "Tree abundance" 
  ) 
   
  combined_data <- combined_data %>% 
    mutate( 
      label = pretty_labels[covariate], 
      species = factor(species, levels = c("Pristimantis caryophyllaceus", "Pristimantis cruentus")) 
    ) 
   
  ggplot(combined_data, aes(x = importance, y = reorder(label, importance))) + 
    geom_col(aes(fill = covariate), width = 0.7, alpha = 0.8, position = "dodge") + 
    geom_text(aes(label = sprintf("%.2f", importance)),  
              position = position_dodge(width = 0.7), 
              hjust = -0.2, size = 5, color = "black") + 
    scale_fill_manual(values = colors) + 
    scale_x_continuous( 
      limits = c(0, 1.1), 
      expand = expansion(mult = c(0, 0.05)), 
      breaks = seq(0, 1, 0.2) 
    ) + 
    facet_wrap(~ species, ncol = 2) + 
    labs( 
      x = "Relative Importance",  
      y = NULL, 
      title = "Relative Importance of Covariates in Occupancy Models", 
      subtitle = "Based on model weights across all candidate models" 
    ) + 
    theme_minimal() + 
    theme( 
      legend.position = "none", 
      plot.title = element_text(hjust = 0.5, face = "bold", size = 20, margin = margin(b = 15)), 
      plot.subtitle = element_text(hjust = 0.5, size = 16, color = "grey40", margin = margin(b = 20)), 
      axis.title.x = element_text(face = "bold", size = 18, margin = margin(t = 15)), 
      axis.text.y = element_text(face = "bold", size = 16, color = "black"), 
      axis.text.x = element_text(size = 14), 
      strip.text = element_text(face = "italic", size = 16, color = "black"), 
      # Add black axis lines 
      axis.line = element_line(color = "black", linewidth = 0.5), 
      axis.ticks = element_line(color = "black"), 
      panel.grid.major.y = element_blank(), 
      panel.grid.minor.y = element_blank(), 
      panel.grid.major.x = element_line(color = "grey90"), 
      panel.grid.minor.x = element_blank(), 
      panel.border = element_blank(), 
      plot.background = element_rect(fill = "white", color = NA) 



    ) + 
    coord_cartesian(clip = "off") 
} 
 
# Create and save combined relative importance plot 
combined_relimp_single <- create_combined_relimp_plot(importance_ca, importance_cru) 
ggsave("relative_importance_both_species.png", combined_relimp_single,  
       width = 18, height = 10, dpi = 300, bg = "white") 
 
cat("✓ Combined relative importance plot saved with proper font sizes\n") 
 
#------------------------------------------------------------------------------- 
# FUNCTION: INDIVIDUAL SPECIES RELATIVE IMPORTANCE PLOTS 
# 
# Creates separate relative importance plots for each species with consistent 
# color scheme for individual species assessment. 
# 
# Parameters: 
#   importance_df: Importance data for a single species 
#   species_name: Character string for plot title 
#------------------------------------------------------------------------------- 
 
create_single_relimp_plot <- function(importance_df, species_name) { 
  # Use consistent ecological color scheme 
  colors <- c("ah" = "#35978f", "moon" = "#b0b0b0", 
              "dap" = "#bf812d", "tree_rich" = "#66A61E", "tree_abu" = "#01665e") 
   
  # Create meaningful ecological labels 
  pretty_labels <- c( 
    "ah" = "Absolute Humidity",  
    "moon" = "Lunar cycle", 
    "dap" = "Tree diameter (DBH)", 
    "tree_rich" = "Tree richness",  
    "tree_abu" = "Tree abundance" 
  ) 
   
  importance_df <- importance_df %>% 
    mutate(label = pretty_labels[covariate]) 
   
  ggplot(importance_df, aes(x = importance, y = reorder(label, importance))) + 
    geom_col(aes(fill = covariate), width = 0.7, alpha = 0.8) + 
    geom_text(aes(label = sprintf("%.2f", importance)),  
              hjust = -0.2, size = 5, color = "black") + 
    scale_fill_manual(values = colors) + 
    scale_x_continuous( 
      limits = c(0, 1.1), 
      expand = expansion(mult = c(0, 0.05)), 
      breaks = seq(0, 1, 0.2) 



    ) + 
    labs( 
      x = "Relative Importance",  
      y = NULL,  
      title = species_name, 
      subtitle = "Relative importance of covariates" 
    ) + 
    theme_minimal() + 
    theme( 
      legend.position = "none", 
      plot.title = element_text(face = "italic", hjust = 0.5, size = 18, margin = margin(b = 10)), 
      plot.subtitle = element_text(hjust = 0.5, size = 14, color = "grey40", margin = margin(b = 15)), 
      axis.title.x = element_text(face = "bold", size = 16, margin = margin(t = 10)), 
      axis.text.y = element_text(face = "bold", size = 14, color = "black"), 
      axis.text.x = element_text(size = 12), 
      # Add black axis lines 
      axis.line = element_line(color = "black", linewidth = 0.5), 
      axis.ticks = element_line(color = "black"), 
      panel.grid.major.y = element_blank(), 
      panel.grid.minor.y = element_blank(), 
      panel.grid.major.x = element_line(color = "grey90"), 
      panel.grid.minor.x = element_blank(), 
      panel.border = element_blank(), 
      plot.background = element_rect(fill = "white", color = NA) 
    ) + 
    coord_cartesian(clip = "off") 
} 
 
# Create individual species relative importance plots 
relimp_ca <- create_single_relimp_plot(importance_ca, "Pristimantis caryophyllaceus") 
relimp_cru <- create_single_relimp_plot(importance_cru, "Pristimantis cruentus") 
 
# Save individual plots 
ggsave("relative_importance_caryophyllaceus.png", relimp_ca,  
       width = 10, height = 8, dpi = 300, bg = "white") 
ggsave("relative_importance_cruentus.png", relimp_cru,  
       width = 10, height = 8, dpi = 300, bg = "white") 
 
cat("✓ Individual relative importance plots saved\n") 
 
#============================================================================== 
# RESULTS DISPLAY AND SUMMARY 
#============================================================================== 
 
# Display all generated plots in R graphics device 
cat("\n=== QUICK DISPLAY OF ALL ECOLOGICAL PLOTS ===\n") 
 
# Display individual species prediction plots 



cat("\n--- Pristimantis caryophyllaceus ---\n") 
for(plot_name in names(plots_ca)) { 
  cat("Displaying:", plot_name, "\n") 
  print(plots_ca[[plot_name]]) 
} 
 
cat("\n--- Pristimantis cruentus ---\n") 
for(plot_name in names(plots_cru)) { 
  cat("Displaying:", plot_name, "\n") 
  print(plots_cru[[plot_name]]) 
} 
 
# Display comparison plots 
cat("\n--- Interspecific Comparison Plots ---\n") 
comparison_plots <- ls(pattern = "_comparison$") 
for(plot_name in comparison_plots) { 
  cat("Displaying:", plot_name, "\n") 
  print(get(plot_name)) 
} 
 
# Display relative importance plots 
cat("\n--- Relative Importance Analysis ---\n") 
if(exists("relimp_ca")) { 
  cat("Displaying: P. caryophyllaceus Relative Importance\n") 
  print(relimp_ca) 
} 
if(exists("relimp_cru")) { 
  cat("Displaying: P. cruentus Relative Importance\n") 
  print(relimp_cru) 
} 
if(exists("combined_relimp_single")) { 
  cat("Displaying: Combined Relative Importance (Side by Side)\n") 
  print(combined_relimp_single) 
} 
if(exists("clustered_relimp")) { 
  cat("Displaying: Clustered Relative Importance (Both Species Together)\n") 
  print(clustered_relimp) 
} 
 
#------------------------------------------------------------------------------- 
# ECOLOGICAL ANALYSIS SUMMARY 
# 
# Provides concise summary of key findings for both focal species, including 
# best models, AIC values, and ecological interpretation of results. 
#------------------------------------------------------------------------------- 
 
cat("\n=== ECOLOGICAL ANALYSIS SUMMARY ===\n") 
cat("Pristimantis caryophyllaceus:\n") 



cat("  Best model:", best_formula_ca, "\n") 
cat("  AIC:", round(best_ca@AIC, 2), "\n") 
cat("  Ecological drivers identified:", names(plots_ca), "\n\n") 
 
cat("Pristimantis cruentus:\n") 
cat("  Best model:", best_formula_cru, "\n") 
cat("  AIC:", round(best_cru@AIC, 2), "\n") 
cat("  Ecological drivers identified:", names(plots_cru), "\n\n") 
 
cat("Comparative figures generated:\n") 
if(!is.null(moon_comparison)) cat("- Lunar cycle effects on detection\n") 
if(!is.null(ah_comparison)) cat("- Absolute humidity effects on detection\n") 
if(!is.null(dap_comparison)) cat("- Tree diameter effects on occupancy\n") 
 
cat("\nRelative importance analyses completed:\n") 
cat("- Clustered bar chart (both species)\n") 
cat("- Combined facet plot\n") 
cat("- Individual species plots\n") 
 
cat("\n     OCCUPANCY MODELING ANALYSIS COMPLETE\n") 
cat("All ecological plots and analyses saved for publication.\n") 
 

  



# OCCUPANCY MODELING AND RELATIVE 
IMPORTANCE ANALYSIS FOR DIASPORUS 
#============================================================================== 
# 
# This script performs single-season occupancy modeling for Diasporus diastema 
# to evaluate environmental and sampling covariates affecting detection and  
# occupancy probabilities. The analysis follows the single-species, single-season  
# occupancy modeling framework of MacKenzie et al. (2002). 
# 
# Species: Diasporus diastema 
# Study System: Tropical montane forest, Costa Rica 
# 
# Covariates: 
# - Detection: absolute humidity, lunar cycle 
# - Occupancy: tree diameter (DBH), tree richness, tree abundance 
# 
# Analysis includes: 
# 1. Data preparation and correlation analysis 
# 2. Model selection using AIC 
# 3. Prediction plots with back-transformed scales 
# 4. Relative importance of covariates 
# 
#============================================================================== 
 
# Load required libraries for ecological analysis 
library(tidyverse)      # Data manipulation and visualization 
library(readxl)         # Excel file reading 
library(unmarked)       # Occupancy modeling framework 
library(patchwork)      # Plot arrangement and composition 
library(showtext)       # Custom fonts for publication-quality figures 
library(corrplot)       # Correlation matrix visualization 
library(conflicted)     # Conflict resolution for function names 
library(correlation)    # Advanced correlation analysis 
library(ggcorrplot)     # ggplot2-based correlation plots 
 
