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Supplementary Figure 1 Benchmark accuracy by (a) question category for structural analysis and
fluid dynamics analysis showing performance across captioning, reasoning, grounding, and relation-
ship understanding tasks. (b) Benchmark accuracy by question type for structural analysis and fluid
dynamics analysis comparing binary classification, multiple-choice reasoning, and spatial grounding
performance. (¢) Benchmark accuracy by simulation class for structural analysis across Wall Bracket,
Beams, Hip Implant, Pressure Vessel, and Dog Bone configurations, and fluid dynamics analysis
across Bent Pipe, Converging Nozzle, Mixing Pipe, Heat Sink, and Heat Exchanger configurations.
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Supplementary Figure 2 Failure rates for structural analysis and fluid dynamics analysis showing
model reliability in providing valid responses across all question types

Supplementary Table 1 Flagship model configurations (evaluated on 10% subset for both
images and videos). Temperature 0.0 indicates deterministic sampling; higher temperatures
follow official model deployment recommendations.

Model Model Identifier Max Tokens Temperature
GPT-5 gpt-5-2025-08-07 4096 —a
Qwen3-VL-235B Qwen3-VL-235B-A22B-Instruct 4096 0.7°
InternVL-3.5-241B  internvl3.5-241b-a28b 4096 0.0
Gemini-2.5-Flash gemini-2.5-flash 4096 0.0

& GPT-5 uses reasoning effort: minimal, text verbosity: medium
b Qwen3-VL-235B uses top-p: 0.8, rate limit: 2s between requests

Supplementary Table 2 Video-specific model configurations (evaluated on video subset only, 32
frames uniformly sampled).

Model Model Identifier Frames Max Tokens Temp
GPT-5 gpt-5-2025-08-07 32 4096 -
Qwen3-VL-8B Qwen/Qwen3-VL-8B-Instruct 32 4096 0.0
InternVL-3.5-8B  OpenGVLab/InternVL3_5-8B-Instruct 32 4096 0.0
Gemma-3-12B google/gemma-3-12b-it 32 4096 0.0




Supplementary Table 3 Image-only model configurations (evaluated on complete image
dataset). All local models use bfloat16 precision with device map="auto" and do_sample=False
except where noted.

Model Model Identifier Max Tokens Temp
Qwen3-VL-2B Qwen/Qwen3-VL-2B-Instruct 4096 0.7?
Qwen3-VL-8B Qwen/Qwen3-VL-8B-Instruct 4096 0.0
InternVL-3.5-1B  OpenGVLab/InternVL3_5-1B-Instruct 4096 0.0
InternVL-3.5-8B  OpenGVLab/InternVL3_5-8B-Instruct 4096 0.0
Gemma-3-4B google/gemma-3-4b-it 4096 0.0
Gemma-3-12B google/gemma-3-12b-it 4096 0.0
Gemma-3-27B google/gemma-3-27b-it 4096 0.0
LLaMA-3.2-11B  meta-llama/Llama-3.2-11B-Vision-Instruct 4096 0.0

# Qwen3-VL-2B uses do_sample=True per official guidelines



Supplementary Table 4 Statistical Significance Analysis for Fluid Dynamics Domain.
One-tailed binomial test results (alternative: greater) comparing model performance against
chance-level accuracy (50% for binary classification, 25% for multiple-choice reasoning and
spatial grounding tasks). The test evaluates whether model accuracy significantly exceeds
random guessing. The table reports observed accuracies, uncorrected exact p-values,
Benjamini-Hochberg (BH) corrected p-values, significance markers, and sample sizes (correct
responses/total questions) for all vision-language models across three task categories.
Benjamini-Hochberg correction was applied to control the False Discovery Rate across 30
multiple comparisons (10 models X 3 question types). Significance levels: ¥** p < 0.001; **
p < 0.01; * p < 0.05; ns = not significant. All tests employed o = 0.05 with FDR control.