# Resolve common function conflicts in ecological analysis 
conflicts_prefer( 
  dplyr::filter,    # Prefer dplyr filter over stats 
  dplyr::lag,       # Prefer dplyr lag over stats 
  dplyr::select,    # Prefer dplyr select over MASS 
  dplyr::mutate,    # Ensure dplyr mutate is used 
  dplyr::arrange,   # Ensure dplyr arrange is used 
  dplyr::summarize  # Ensure dplyr summarize is used 
) 
 
# Configure publication-quality typography 



showtext_auto() 
font_add_google("Lato", "lato") 
 
#============================================================================== 
# ABSOLUTE HUMIDITY CALCULATION FUNCTION 
#============================================================================== 
 
# Function to calculate absolute humidity (g/m³) from temperature (°C) and relative humidity (%) 
calculate_absolute_humidity <- function(temp_c, rh_percent) { 
  # Convert temperature to Kelvin 
  temp_k <- temp_c + 273.15 
   
  # Saturation vapor pressure (Tetens equation) in hPa 
  es_hpa <- 6.112 * exp((17.67 * temp_c) / (temp_c + 243.5)) 
   
  # Actual vapor pressure in hPa 
  ea_hpa <- (rh_percent / 100) * es_hpa 
   
  # Absolute humidity in g/m³ 
  absolute_humidity <- (216.7 * ea_hpa) / temp_k 
   
  return(absolute_humidity) 
} 
 
#============================================================================== 
# DATA IMPORT AND PREPARATION 
#============================================================================== 
 
# Read ecological survey data from Excel file 
file_path <- "C:/Users/Victor Acosta/Desktop/ecologyandevolution/especies_modelos_RM.xlsx" 
data <- read_excel(file_path) 
 
# Calculate absolute humidity for each temperature/humidity pair 
data_with_ah <- data %>% 
  # Convert to numeric and clean data 
  mutate(across(starts_with("temp"), ~as.numeric(gsub(",", ".", .)))) %>% 
  mutate(across(starts_with("hum"), ~as.numeric(gsub(",", ".", .)))) %>% 
  # Calculate absolute humidity for each temp/hum pair 
  mutate(across(starts_with("temp"),  
                ~calculate_absolute_humidity(., get(paste0("hum", str_sub(cur_column(), 5)))), 
                .names = "ah_{str_sub(.col, 5)}")) 
 
# Use the data with absolute humidity for analysis 
data <- data_with_ah 
 
#------------------------------------------------------------------------------- 
# FUNCTION: PREPARE UNMARKED DATA FOR SINGLE-SPECIES OCCUPANCY ANALYSIS 
# 



# This function formats detection/non-detection data into the unmarked framework 
# for occupancy modeling. It handles scaling of continuous covariates and 
# preserves original values for back-transformation of predictions. 
# 
# Parameters: 
#   species_name: Character string of target species name 
# 
# Returns: 
#   List containing: 
#     - umf: unmarkedFrame for occupancy modeling 
#     - original_values: Means and SDs for back-transformation 
#------------------------------------------------------------------------------- 
 
prepare_species_data <- function(species_name) { 
  # Filter data for focal species 
  species_data <- data %>% filter(especie == species_name) 
   
  # Store original values before scaling for ecological interpretation 
  original_values <- list() 
   
  # Extract detection history (oc1 to oc10) - binary detection matrix 
  y <- species_data %>%  
    select(starts_with("oc")) %>%  
    as.matrix() 
   
  # Extract and clean site covariates (habitat characteristics) 
  siteCovs <- species_data %>% 
    select(area, dap, tree_rich, tree_abu) %>% 
    mutate(across(c(dap, tree_rich, tree_abu), ~ as.numeric(gsub(",", ".", .x)))) 
   
  # Extract and scale observation covariates (absolute humidity and moon) 
  ah_data <- species_data %>%  
    select(starts_with("ah")) %>%  
    mutate(across(everything(), ~as.numeric(gsub(",", ".", .)))) %>% 
    as.matrix() 
   
  moon_data <- species_data %>%  
    select(starts_with("moon")) %>%  
    mutate(across(everything(), ~as.numeric(gsub(",", ".", .)))) %>% 
    as.matrix() 
   
  # Store original ecological values for meaningful interpretation 
  original_values$ah <- c(mean = mean(ah_data, na.rm = TRUE),  
                          sd = sd(ah_data, na.rm = TRUE)) 
  original_values$moon <- c(mean = mean(moon_data, na.rm = TRUE),  
                            sd = sd(moon_data, na.rm = TRUE)) 
  original_values$dap <- c(mean = mean(siteCovs$dap, na.rm = TRUE),  
                           sd = sd(siteCovs$dap, na.rm = TRUE)) 



   
  obsCovs <- list(ah = ah_data, moon = moon_data) 
   
  # Create unmarked frame for occupancy analysis 
  umf <- unmarkedFrameOccu(y = y, siteCovs = siteCovs, obsCovs = obsCovs) 
   
  # Scale covariates for model convergence and comparison 
  umf@siteCovs$dap <- scale(umf@siteCovs$dap) 
  umf@siteCovs$tree_rich <- scale(umf@siteCovs$tree_rich) 
  umf@siteCovs$tree_abu <- scale(umf@siteCovs$tree_abu) 
   
  umf@obsCovs$ah <- scale(umf@obsCovs$ah) 
  umf@obsCovs$moon <- scale(umf@obsCovs$moon) 
   
  return(list(umf = umf, original_values = original_values)) 
} 
 
#============================================================================== 
# CORRELATION ANALYSIS AMONG ECOLOGICAL COVARIATES 
#============================================================================== 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CORRELATION ANALYSIS FOR MULTICOLLINEARITY ASSESSMENT 
# 
# Evaluates pairwise correlations among environmental covariates to identify 
# potential multicollinearity issues before occupancy modeling. High correlations 
# (>0.7) may require careful model selection to avoid overparameterization. 
# 
# Parameters: 
#   species_name: Character string of target species name 
# 
# Returns: 
#   List containing correlation matrix and complete cases data 
#------------------------------------------------------------------------------- 
 
correlation_analysis <- function(species_name) { 
  # Get the species data 
  species_data <- data %>%  
    filter(especie == species_name) %>% 
    mutate(across(c(dap, tree_rich, tree_abu), ~ as.numeric(gsub(",", ".", .x)))) 
   
  # Select site-level habitat covariates 
  site_covs <- species_data %>% 
    select(dap, tree_rich, tree_abu) 
   
  # Calculate mean values for observation covariates across surveys 
  obs_covs <- species_data %>% 
    rowwise() %>% 



    mutate( 
      ah_mean = mean(c_across(starts_with("ah")), na.rm = TRUE), 
      moon_mean = mean(c_across(starts_with("moon")), na.rm = TRUE) 
    ) %>% 
    ungroup() %>% 
    select(ah_mean, moon_mean) %>% 
    mutate(across(everything(), ~ as.numeric(gsub(",", ".", .)))) 
   
  # Combine all covariates for correlation assessment 
  all_covs <- bind_cols(site_covs, obs_covs) 
   
  # Remove any rows with missing values for correlation analysis 
  all_covs_complete <- all_covs %>% filter(complete.cases(.)) 
   
  # Run correlation analysis using robust methods 
  cor_results <- correlation::correlation(all_covs_complete) 
   
  return(list( 
    correlation_matrix = cor_results, 
    data = all_covs_complete 
  )) 
} 
 
# Execute correlation analysis for Diasporus diastema 
cat("=== CORRELATION ANALYSIS - Diasporus diastema ===\n") 
cor_diastema <- correlation_analysis("diastema") 
print(cor_diastema$correlation_matrix) 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CREATE CORRELATION VISUALIZATION FOR PUBLICATION 
# 
# Generates correlation matrices using hierarchical clustering to visualize 
# relationships among ecological covariates. Helps identify correlated variable 
# groups that may affect model selection. 
# 
# Parameters: 
#   cor_data: Output from correlation_analysis function 
#   species_name: Character string for plot title 
#------------------------------------------------------------------------------- 
 
create_correlation_plot <- function(cor_data, species_name) { 
  # Extract correlation matrix from the ecological data 
  corr_matrix <- cor(cor_data$data, use = "complete.obs") 
   
  # Create meaningful ecological variable names for visualization 
  colnames(corr_matrix) <- rownames(corr_matrix) <- c( 
    "DAP", "Tree Richness", "Tree Abundance",  
    "Absolute Humidity", "Moon" 



  ) 
   
  # Create correlation plot using hierarchical clustering 
  corrplot(corr_matrix, 
           method = "color", 
           type = "lower", 
           order = "hclust", 
           tl.col = "black", 
           tl.srt = 45, 
           title = paste("Variable Correlations -", species_name), 
           mar = c(0, 0, 2, 0)) 
} 
 
# Generate correlation plot for Diasporus diastema 
create_correlation_plot(cor_diastema, "Diasporus diastema") 
 
# Alternative ggplot2 version for publication flexibility 
create_correlation_plot_gg <- function(cor_data, species_name) { 
  corr_matrix <- cor(cor_data$data, use = "complete.obs") 
   
  colnames(corr_matrix) <- rownames(corr_matrix) <- c( 
    "DAP", "Tree Richness", "Tree Abundance",  
    "Absolute Humidity", "Moon" 
  ) 
   
  ggcorrplot(corr_matrix, 
             method = "circle", 
             type = "lower", 
             lab = TRUE, 
             lab_size = 3, 
             colors = c("#6D9EC1", "white", "#E46726"), 
             title = paste("Variable Correlations -", species_name)) + 
    theme(plot.title = element_text(hjust = 0.5, face = "bold"), 
          axis.text.x = element_text(angle = 45, hjust = 1)) 
} 
 
# Create and save ggplot2-style correlation plot 
cor_plot_diastema <- create_correlation_plot_gg(cor_diastema, "Diasporus diastema") 
print(cor_plot_diastema) 
 
# Save correlation plot for publication 
ggsave("correlation_diastema.png", cor_plot_diastema, width = 8, height = 6, dpi = 300) 
 
#============================================================================== 
# OCCUPANCY MODEL IMPLEMENTATION AND SELECTION 
#============================================================================== 
 
# Prepare unmarked data for Diasporus diastema 



diastema_data <- prepare_species_data("diastema") 
d <- diastema_data$umf 
 
# Store original values for ecological interpretation of predictions 
diastema_original <- diastema_data$original_values 
 
#------------------------------------------------------------------------------- 
# FUNCTION: AUTOMATED MODEL SELECTION USING AIC FRAMEWORK 
# 
# Implements a comprehensive model selection approach by fitting all combinations 
# of detection and occupancy covariates. Uses Akaike Information Criterion (AIC) 
# for model comparison and ranks models by parsimony and fit. 
# 
# Parameters: 
#   umf: unmarkedFrame for occupancy modeling 
#   max_models: Optional limit on number of top models to return 
# 
# Returns: 
#   List containing ranked model results and fitted model objects 
#------------------------------------------------------------------------------- 
 
model_selection_unmarked <- function(umf, max_models = NULL) { 
   
  # Define all biologically plausible combinations of covariates 
  det_forms <- c( 
    "~1", "~ah", "~moon", "~ah + moon" 
  ) 
   
  occ_forms <- c( 
    "~1", "~dap", "~tree_rich", "~tree_abu", 
    "~dap + tree_rich", "~dap + tree_abu", "~tree_rich + tree_abu", 
    "~dap + tree_rich + tree_abu" 
  ) 
   
  # Fit all models and store results 
  results <- list() 
  aic_values <- c() 
  formulas <- c() 
  k_values <- c()  # Number of parameters for AIC calculation 
   
  cat("Fitting", length(det_forms) * length(occ_forms), "model combinations...\n") 
   
  model_count <- 0 
  for(i in 1:length(det_forms)) { 
    for(j in 1:length(occ_forms)) { 
      formula_str <- paste(det_forms[i], occ_forms[j], sep = " ") 
      model_count <- model_count + 1 
       



      cat("Model", model_count, "of", length(det_forms) * length(occ_forms), ":", formula_str) 
       
      tryCatch({ 
        mod <- occu(as.formula(formula_str), data = umf) 
         
        # Extract AIC using unmarked's method 
        aic_val <- mod@AIC 
         
        results[[formula_str]] <- mod 
        aic_values <- c(aic_values, aic_val) 
        formulas <- c(formulas, formula_str) 
        k_values <- c(k_values, length(coef(mod)))  # Store number of parameters 
         
        cat(" - AIC:", round(aic_val, 2), "\n") 
         
      }, error = function(e) { 
        cat(" - ERROR:", e$message, "\n") 
      }) 
    } 
  } 
   
  # Create results dataframe using base R for reliability 
  if (length(aic_values) > 0) { 
    model_results <- data.frame( 
      formula = formulas, 
      k = k_values, 
      AIC = aic_values, 
      stringsAsFactors = FALSE 
    ) 
     
    # Order by AIC (lowest AIC indicates best model) 
    model_results <- model_results[order(model_results$AIC), ] 
     
    # Calculate delta AIC and Akaike weights for model comparison 
    model_results$delta_AIC <- model_results$AIC - min(model_results$AIC) 
    model_results$weight <- exp(-0.5 * model_results$delta_AIC) / sum(exp(-0.5 * 
model_results$delta_AIC)) 
    model_results$CumW <- cumsum(model_results$weight) 
     
    # Reset row names for clean output 
    rownames(model_results) <- NULL 
     
  } else { 
    stop("No models were successfully fitted. Check your data and formulas.") 
  } 
   
  # Limit to top models if specified 
  if(!is.null(max_models)) { 



    model_results <- model_results[1:min(max_models, nrow(model_results)), ] 
  } 
   
  return(list( 
    results = model_results, 
    models = results 
  )) 
} 
 
# Execute model selection for Diasporus diastema 
cat("=== RUNNING MODEL SELECTION FOR Diasporus diastema ===\n") 
selection_diastema <- model_selection_unmarked(d) 
 
# Extract best model using AIC criterion 
if (nrow(selection_diastema$results) > 0) { 
  best_formula_diastema <- selection_diastema$results$formula[1] 
  best_diastema <- selection_diastema$models[[best_formula_diastema]] 
  cat("Best model for Diasporus diastema:", best_formula_diastema, "\n") 
  cat("AIC:", round(best_diastema@AIC, 2), "\n") 
} else { 
  stop("No successful models for Diasporus diastema") 
} 
 
# Display top models 
cat("\n=== TOP MODELS FOR Diasporus diastema ===\n") 
print(head(selection_diastema$results, 10)) 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CREATE PREDICTION PLOTS WITH ECOLOGICAL SCALES 
# 
# Generates partial dependence plots showing how detection and occupancy 
# probabilities vary with environmental covariates. Back-transforms scaled 
# covariates to original ecological units for meaningful interpretation. 
# Only creates plots for covariates that are actually in the best model. 
# 
# Parameters: 
#   best_model: Top-ranked occupancy model from AIC selection 
#   best_formula: Formula of the best model 
#   umf: unmarkedFrame used for modeling 
#   original_values: Means and SDs for back-transformation 
#   species_name: Character string for plot labeling 
# 
# Returns: 
#   List of ggplot objects showing covariate effects 
#------------------------------------------------------------------------------- 
 
create_prediction_plots_original_scale <- function(best_model, best_formula, umf, original_values, 
species_name) { 



   
  plots_list <- list() 
   
  # ABSOLUTE HUMIDITY EFFECT ON DETECTION PROBABILITY 
  if(grepl("ah", best_formula)) { 
    # Convert scaled ranges back to original ecological scales 
    ah_range_scaled <- seq(min(umf@obsCovs$ah, na.rm = TRUE),  
                           max(umf@obsCovs$ah, na.rm = TRUE),  
                           length.out = 100) 
    ah_range_original <- ah_range_scaled * original_values$ah["sd"] + original_values$ah["mean"] 
     
    new_data_ah <- data.frame( 
      ah = ah_range_scaled, 
      moon = ifelse(grepl("moon", best_formula), mean(umf@obsCovs$moon, na.rm = TRUE), 0) 
    ) 
     
    pred_ah <- predict(best_model, type = 'det', newdata = new_data_ah, appendData = TRUE) 
    pred_ah$ah_original <- ah_range_original 
     
    p_ah <- ggplot(pred_ah, aes(ah_original, Predicted)) + 
      geom_ribbon(aes(ymin = lower, ymax = upper), fill = "#1B9E77", alpha = 0.3) + 
      geom_line(color = "#1B9E77", linewidth = 1.5) + 
      scale_y_continuous(limits = c(0, 1)) + 
      labs( 
        x = "Absolute Humidity (g/m³)", 
        y = "Detection Probability", 
        title = expression(paste(italic("Diasporus diastema"), ": Absolute Humidity Effect")) 
      ) + 
      theme_minimal() + 
      theme( 
        plot.title = element_text(size = 16, face = "bold", hjust = 0.5, margin = margin(b = 10)), 
        axis.title.x = element_text(size = 14, face = "bold", margin = margin(t = 10)), 
        axis.title.y = element_text(size = 14, face = "bold", margin = margin(r = 10)), 
        axis.text.x = element_text(size = 12, color = "black"), 
        axis.text.y = element_text(size = 12, color = "black"), 
        panel.grid.minor = element_blank(), 
        panel.grid.major = element_line(color = "grey90", linewidth = 0.5), 
        plot.background = element_rect(fill = "white", color = NA) 
      ) 
     
    plots_list[["absolute_humidity"]] <- p_ah 
  } 
   
  # LUNAR CYCLE EFFECT ON DETECTION PROBABILITY 
  if(grepl("moon", best_formula)) { 
    # Convert scaled ranges back to original ecological scales 
    moon_range_scaled <- seq(min(umf@obsCovs$moon, na.rm = TRUE),  
                             max(umf@obsCovs$moon, na.rm = TRUE),  



                             length.out = 100) 
    moon_range_original <- moon_range_scaled * original_values$moon["sd"] + 
original_values$moon["mean"] 
     
    new_data_moon <- data.frame( 
      ah = ifelse(grepl("ah", best_formula), mean(umf@obsCovs$ah, na.rm = TRUE), 0), 
      moon = moon_range_scaled 
    ) 
     
    pred_moon <- predict(best_model, type = 'det', newdata = new_data_moon, appendData = TRUE) 
    pred_moon$moon_original <- moon_range_original 
     
    # Create ecologically meaningful moon phase labels (using your original labels) 
    moon_breaks <- seq(min(pred_moon$moon_original), max(pred_moon$moon_original), 
length.out = 5) 
    moon_labels <- c("New Moon", "First Quarter", "Waxing Gibbous", "Waning Gibbous", "Full Moon") 
     
    p_moon <- ggplot(pred_moon, aes(moon_original, Predicted)) + 
      geom_ribbon(aes(ymin = lower, ymax = upper), fill = "#7570B3", alpha = 0.3) + 
      geom_line(color = "#7570B3", linewidth = 1.5) + 
      scale_y_continuous(limits = c(0, 1)) + 
      scale_x_continuous( 
        name = "Moon Phase", 
        breaks = moon_breaks, 
        labels = moon_labels 
      ) + 
      labs( 
        y = "Detection Probability", 
        title = expression(paste(italic("Diasporus diastema"), ": Lunar Cycle Effect")) 
      ) + 
      theme_minimal() + 
      theme( 
        plot.title = element_text(size = 16, face = "bold", hjust = 0.5, margin = margin(b = 10)), 
        axis.title.x = element_text(size = 14, face = "bold", margin = margin(t = 10)), 
        axis.title.y = element_text(size = 14, face = "bold", margin = margin(r = 10)), 
        axis.text.x = element_text(size = 11, color = "black", angle = 45, hjust = 1), 
        axis.text.y = element_text(size = 12, color = "black"), 
        panel.grid.minor = element_blank(), 
        panel.grid.major = element_line(color = "grey90", linewidth = 0.5), 
        plot.background = element_rect(fill = "white", color = NA) 
      ) 
     
    plots_list[["moon"]] <- p_moon 
  } 
   
  return(plots_list) 
} 
 



# Generate ecological prediction plots for Diasporus diastema 
diastema_plots <- create_prediction_plots_original_scale(best_diastema, best_formula_diastema, 
d, diastema_original, "Diasporus diastema") 
 
# Display all generated plots 
cat("\n=== GENERATED PLOTS FOR Diasporus diastema ===\n") 
for(plot_name in names(diastema_plots)) { 
  cat("Displaying:", plot_name, "\n") 
  print(diastema_plots[[plot_name]]) 
} 
 
# Save individual species plots for publication 
for(plot_name in names(diastema_plots)) { 
  filename <- paste0("diastema_", plot_name, ".png") 
  ggsave(filename, diastema_plots[[plot_name]], width = 10, height = 8, dpi = 300, bg = "white") 
  cat("Saved:", filename, "\n") 
} 
 
#============================================================================== 
# RELATIVE IMPORTANCE ANALYSIS 
#============================================================================== 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CALCULATE RELATIVE IMPORTANCE OF ECOLOGICAL COVARIATES 
# 
# Computes relative importance values by summing Akaike weights across all 
# models containing each covariate. Provides inference about which ecological 
# factors most strongly influence occupancy and detection. 
# 
# Parameters: 
#   selection_results: Output from model_selection_unmarked function 
# 
# Returns: 
#   Dataframe with covariates ranked by relative importance 
#------------------------------------------------------------------------------- 
 
calculate_relative_importance <- function(selection_results) { 
  # Extract model results 
  model_results <- selection_results$results 
   
  # Define all ecological covariates considered 
  all_covariates <- c("ah", "moon", "dap", "tree_rich", "tree_abu") 
   
  # Calculate importance for each covariate 
  importance_list <- list() 
   
  for(covariate in all_covariates) { 
    # Find models that contain this covariate 



    if(covariate %in% c("ah", "moon")) { 
      # Detection covariates 
      models_with_covariate <- grepl(covariate, model_results$formula) 
    } else { 
      # Occupancy covariates 
      models_with_covariate <- grepl(covariate, model_results$formula) 
    } 
     
    # Sum Akaike weights of models containing this covariate 
    total_weight <- sum(model_results$weight[models_with_covariate]) 
     
    importance_list[[covariate]] <- data.frame( 
      covariate = covariate, 
      importance = total_weight 
    ) 
  } 
   
  # Combine all importance values and rank by importance 
  importance_df <- bind_rows(importance_list) %>% 
    arrange(desc(importance)) 
   
  return(importance_df) 
} 
 
# Calculate relative importance for Diasporus diastema 
importance_diastema <- calculate_relative_importance(selection_diastema) 
 
cat("\n=== RELATIVE IMPORTANCE FOR Diasporus diastema ===\n") 
print(importance_diastema) 
 
#------------------------------------------------------------------------------- 
# FUNCTION: INDIVIDUAL SPECIES RELATIVE IMPORTANCE PLOTS 
# 
# Creates separate relative importance plots with consistent color scheme 
# for individual species assessment. 
# 
# Parameters: 
#   importance_df: Importance data for a single species 
#   species_name: Character string for plot title 
#------------------------------------------------------------------------------- 
 
create_single_relimp_plot <- function(importance_df, species_name) { 
  # Use consistent ecological color scheme 
  colors <- c("ah" = "#35978f", "moon" = "#b0b0b0", 
              "dap" = "#bf812d", "tree_rich" = "#66A61E", "tree_abu" = "#01665e") 
   
  # Create meaningful ecological labels 
  pretty_labels <- c( 



    "ah" = "Absolute Humidity",  
    "moon" = "Lunar cycle", 
    "dap" = "Tree diameter (DBH)", 
    "tree_rich" = "Tree richness",  
    "tree_abu" = "Tree abundance" 
  ) 
   
  importance_df <- importance_df %>% 
    mutate(label = pretty_labels[covariate]) 
   
  ggplot(importance_df, aes(x = importance, y = reorder(label, importance))) + 
    geom_col(aes(fill = covariate), width = 0.7, alpha = 0.8) + 
    geom_text(aes(label = sprintf("%.2f", importance)),  
              hjust = -0.2, size = 5, color = "black") + 
    scale_fill_manual(values = colors) + 
    scale_x_continuous( 
      limits = c(0, 1.1), 
      expand = expansion(mult = c(0, 0.05)), 
      breaks = seq(0, 1, 0.2) 
    ) + 
    labs( 
      x = "Relative Importance",  
      y = NULL,  
      title = species_name, 
      subtitle = "Relative importance of covariates" 
    ) + 
    theme_minimal() + 
    theme( 
      legend.position = "none", 
      plot.title = element_text(face = "italic", hjust = 0.5, size = 18, margin = margin(b = 10)), 
      plot.subtitle = element_text(hjust = 0.5, size = 14, color = "grey40", margin = margin(b = 15)), 
      axis.title.x = element_text(face = "bold", size = 16, margin = margin(t = 10)), 
      axis.text.y = element_text(face = "bold", size = 14, color = "black"), 
      axis.text.x = element_text(size = 12), 
      # Add black axis lines 
      axis.line = element_line(color = "black", linewidth = 0.5), 
      axis.ticks = element_line(color = "black"), 
      panel.grid.major.y = element_blank(), 
      panel.grid.minor.y = element_blank(), 
      panel.grid.major.x = element_line(color = "grey90"), 
      panel.grid.minor.x = element_blank(), 
      panel.border = element_blank(), 
      plot.background = element_rect(fill = "white", color = NA) 
    ) + 
    coord_cartesian(clip = "off") 
} 
 
# Create individual species relative importance plot 



relimp_diastema <- create_single_relimp_plot(importance_diastema, "Diasporus diastema") 
 
# Display and save relative importance plot 
print(relimp_diastema) 
ggsave("relative_importance_diastema.png", relimp_diastema,  
       width = 10, height = 8, dpi = 300, bg = "white") 
 
#============================================================================== 
# RESULTS DISPLAY AND SUMMARY 
#============================================================================== 
 
# Display all generated plots in R graphics device 
cat("\n=== FINAL DISPLAY OF ALL ECOLOGICAL PLOTS ===\n") 
 
# Display individual species prediction plots 
cat("\n--- Diasporus diastema ---\n") 
for(plot_name in names(diastema_plots)) { 
  cat("Displaying:", plot_name, "\n") 
  print(diastema_plots[[plot_name]]) 
} 
 
# Display relative importance plot 
cat("\n--- Relative Importance Analysis ---\n") 
print(relimp_diastema) 
 
#------------------------------------------------------------------------------- 
# ECOLOGICAL ANALYSIS SUMMARY 
# 
# Provides concise summary of key findings for Diasporus diastema, including 
# best models, AIC values, and ecological interpretation of results. 
#------------------------------------------------------------------------------- 
 
cat("\n=== ECOLOGICAL ANALYSIS SUMMARY ===\n") 
cat("Diasporus diastema:\n") 
cat("  Best model:", best_formula_diastema, "\n") 
cat("  AIC:", round(best_diastema@AIC, 2), "\n") 
cat("  Ecological drivers identified:", names(diastema_plots), "\n\n") 
 
cat("Relative importance of covariates:\n") 
for(i in 1:nrow(importance_diastema)) { 
  cat("  ", importance_diastema$covariate[i], ":", round(importance_diastema$importance[i], 3), 
"\n") 
} 
 
cat("\nFiles generated:\n") 
cat("- correlation_diastema.png\n") 
for(plot_name in names(diastema_plots)) { 
  cat("- diastema_", plot_name, ".png\n", sep = "") 



} 
cat("- relative_importance_diastema.png\n") 
 
#------------------------------------------------------------------------------- 
# FUNCTION: CREATE COMBINED FIGURE FOR DIASPORUS DIASTEMA 
# 
# Generates a side-by-side figure showing both absolute humidity and moon effects 
# for clean figure organization in publications. 
# 
# Parameters: 
#   plots_list: List of ggplot objects from create_prediction_plots_original_scale 
#   species_name: Character string for plot title 
#------------------------------------------------------------------------------- 
 
create_combined_diastema_figure <- function(plots_list, species_name) { 
  # Check if we have both absolute humidity and moon plots 
  has_ah <- "absolute_humidity" %in% names(plots_list) 
  has_moon <- "moon" %in% names(plots_list) 
   
  if(has_ah && has_moon) { 
    # Get the individual plots 
    p_ah <- plots_list[["absolute_humidity"]] 
    p_moon <- plots_list[["moon"]] 
     
    # Remove individual titles since we'll have a combined title 
    p_ah <- p_ah + labs(title = NULL) 
    p_moon <- p_moon + labs(title = NULL) 
     
    # Combine using patchwork 
    combined <- p_ah + p_moon + 
      plot_layout(ncol = 2) + 
      plot_annotation( 
        title = paste("Environmental Effects on Detection Probability -", species_name), 
        theme = theme( 
          plot.title = element_text(hjust = 0.5, face = "bold", size = 18) 
        ) 
      ) 
     
    return(combined) 
  } else { 
    cat("Cannot create combined figure: missing absolute humidity or moon plot\n") 
    return(NULL) 
  } 
} 
 
# Create and save combined figure for Diasporus diastema 
combined_diastema <- create_combined_diastema_figure(diastema_plots, "Diasporus diastema") 
 



if(!is.null(combined_diastema)) { 
  print(combined_diastema) 
  ggsave("diastema_combined_effects.png", combined_diastema,  
         width = 16, height = 8, dpi = 300, bg = "white") 
  cat("Saved: diastema_combined_effects.png\n") 
} 
 
cat("\n     OCCUPANCY MODELING ANALYSIS FOR DIASPORUS DIASTEMA COMPLETE\n") 
cat("All ecological plots and analyses saved for publication.\n") 
 
  



#RELATIVE IMPORTANCE OF COVARIATES IN MODELS (FINAL VISUALIZATION) 
#============================================================================== 
 

# LIBRARIES 
library(ggplot2) 
library(dplyr) 
library(tidyr) 
library(tibble) 
library(scales) 
library(fmsb) 
library(patchwork)  # For combining plots 
 
# ============================================================================= 
# DATA PREPARATION - Combine all three species 
# ============================================================================= 
 
# Assuming you have these data frames from your modeling: 
# importance_ca, importance_cru, importance_diastema 
 
# Combine all species into one data frame 
all_importance <- bind_rows( 
  importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"), 
  importance_cru %>% mutate(species = "Pristimantis cruentus"),  
  importance_diastema %>% mutate(species = "Diasporus diastema") 
) 
 
# Define consistent ecological color scheme 
covariate_colors <- c( 
  "ah" = "#35978f",        # Teal for absolute humidity 
  "moon" = "#b0b0b0",      # Gray for moon 
  "dap" = "#bf812d",       # Brown for tree diameter 
  "tree_rich" = "#66A61E", # Green for tree richness 
  "tree_abu" = "#01665e"   # Dark green for tree abundance 
) 
 
# Create meaningful ecological labels 
pretty_labels <- c( 
  "ah" = "Absolute Humidity",  
  "moon" = "Lunar cycle", 
  "dap" = "Tree diameter (DBH)", 
  "tree_rich" = "Tree richness",  
  "tree_abu" = "Tree abundance" 
) 
 
# Apply labels to the combined data 
all_importance <- all_importance %>% 
  mutate( 



    label = pretty_labels[covariate], 
    species = factor(species, levels = c("Pristimantis caryophyllaceus",  
                                         "Pristimantis cruentus",  
                                         "Diasporus diastema")) 
  ) 
 
# ============================================================================= 
# SMALL MULTIPLES PLOT - Three species together 
# ============================================================================= 
 
p_small_multiples <- ggplot(all_importance, aes(x = importance, y = reorder(label, importance))) + 
  geom_col(aes(fill = covariate), width = 0.7, alpha = 0.8) + 
  geom_text(aes(label = sprintf("%.2f", importance)),  
            hjust = -0.2, size = 3.5, color = "black") + 
  facet_wrap(~ species, ncol = 3, scales = "free_y") + 
  scale_fill_manual(values = covariate_colors) + 
  scale_x_continuous( 
    limits = c(0, 1.1), 
    expand = expansion(mult = c(0, 0.05)), 
    breaks = seq(0, 1, 0.2) 
  ) + 
  labs( 
    x = "Relative Importance",  
    y = NULL,  
    title = "Relative Importance of Ecological Covariates", 
    subtitle = "Comparison across three amphibian species" 
  ) + 
  theme_minimal() + 
  theme( 
    legend.position = "none", 
    plot.title = element_text(face = "bold", hjust = 0.5, size = 16, margin = margin(b = 10)), 
    plot.subtitle = element_text(hjust = 0.5, size = 12, color = "grey40", margin = margin(b = 15)), 
    axis.title.x = element_text(face = "bold", size = 12, margin = margin(t = 10)), 
    axis.text.y = element_text(face = "bold", size = 10, color = "black"), 
    axis.text.x = element_text(size = 9), 
    axis.line = element_line(color = "black", linewidth = 0.5), 
    axis.ticks = element_line(color = "black"), 
    panel.grid.major.y = element_blank(), 
    panel.grid.minor.y = element_blank(), 
    panel.grid.major.x = element_line(color = "grey90"), 
    panel.grid.minor.x = element_blank(), 
    panel.border = element_blank(), 
    strip.text = element_text(face = "italic", size = 10, color = "black"), 
    strip.background = element_rect(fill = "grey90", color = NA), 
    plot.background = element_rect(fill = "white", color = NA) 
  ) + 
  coord_cartesian(clip = "off") 
 



# Save small multiples at 300 DPI 
ggsave("SmallMultiples_RelativeImportance_300dpi.png",  
       plot = p_small_multiples,  
       width = 14,  
       height = 6,  
       dpi = 300,  
       bg = "white") 
 
# ============================================================================= 
# RADAR CHART - Three species comparison 
# ============================================================================= 
 
# Prepare data for radar chart 
radar_data <- all_importance %>% 
  select(covariate, species, importance) %>% 
  pivot_wider(names_from = covariate, values_from = importance) %>% 
  as.data.frame() %>% 
  column_to_rownames("species") 
 
# Normalize data for radar chart (0-1 scale) - optional but good for comparison 
normalize <- function(x) { 
  (x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE)) 
} 
 
radar_normalized <- as.data.frame(lapply(radar_data, normalize)) 
radar_normalized$species <- rownames(radar_data) 
 
# Prepare data for fmsb (first row max, second row min, then actual data) 
radar_plot_data <- rbind(rep(1, ncol(radar_normalized)-1),  
                         rep(0, ncol(radar_normalized)-1), 
                         radar_normalized[,-ncol(radar_normalized)]) 
 
# Define species colors for radar chart 
species_colors <- c( 
  "Pristimantis caryophyllaceus" = "#E41A1C",  # Red 
  "Pristimantis cruentus" = "#377EB8",         # Blue   
  "Diasporus diastema" = "#4DAF4A"             # Green 
) 
 
species_colors_alpha <- c( 
  alpha("#E41A1C", 0.3), 
  alpha("#377EB8", 0.3),  
  alpha("#4DAF4A", 0.3) 
) 
 
# Create and save radar chart at 300 DPI 
png("RadarChart_RelativeImportance_300dpi.png", width = 10, height = 8, units = "in", res = 300) 
 



# Set margins and create radar chart 
par(mar = c(2, 2, 3, 2)) 
radarchart(radar_plot_data,  
           axistype = 1, 
           pcol = species_colors,  
           pfcol = species_colors_alpha, 
           plwd = 3, 
           plty = 1, 
           cglcol = "darkgray", 
           cglty = 1,  
           axislabcol = "black", 
           caxislabels = seq(0, 1, 0.2), 
           cglwd = 1.2, 
           vlcex = 1.1, 
           calcex = 1.0, 
           title = "Relative Importance of Covariates\nThree Amphibian Species Comparison") 
 
# Add legend 
legend("topright",  
       legend = rownames(radar_data),  
       bty = "o", 
       bg = "white", 
       pch = 20,  
       col = species_colors,  
       text.col = "black", 
       cex = 1.1, 
       pt.cex = 2.5) 
 
dev.off() 
 
# ============================================================================= 
# DISPLAY PLOTS 
# ============================================================================= 
 
cat("✓ Small multiples plot saved: SmallMultiples_RelativeImportance_300dpi.png\n") 
cat("✓ Radar chart saved: RadarChart_RelativeImportance_300dpi.png\n") 
 
# Display plots in R 
print(p_small_multiples) 
 
# For radar chart display (will create in plot window) 
par(mar = c(2, 2, 3, 2)) 
radarchart(radar_plot_data,  
           axistype = 1, 
           pcol = species_colors,  
           pfcol = species_colors_alpha, 
           plwd = 3, 
           plty = 1, 



           cglcol = "darkgray", 
           cglty = 1,  
           axislabcol = "black", 
           caxislabels = seq(0, 1, 0.2), 
           cglwd = 1.2, 
           vlcex = 1.1, 
           calcex = 1.0, 
           title = "Relative Importance of Covariates\nThree Amphibian Species Comparison") 
 
legend("topright",  
       legend = rownames(radar_data),  
       bty = "o", 
       bg = "white", 
       pch = 20,  
       col = species_colors,  
       text.col = "black", 
       cex = 1.1, 
       pt.cex = 2.5) 
 
#FINALVERSIONFORPAPERSINGLEMULTIPLES 
# LIBRARIES 
library(ggplot2) 
library(dplyr) 
library(tidyr) 
 
# ============================================================================= 
# DATA PREPARATION - Combine all three species 
# ============================================================================= 
 
# Combine all species into one data frame 
all_importance <- bind_rows( 
  importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"), 
  importance_cru %>% mutate(species = "Pristimantis cruentus"),  
  importance_diastema %>% mutate(species = "Diasporus diastema") 
) 
 
# Create meaningful ecological labels (changed "Lunar cycle" to "moon") 
pretty_labels <- c( 
  "ah" = "Absolute Humidity",  
  "moon" = "Moon illumination", 
  "dap" = "Tree diameter (dbh)", 
  "tree_rich" = "Tree richness",  
  "tree_abu" = "Tree abundance" 
) 
 
# Apply labels to the combined data and set species order 
all_importance <- all_importance %>% 
  mutate( 



    label = pretty_labels[covariate], 
    species = factor(species, levels = c("Pristimantis caryophyllaceus",  
                                         "Pristimantis cruentus",  
                                         "Diasporus diastema")) 
  ) %>% 
  # Reorder the labels by their mean importance across all species 
  mutate(label = factor(label, levels = unique(label[order(importance)]))) 
 
# Define species colors as requested 
species_colors <- c( 
  "Pristimantis caryophyllaceus" = "#dfc27d",  # Tan 
  "Pristimantis cruentus" = "#bf812d",         # Brownish 
  "Diasporus diastema" = "#377EB8"             # Blue 
) 
 
# ============================================================================= 
# SMALL MULTIPLES PLOT - Revised version 
# ============================================================================= 
 
p_small_multiples <- ggplot(all_importance, aes(x = importance, y = label)) + 
  geom_col(aes(fill = species), width = 0.7, alpha = 0.8, position = position_dodge(0.8)) + 
  geom_text(aes(label = sprintf("%.2f", importance)),  
            position = position_dodge(0.8), 
            hjust = -0.2, size = 3.5, color = "black") + 
  facet_wrap(~ species, ncol = 3) + 
  scale_fill_manual(values = species_colors) + 
  scale_x_continuous( 
    limits = c(0, 1.1), 
    expand = expansion(mult = c(0, 0.05)), 
    breaks = seq(0, 1, 0.2) 
  ) + 
  labs( 
    x = "Relative Importance",  
    y = NULL,  
    title = "", 
    subtitle = "" 
  ) + 
  theme_minimal() + 
  theme( 
    legend.position = "none", 
    plot.title = element_text(face = "bold", hjust = 0.5, size = 16, margin = margin(b = 10)), 
    plot.subtitle = element_text(hjust = 0.5, size = 12, color = "grey40", margin = margin(b = 15)), 
    axis.title.x = element_text(face = "bold", size = 12, margin = margin(t = 10)), 
    axis.text.y = element_text(face = "bold", size = 10, color = "black"), 
    axis.text.x = element_text(size = 9), 
    axis.line = element_line(color = "black", linewidth = 0.5), 
    axis.ticks = element_line(color = "black"), 
    panel.grid.major.y = element_blank(), 



    panel.grid.minor.y = element_blank(), 
    panel.grid.major.x = element_line(color = "grey90"), 
    panel.grid.minor.x = element_blank(), 
    panel.border = element_blank(), 
    strip.text = element_text(face = "italic", size = 10, color = "black"), 
    strip.background = element_rect(fill = "grey90", color = NA), 
    plot.background = element_rect(fill = "white", color = NA) 
  ) + 
  coord_cartesian(clip = "off") 
 
# Save small multiples at 300 DPI 
ggsave("SmallMultiples_RelativeImportance_300dpi.png",  
       plot = p_small_multiples,  
       width = 14,  
       height = 6,  
       dpi = 300,  
       bg = "white") 
 
# Display the plot 
print(p_small_multiples) 
 
cat("✓ Small multiples plot saved: SmallMultiples_RelativeImportance_300dpi.png\n") 
 
#DOTPLOT 
# LIBRARIES 
library(ggplot2) 
library(dplyr) 
library(tidyr) 
 
# ============================================================================= 
# DATA PREPARATION - Combine all three species 
# ============================================================================= 
 
# Combine all species into one data frame 
all_importance <- bind_rows( 
  importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"), 
  importance_cru %>% mutate(species = "Pristimantis cruentus"),  
  importance_diastema %>% mutate(species = "Diasporus diastema") 
) 
 
# Create meaningful ecological labels (changed "Lunar cycle" to "moon") 
pretty_labels <- c( 
  "ah" = "Absolute Humidity",  
  "moon" = "Moon illumination", 
  "dap" = "Tree diameter (DBH)", 
  "tree_rich" = "Tree richness",  
  "tree_abu" = "Tree abundance" 
) 



 
# Apply labels to the combined data and set species order 
all_importance <- all_importance %>% 
  mutate( 
    label = pretty_labels[covariate], 
    species = factor(species, levels = c("Pristimantis caryophyllaceus",  
                                         "Pristimantis cruentus",  
                                         "Diasporus diastema")) 
  ) %>% 
  # Reorder the labels by their mean importance across all species 
  mutate(label = factor(label, levels = unique(label[order(importance)]))) 
 
# Define species colors as requested 
species_colors <- c( 
  "Pristimantis caryophyllaceus" = "#dfc27d",  # Tan 
  "Pristimantis cruentus" = "#bf812d",         # Brownish 
  "Diasporus diastema" = "#377EB8"             # Blue 
) 
 
# ============================================================================= 
# DOT PLOT - Publication Quality 
# ============================================================================= 
 
p_dot <- ggplot(all_importance, aes(x = importance, y = label, color = species)) + 
  geom_point(size = 3.5, position = position_dodge(width = 0.5)) + 
  geom_linerange(aes(xmin = 0, xmax = importance),  
                 position = position_dodge(width = 0.5), linewidth = 1.2) + 
  geom_text(aes(label = sprintf("%.2f", importance)),  
            position = position_dodge(width = 0.5), 
            hjust = -0.3, size = 3.2, color = "black", fontface = "bold") + 
  scale_color_manual(values = species_colors, name = "Species") + 
  scale_x_continuous( 
    limits = c(0, 1.2), 
    breaks = seq(0, 1, 0.2), 
    expand = expansion(mult = c(0, 0.1)) 
  ) + 
  labs( 
    x = "Relative Importance",  
    y = NULL, 
    title = "", 
    subtitle = "" 
  ) + 
  theme_minimal() + 
  theme( 
    legend.position = "bottom", 
    plot.title = element_text(face = "bold", hjust = 0.5, size = 16, margin = margin(b = 8)), 
    plot.subtitle = element_text(hjust = 0.5, size = 12, color = "grey40", margin = margin(b = 12)), 
    axis.title.x = element_text(face = "bold", size = 12, margin = margin(t = 10)), 



    axis.text.y = element_text(face = "bold", size = 11, color = "black"), 
    axis.text.x = element_text(size = 10), 
    axis.line = element_line(color = "black", linewidth = 0.5), 
    axis.ticks = element_line(color = "black"), 
    panel.grid.major.y = element_line(color = "grey90"), 
    panel.grid.minor.y = element_blank(), 
    panel.grid.major.x = element_line(color = "grey90"), 
    panel.grid.minor.x = element_blank(), 
    legend.text = element_text(face = "italic", size = 10), 
    legend.title = element_text(face = "bold", size = 11), 
    plot.background = element_rect(fill = "white", color = NA) 
  ) 
 
# Save dot plot at 300 DPI 
ggsave("DotPlot_RelativeImportance_300dpi.png",  
       plot = p_dot,  
       width = 10,  
       height = 6,  
       dpi = 300,  
       bg = "white") 
 
# Display the plot 
print(p_dot) 
 
cat("✓ Dot plot saved: DotPlot_RelativeImportance_300dpi.png\n") 
cat("✓ File dimensions: 10 x 6 inches at 300 DPI\n") 
cat("✓ Species colors: Tan (P. caryophyllaceus), Brown (P. cruentus), Blue (D. diastema)\n") 
 
# LIBRARIES 
library(ggplot2) 
library(dplyr) 
library(tidyr) 
 
# ============================================================================= 
# DATA PREPARATION - Combine all three species 
# ============================================================================= 
 
# Combine all species into one data frame 
all_importance <- bind_rows( 
  importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"), 
  importance_cru %>% mutate(species = "Pristimantis cruentus"),  
  importance_diastema %>% mutate(species = "Diasporus diastema") 
) 
 
# Create meaningful ecological labels (changed "Lunar cycle" to "moon") 
pretty_labels <- c( 
  "ah" = "Absolute Humidity",  
  "moon" = "Moon", 



  "dap" = "Tree diameter (DBH)", 
  "tree_rich" = "Tree richness",  
  "tree_abu" = "Tree abundance" 
) 
 
# Apply labels to the combined data and set species order 
all_importance <- all_importance %>% 
  mutate( 
    label = pretty_labels[covariate], 
    species = factor(species, levels = c("Pristimantis caryophyllaceus",  
                                         "Pristimantis cruentus",  
                                         "Diasporus diastema")) 
  ) 
 
# ============================================================================= 
# SLOPE GRAPH - Publication Quality 
# ============================================================================= 
 
p_slope <- ggplot(all_importance, aes(x = species, y = importance, group = label)) + 
  geom_line(aes(color = label), alpha = 0.7, linewidth = 1.2) + 
  geom_point(aes(color = label), size = 3) + 
  geom_text(data = filter(all_importance, species == "Pristimantis caryophyllaceus"), 
            aes(label = label, x = 0.9), hjust = 1, size = 3.5, check_overlap = TRUE) + 
  scale_color_brewer(palette = "Dark2", name = "Covariates") + 
  scale_y_continuous( 
    limits = c(0, 1.1), 
    breaks = seq(0, 1, 0.2) 
  ) + 
  labs( 
    x = NULL,  
    y = "Relative Importance", 
    title = "Relative Importance Patterns Across Species", 
    subtitle = "Slope graph showing covariate importance trends" 
  ) + 
  theme_minimal() + 
  theme( 
    axis.text.x = element_text(face = "italic", size = 11, color = "black"), 
    axis.text.y = element_text(size = 10, color = "black"), 
    axis.title.y = element_text(face = "bold", size = 12, margin = margin(r = 10)), 
    axis.line = element_line(color = "black", linewidth = 0.5), 
    axis.ticks = element_line(color = "black"), 
    panel.grid.major.y = element_line(color = "grey90"), 
    panel.grid.minor.y = element_blank(), 
    panel.grid.major.x = element_blank(), 
    panel.grid.minor.x = element_blank(), 
    plot.title = element_text(face = "bold", hjust = 0.5, size = 16, margin = margin(b = 8)), 
    plot.subtitle = element_text(hjust = 0.5, size = 12, color = "grey40", margin = margin(b = 15)), 
    legend.position = "none", 



    plot.background = element_rect(fill = "white", color = NA) 
  ) 
 
# Save slope graph at 300 DPI 
ggsave("SlopePlot_RelativeImportance_300dpi.png",  
       plot = p_slope,  
       width = 10,  
       height = 6,  
       dpi = 300,  
       bg = "white") 
 
# Display the plot 
print(p_slope) 
 
cat("✓ Slope graph saved: SlopePlot_RelativeImportance_300dpi.png\n") 
cat("✓ File dimensions: 10 x 6 inches at 300 DPI\n") 
cat("✓ Features: Shows trends in covariate importance across species\n") 
 
# LIBRARIES 
library(ggplot2) 
library(dplyr) 
library(tidyr) 
 
# ============================================================================= 
# DATA PREPARATION - Combine all three species 
# ============================================================================= 
 
# Combine all species into one data frame 
all_importance <- bind_rows( 
  importance_ca %>% mutate(species = "Pristimantis caryophyllaceus"), 
  importance_cru %>% mutate(species = "Pristimantis cruentus"),  
  importance_diastema %>% mutate(species = "Diasporus diastema") 
) 
 
# Create meaningful ecological labels (changed "Lunar cycle" to "moon") 
pretty_labels <- c( 
  "ah" = "Absolute Humidity",  
  "moon" = "Moon", 
  "dap" = "Tree diameter (DBH)", 
  "tree_rich" = "Tree richness",  
  "tree_abu" = "Tree abundance" 
) 
 
# Apply labels to the combined data and set species order 
all_importance <- all_importance %>% 
  mutate( 
    label = pretty_labels[covariate], 
    species = factor(species, levels = c("Pristimantis caryophyllaceus",  



                                         "Pristimantis cruentus",  
                                         "Diasporus diastema")) 
  ) %>% 
  # Order covariates by their mean importance for better visualization 
  mutate(label = factor(label, levels = unique(label[order(-importance)]))) 
 
# Define species colors as requested 
species_colors <- c( 
  "Pristimantis caryophyllaceus" = "#dfc27d",  # Tan 
  "Pristimantis cruentus" = "#bf812d",         # Brownish 
  "Diasporus diastema" = "#377EB8"             # Blue 
) 
 
# ============================================================================= 
# GROUPED BARS - Publication Quality 
# ============================================================================= 
 
p_grouped <- ggplot(all_importance, aes(x = label, y = importance, fill = species)) + 
  geom_col(position = position_dodge(0.8), width = 0.7, alpha = 0.9) + 
  geom_text(aes(label = sprintf("%.2f", importance)),  
            position = position_dodge(0.8),  
            vjust = -0.5, size = 3.2, fontface = "bold") + 
  scale_fill_manual(values = species_colors, name = "Species") + 
  scale_y_continuous( 
    limits = c(0, 1.1), 
    breaks = seq(0, 1, 0.2), 
    expand = expansion(mult = c(0, 0.05)) 
  ) + 
  labs( 
    x = NULL,  
    y = "Relative Importance", 
    title = "", 
    subtitle = "" 
  ) + 
  theme_minimal() + 
  theme( 
    axis.text.x = element_text(face = "bold", size = 11, angle = 45, hjust = 1, color = "black"), 
    axis.text.y = element_text(size = 10, color = "black"), 
    axis.title.y = element_text(face = "bold", size = 12, margin = margin(r = 10)), 
    axis.line = element_line(color = "black", linewidth = 0.5), 
    axis.ticks = element_line(color = "black"), 
    panel.grid.major.y = element_line(color = "grey90"), 
    panel.grid.minor.y = element_blank(), 
    panel.grid.major.x = element_blank(), 
    panel.grid.minor.x = element_blank(), 
    plot.title = element_text(face = "bold", hjust = 0.5, size = 16, margin = margin(b = 8)), 
    plot.subtitle = element_text(hjust = 0.5, size = 12, color = "grey40", margin = margin(b = 15)), 
    legend.position = "bottom", 



    legend.text = element_text(face = "italic", size = 10), 
    legend.title = element_text(face = "bold", size = 11), 
    plot.background = element_rect(fill = "white", color = NA) 
  ) 
 
# Save grouped bars at 300 DPI 
ggsave("GroupedBars_RelativeImportance_300dpi.png",  
       plot = p_grouped,  
       width = 11,  
       height = 7,  
       dpi = 300,  
       bg = "white") 
 
# Display the plot 
print(p_grouped) 
 
cat("✓ Grouped bars saved: GroupedBars_RelativeImportance_300dpi.png\n") 
cat("✓ File dimensions: 11 x 7 inches at 300 DPI\n") 
cat("✓ Species colors: Tan (P. caryophyllaceus), Brown (P. cruentus), Blue (D. diastema)\n") 
cat("✓ Features: Classic grouped bar chart for clear comparison\n") 
  



#FINAL PLOTS FOR VISUALIZATION (OCCUPANCY) 
#============================================================================== 
 

Packages 
library(ggplot2) 
library(dplyr) 
library(tidyr) 
library(cowplot) 
 
# --- DATA (means and SE as provided) --- 
data <- tibble( 
  Covariate = c("Tree abundance", "Tree diameter (cm)", "Tree richness", 
                "Air temperature (°C)", "Relative humidity (%)"), 
  Old_Mean = c(12.00, 51.34, 7.29, 18.34, 83.34), 
  Old_SE   = c(5.29, 20.61, 2.93, 1.63, 27.36), 
  Sec_Mean = c(38.14, 11.48, 4.86, 17.90, 72.63), 
  Sec_SE   = c(13.25, 9.22, 2.04, 2.13, 26.68) 
) 
 
# --- FUNCTIONS FOR ABSOLUTE HUMIDITY AND DERIVATIVES --- 
# AH (g/m^3) based on Tetens formula: 
# AH = C * es(T) * RH_frac / (273.15 + T) 
# where es(T) = 6.112 * exp(17.67*T/(T+243.5)) (hPa), 
# C = 2.1674 (conversion factor to g/m3 when es in hPa and T in °C) 
AH_from_T_RH <- function(T_degC, RH_percent) { 
  RH_frac <- RH_percent / 100 
  es <- 6.112 * exp((17.67 * T_degC) / (T_degC + 243.5)) 
  C <- 2.1674 
  AH <- C * es * RH_frac / (273.15 + T_degC) 
  return(AH) 
} 
 
# Partial derivatives for delta-method variance propagation 
AH_partials <- function(T_degC, RH_percent) { 
  # Constants 
  b <- 243.5 
  C <- 2.1674 
  RH_frac <- RH_percent / 100 
   
  # es and derivative df/dT 
  es <- 6.112 * exp((17.67 * T_degC) / (T_degC + b)) 
  a_prime <- 17.67 * b / (T_degC + b)^2          # derivative of exponent a(T) 
  des_dT <- es * a_prime                         # derivative of es w.r.t. T 
   
  # AH = C * es * RH_frac / (273.15 + T) 
  denom <- 273.15 + T_degC 
   



  # derivative wrt T (°C) 
  dAH_dT <- C * RH_frac * (des_dT / denom - es / denom^2) 
   
  # derivative wrt RH percent (because input RH is in %) 
  # d(AH)/d(RH_percent) = C * es / denom * d(RH_frac)/d(RH_percent) 
  # d(RH_frac)/d(RH_percent) = 1/100 
  dAH_dRHpct <- C * es / denom * (1/100) 
   
  return(list(dAH_dT = dAH_dT, dAH_dRHpct = dAH_dRHpct)) 
} 
 
# --- CALCULATE MEAN AND SE OF ABSOLUTE HUMIDITY --- 
# Take means and SEs of T and RH (SE of RH in percentage points) 
T_old <- data$Old_Mean[data$Covariate == "Air temperature (°C)"] 
SE_T_old <- data$Old_SE[data$Covariate == "Air temperature (°C)"] 
RH_old <- data$Old_Mean[data$Covariate == "Relative humidity (%)"] 
SE_RH_old <- data$Old_SE[data$Covariate == "Relative humidity (%)"] 
 
T_sec <- data$Sec_Mean[data$Covariate == "Air temperature (°C)"] 
SE_T_sec <- data$Sec_SE[data$Covariate == "Air temperature (°C)"] 
RH_sec <- data$Sec_Mean[data$Covariate == "Relative humidity (%)"] 
SE_RH_sec <- data$Sec_SE[data$Covariate == "Relative humidity (%)"] 
 
# Compute AH means 
AH_old_mean <- AH_from_T_RH(T_old, RH_old) 
AH_sec_mean <- AH_from_T_RH(T_sec, RH_sec) 
 
# Compute partials and use delta method for variance (Var ≈ (d/dT)^2 Var(T) + (d/dRH%)^2 
Var(RH%)) 
partials_old <- AH_partials(T_old, RH_old) 
partials_sec  <- AH_partials(T_sec, RH_sec) 
 
var_AH_old <- (partials_old$dAH_dT^2) * (SE_T_old^2) + (partials_old$dAH_dRHpct^2) * 
(SE_RH_old^2) 
var_AH_sec  <- (partials_sec$dAH_dT^2) * (SE_T_sec^2) + (partials_sec$dAH_dRHpct^2) * 
(SE_RH_sec^2) 
 
AH_old_se <- sqrt(var_AH_old) 
AH_sec_se  <- sqrt(var_AH_sec) 
 
# Print results for check 
cat("Estimated Absolute Humidity (Old Forest):", round(AH_old_mean, 3), "g/m³  ±", 
round(AH_old_se, 3), " (SE)\n") 
cat("Estimated Absolute Humidity (Secondary):", round(AH_sec_mean, 3), "g/m³  ±", 
round(AH_sec_se, 3), " (SE)\n") 
 
# --- ADD AH TO ORIGINAL DATAFRAME (for plotting) --- 
data2 <- data %>% 



  add_row( 
    Covariate = "Absolute humidity", 
    Old_Mean = AH_old_mean, 
    Old_SE = AH_old_se, 
    Sec_Mean = AH_sec_mean, 
    Sec_SE = AH_sec_se 
  ) 
 
# Reshape to long format for ggplot 
data_long <- data2 %>% 
  pivot_longer(cols = c(Old_Mean, Sec_Mean, Old_SE, Sec_SE), 
               names_to = c("Forest", ".value"), 
               names_pattern = "(Old|Sec)_(.*)") %>% 
  mutate(Forest = ifelse(Forest == "Old", "Old Forest", "Secondary Forest")) 
 
# --- GRAPH 1: Tree Abundance and Richness (dark colors for contrast) --- 
tree_covs <- c("Tree abundance", "Tree richness") 
tree_df <- filter(data_long, Covariate %in% tree_covs) 
 
p_tree <- ggplot(tree_df, aes(x = Covariate, y = Mean, fill = Forest)) + 
  geom_col(position = position_dodge(width = 0.8), width = 0.7) + 
  geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE), 
                position = position_dodge(width = 0.8), width = 0.15, size = 0.7) + 
  scale_fill_manual(values = c("Old Forest" = "#1b5e20", "Secondary Forest" = "#81c784")) + 
  labs(title = "", y = "Quantity", x = "") + 
  theme_minimal(base_size = 13) + 
  theme(axis.text.x = element_text(angle = 0, hjust = 0.5), 
        panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(), 
        axis.line = element_line(color = "darkgrey", size = 0.5), 
        axis.ticks = element_line(color = "darkgrey"), 
        legend.position = "bottom", 
        legend.title = element_blank()) 
 
# --- GRAPH 2: Tree Diameter (dark colors for contrast) --- 
dbh_covs <- c("Tree diameter (cm)") 
dbh_df <- filter(data_long, Covariate %in% dbh_covs) 
 
p_dbh <- ggplot(dbh_df, aes(x = Covariate, y = Mean, fill = Forest)) + 
  geom_col(position = position_dodge(width = 0.8), width = 0.7) + 
  geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE), 
                position = position_dodge(width = 0.8), width = 0.15, size = 0.7) + 
  scale_fill_manual(values = c("Old Forest" = "#004d40", "Secondary Forest" = "#4db6ac")) + 
  labs(title = "", y = "Diameter (cm)", x = "") + 
  theme_minimal(base_size = 13) + 
  theme(axis.text.x = element_text(angle = 0, hjust = 0.5), 
        panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(), 



        axis.line = element_line(color = "darkgrey", size = 0.5), 
        axis.ticks = element_line(color = "darkgrey"), 
        legend.position = "bottom", 
        legend.title = element_blank()) 
 
# --- GRAPH 3: Temperature (dark colors for contrast) --- 
temp_covs <- c("Air temperature (°C)") 
temp_df <- filter(data_long, Covariate %in% temp_covs) 
 
p_temp <- ggplot(temp_df, aes(x = Covariate, y = Mean, fill = Forest)) + 
  geom_col(position = position_dodge(width = 0.8), width = 0.7) + 
  geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE), 
                position = position_dodge(width = 0.8), width = 0.15, size = 0.7) + 
  scale_fill_manual(values = c("Old Forest" = "#01579b", "Secondary Forest" = "#4fc3f7")) + 
  labs(title = "", y = "Temperature (°C)", x = "") + 
  theme_minimal(base_size = 13) + 
  theme(axis.text.x = element_text(angle = 0, hjust = 0.5), 
        panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(), 
        axis.line = element_line(color = "darkgrey", size = 0.5), 
        axis.ticks = element_line(color = "darkgrey"), 
        legend.position = "bottom", 
        legend.title = element_blank()) 
 
# --- GRAPH 4: Relative Humidity (dark colors for contrast) --- 
rh_covs <- c("Relative humidity (%)") 
rh_df <- filter(data_long, Covariate %in% rh_covs) 
 
p_rh <- ggplot(rh_df, aes(x = Covariate, y = Mean, fill = Forest)) + 
  geom_col(position = position_dodge(width = 0.8), width = 0.7) + 
  geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE), 
                position = position_dodge(width = 0.8), width = 0.15, size = 0.7) + 
  scale_fill_manual(values = c("Old Forest" = "#006064", "Secondary Forest" = "#26c6da")) + 
  labs(title = "", y = "Relative humidity (%)", x = "") + 
  theme_minimal(base_size = 13) + 
  theme(axis.text.x = element_text(angle = 0, hjust = 0.5), 
        panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(), 
        axis.line = element_line(color = "darkgrey", size = 0.5), 
        axis.ticks = element_line(color = "darkgrey"), 
        legend.position = "bottom", 
        legend.title = element_blank()) 
 
# --- GRAPH 5: Absolute Humidity (dark colors for contrast) --- 
ah_covs <- c("Absolute humidity") 
ah_df <- filter(data_long, Covariate %in% ah_covs) 
 
p_ah <- ggplot(ah_df, aes(x = Covariate, y = Mean, fill = Forest)) + 



  geom_col(position = position_dodge(width = 0.8), width = 0.7) + 
  geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE), 
                position = position_dodge(width = 0.8), width = 0.15, size = 0.7) + 
  scale_fill_manual(values = c("Old Forest" = "#4a148c", "Secondary Forest" = "#ba68c8")) + 
  labs(title = "", y = "Absolute humidity (g/m³)", x = "") + 
  theme_minimal(base_size = 13) + 
  theme(axis.text.x = element_text(angle = 0, hjust = 0.5), 
        panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(), 
        axis.line = element_line(color = "darkgrey", size = 0.5), 
        axis.ticks = element_line(color = "darkgrey"), 
        legend.position = "bottom", 
        legend.title = element_blank()) 
 
# Display graphs in graphics device 
print(p_tree) 
print(p_dbh) 
print(p_temp) 
print(p_rh) 
print(p_ah) 
 
# Save graphs 
ggsave("FigureA_TreeAbundanceRichness.png", plot = p_tree, width = 6, height = 5, dpi = 300) 
ggsave("FigureB_TreeDiameter.png", plot = p_dbh, width = 6, height = 5, dpi = 300) 
ggsave("FigureC_Temperature.png", plot = p_temp, width = 6, height = 5, dpi = 300) 
ggsave("FigureD_RelativeHumidity.png", plot = p_rh, width = 6, height = 5, dpi = 300) 
ggsave("FigureE_AbsoluteHumidity.png", plot = p_ah, width = 6, height = 5, dpi = 300) 
 
 
# Small multiples graph 
data_long_updated <- data_long %>% 
  mutate(Covariate = case_when( 
    Covariate == "Tree abundance" ~ "Tree abundance (n)", 
    Covariate == "Tree richness" ~ "Tree richness (S)", 
    Covariate == "Tree diameter (cm)" ~ "Tree diameter (cm)", 
    Covariate == "Air temperature (°C)" ~ "Air temperature (°C)", 
    Covariate == "Relative humidity (%)" ~ "Relative humidity (%)", 
    Covariate == "Absolute humidity" ~ "Absolute humidity (g/m³)", 
    TRUE ~ Covariate 
  )) %>% 
  # Create factor with specified order 
  mutate(Covariate = factor(Covariate,  
                            levels = c("Air temperature (°C)", 
                                       "Relative humidity (%)", 
                                       "Absolute humidity (g/m³)", 
                                       "Tree richness (S)", 
                                       "Tree abundance (n)", 
                                       "Tree diameter (cm)"))) 



 
# Now create the plot with updated units and correct order 
p_facets <- ggplot(data_long_updated, aes(x = Forest, y = Mean, fill = Forest)) + 
  geom_col(width = 0.7) + 
  geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE), width = 0.2) + 
  facet_wrap(~ Covariate, scales = "free_y", ncol = 3) + 
  scale_fill_manual(values = c("Old Forest" = "#006400",  # Dark green 
                               "Secondary Forest" = "#90EE90")) +  # Light green 
  labs(title = "", 
       y = "Mean ± SE",  
       x = "") + 
  theme_minimal() + 
  theme(legend.position = "bottom", 
        axis.text.x = element_blank(),  # Remove x-axis text 
        axis.ticks.x = element_blank(), # Remove x-axis ticks 
        strip.background = element_rect(fill = "grey90"), 
        panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(), 
        legend.title = element_blank())  # Remove legend title 
 
# Save at 400 DPI 
ggsave("SmallMultiples_ForestCovariates_400dpi.tiff",  
       plot = p_facets,  
       width = 10,  
       height = 8,  
       dpi = 300) 
 
# Also save as high-quality PDF (vector format) 
ggsave("SmallMultiples_ForestCovariates.pdf",  
       plot = p_facets,  
       width = 10,  
       height = 8) 
 
print(p_facets) 
 
 
# RADAR CHART 
library(tibble)  # Make sure tibble is loaded for column_to_rownames 
 
radar_data <- data_long %>% 
  select(Covariate, Forest, Mean) %>% 
  pivot_wider(names_from = Covariate, values_from = Mean) %>% 
  as.data.frame() %>%  # Convert to data.frame first 
  column_to_rownames("Forest") 
 
# Normalize data for radar chart (0-1 scale) 
normalize <- function(x) { 
  (x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE)) 



} 
 
radar_normalized <- as.data.frame(lapply(radar_data, normalize)) 
radar_normalized$Forest <- rownames(radar_data) 
 
# Create radar chart 
library(fmsb) 
 
# Prepare data for fmsb (first row max, second row min, then actual data) 
radar_plot_data <- rbind(rep(1, ncol(radar_normalized)-1),  
                         rep(0, ncol(radar_normalized)-1), 
                         radar_normalized[,-ncol(radar_normalized)]) 
 
# Color vector - using dark green for OF and light green for SF 
colors_border <- c("#006400", "#90EE90")  # Dark green and light green 
colors_in <- c(alpha("#006400", 0.3), alpha("#90EE90", 0.3)) 
 
# Create radar chart 
radarchart(radar_plot_data,  
           axistype = 1, 
           pcol = colors_border,  
           pfcol = colors_in, 
           plwd = 2, 
           cglcol = "grey",  
           cglty = 1,  
           axislabcol = "grey", 
           caxislabels = seq(0, 1, 0.2), 
           cglwd = 0.8, 
           vlcex = 0.8) 
 
legend("topright",  
       legend = radar_normalized$Forest,  
       bty = "n",  
       pch = 20,  
       col = colors_border,  
       text.col = "black",  # Changed to black for better visibility 
       cex = 1,  
       pt.cex = 2) 
 
# Save radar chart at 400 DPI 
png("RadarChart_ForestCovariates_400dpi.png", width = 8, height = 8, units = "in", res = 400) 
radarchart(radar_plot_data,  
           axistype = 1, 
           pcol = colors_border,  
           pfcol = colors_in, 
           plwd = 2, 
           cglcol = "grey",  
           cglty = 1,  



           axislabcol = "grey", 
           caxislabels = seq(0, 1, 0.2), 
           cglwd = 0.8, 
           vlcex = 0.8) 
 
legend("topright",  
       legend = radar_normalized$Forest,  
       bty = "n",  
       pch = 20,  
       col = colors_border,  
       text.col = "black", 
       cex = 1,  
       pt.cex = 2) 
dev.off() 
 
# RADAR CHART - IMPROVED VERSION 
library(tibble) 
library(tidyr)   
library(dplyr)   
library(scales) 
 
radar_data <- data_long %>% 
  select(Covariate, Forest, Mean) %>% 
  pivot_wider(names_from = Covariate, values_from = Mean) %>% 
  as.data.frame() %>% 
  column_to_rownames("Forest") 
 
# Normalize data for radar chart (0-1 scale) 
normalize <- function(x) { 
  (x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE)) 
} 
 
radar_normalized <- as.data.frame(lapply(radar_data, normalize)) 
radar_normalized$Forest <- rownames(radar_data) 
 
# Create radar chart 
library(fmsb) 
 
# Prepare data for fmsb (first row max, second row min, then actual data) 
radar_plot_data <- rbind(rep(1, ncol(radar_normalized)-1),  
                         rep(0, ncol(radar_normalized)-1), 
                         radar_normalized[,-ncol(radar_normalized)]) 
 
# IMPROVED COLOR VECTOR - More contrasting colors 
colors_border <- c("#006400", "#FF6B00")  # Dark green and orange for high contrast 
colors_in <- c(alpha("#006400", 0.4), alpha("#FF6B00", 0.4)) 
 
# Create radar chart with larger size and better readability 



par(mar = c(2, 2, 2, 2))  # Adjust margins 
radarchart(radar_plot_data,  
           axistype = 1, 
           pcol = colors_border,  
           pfcol = colors_in, 
           plwd = 3,  # Thicker lines 
           plty = 1, 
           cglcol = "darkgray",  # Darker grid lines 
           cglty = 1,  
           axislabcol = "black",  # Black axis labels for readability 
           caxislabels = seq(0, 1, 0.2), 
           cglwd = 1.2,  # Thicker grid lines 
           vlcex = 1.2,  # Larger variable labels 
           calcex = 1.1, # Larger axis labels 
           title = "Forest Covariates Comparison")  # Add title 
 
legend("topright",  
       legend = radar_normalized$Forest,  
       bty = "o",  # Box around legend 
       bg = "white",  # White background for legend 
       pch = 20,  
       col = colors_border,  
       text.col = "black", 
       cex = 1.3,  # Larger legend text 
       pt.cex = 3)  # Larger legend points 
 
# Save radar chart at 400 DPI with larger dimensions 
png("RadarChart_ForestCovariates_400dpi.png", width = 12, height = 10, units = "in", res = 400) 
 
# Set larger margins and recreate plot 
par(mar = c(2, 2, 3, 2)) 
radarchart(radar_plot_data,  
           axistype = 1, 
           pcol = colors_border,  
           pfcol = colors_in, 
           plwd = 4,  # Even thicker lines for high resolution 
           plty = 1, 
           cglcol = "darkgray", 
           cglty = 1,  
           axislabcol = "black", 
           caxislabels = seq(0, 1, 0.2), 
           cglwd = 1.5, 
           vlcex = 1.5,  # Larger variable labels 
           calcex = 1.3, # Larger axis labels 
           title = "Forest Covariates Comparison") 
 
legend("topright",  
       legend = radar_normalized$Forest,  



       bty = "o", 
       bg = "white", 
       pch = 20,  
       col = colors_border,  
       text.col = "black", 
       cex = 1.5,  # Larger legend text 
       pt.cex = 3.5)  # Larger legend points 
 
dev.off() 