Model Task  Acc (%) p-value p-value (BH) Sig Correct Total
Binary 55.1  2.11x10°%7  4.88x10~% *** 10817 19616
GPT-5 Multiple Q  32.5  6.30x10712% 2.10x1071%22 *** 6364 19578
Spatial 24.5 0.868 1.000 ns 2438 9943
Binary 53.0 8.32x107 112 250x10~ T % 11377 19617
Claude-4.5  Multiple Q  43.3 < 107390 < 107390 wkk 8486 19581
Spatial 23.2 1.000 1.000 ns 2308 9943
Binary 56.0  1.80x10° 0%  4.91x107%% *** 10992 19617
Intern-1B Multiple Q 2.2 1.000 1.000 ns 429 19581
Spatial 20.8  4.68x1072% 9.35%x10728 *** 2967 9943
Binary 65.5 < 107300 < 107300 wkx 10858 19617
Intern-8B Multiple Q  20.2 1.000 1.000 ns 3957 19581
Spatial 22.0 1.000 1.000 ns 2192 9943
Binary 59.9  8.59x10° 1 3.68x107 109 *** 11746 19617
Qwen-2B Multiple Q  49.7 < 107300 < 107300 xxx 9795 19581
Spatial 277 3.74x107'0  6.61x10710 *kx 2755 9943
Binary 16.7 1.000 1.000 ns 9161 19617
Qwen-8B Multiple Q  38.3 < 107390 < 107390 wkx 7497 19581
Spatial 21.7 1.000 1.000 ns 2160 9943
Binary 62.5 1.67x107 27 1.00x107 272 *** 12269 19617
Llama-3.2-11B Multiple Q  16.9 1.000 1.000 ns 3305 19581
Spatial 20.8  4.68x1072%  9.35x1072% *kx 2967 9943
Binary 59.6  2.33x107 109 873x107 160 *** 11691 19617
Gemma-4B Multiple Q  24.6 0.924 1.000 ns 4809 19581
Spatial 24.9 0.557 0.879 ns 2480 9943
Binary 51.8  1.99x10°7  3.32x10 7 *** 10164 19617
Gemma-12B  Multiple Q  27.0  6.83x107 11 1.28x10710 *** 5988 19581
Spatial 24.4 0.926 1.000 ns 2424 9943
Binary 60.8  2.47x10720% 1.24x10720% *** 11935 19617
Gemma-27B  Multiple Q  29.9  4.69x107°° 1.17x107°* ¢ 5859 19581
Spatial 22.9 1.000 1.000 ns 2281 9943




Supplementary Table 5 Statistical Significance Analysis for Structural Analysis Domain.
One-tailed binomial test results (alternative: greater) comparing model performance against
chance-level accuracy (50% for binary classification, 25% for multiple-choice reasoning and
spatial grounding tasks). The test evaluates whether model accuracy significantly exceeds
random guessing. The table reports observed accuracies, uncorrected exact p-values,
Benjamini-Hochberg (BH) corrected p-values, significance markers, and sample sizes (correct
responses/total questions) for all vision-language models across three task categories.
Benjamini-Hochberg correction was applied to control the False Discovery Rate across 30
multiple comparisons (10 models X 3 question types). Significance levels: *** p < 0.001; **
p < 0.01; * p < 0.05; ns = not significant. All tests employed o = 0.05 with FDR control.

Model Task  Acc (%) p-value p-value (BH) Sig Correct Total
Binary 61.1 1.35x107 %% 3.68x107 168 *¥* 9458 15488
GPT-5 Multiple Q@ 327 2.05x107'70 6.16x107170 *#* 8446 25811
Spatial 46.5 < 107300 < 107300 wkx 4756 10232
Binary 49.9 0.583 0.672 ns 7732 15489
Claude-4.5  Multiple Q  27.7  2.32x1072%  3.49x1072% *** 7149 25811
Spatial 417 1.37x107297 5.12x107297 k¢ 4268 10240
Binary 84.7 < 107300 < 107300 Rk 13116 15489
Intern-1B Multiple Q 19.5 1.000 1.000 ns 5024 25811
Spatial 305  7.79x10737  1.30x10736  *** 3126 10240
Binary 52.6  3.76x10° 11 5.13x107 1 Fx 150 15489
Intern-8B Multiple Q  32.3  1.19x107152 298x107 152 *** 8335 25811
Spatial 39.4  2.00x1072%% 6.67x107225 *kx 4036 10240
Binary 85.3 < 107300 < 107300 wkx 13915 15489
Qwen-2B Multiple Q  11.8 1.000 1.000 ns 3051 25811
Spatial 35.1  3.93x107 14 7.86x107 14 *#kx 3592 10240
Binary 54.8  8.61x107°% 1.36x10752 *¥* 8483 15489
Qwen-8B Multiple Q  42.8 < 107390 < 107390 wkx 17056 25811
Spatial 44.6 < 107300 < 107300 wkx 4568 10240
Binary 83.9 < 107300 < 107300 xRk 12997 15489
Llama-3.2-11B Multiple Q  16.0 1.000 1.000 ns 4134 25811
Spatial 278  6.86x107'  8.95x10711  *** 92845 10240
Binary 66.4 < 107300 < 107300 Rk 10284 15489
Gemma-4B  Multiple Q  27.6  3.71x10722 5.30x10722 *** 7129 25811
Spatial 31.9  1.17x107°%  2.19x107%%  *** 3266 10240
Binary 59.8  6.94x107 132 1.60x10~ 13T *** 09259 15489
Gemma-12B  Multiple Q  26.6  2.90x107°7  3.62x1072 *** 6861 25811
Spatial 35.3  1.17x107MP 251x10719 *xx 3618 10240
Binary 50.2 0.321 0.385 ns 7774 15489
Gemma-27B  Multiple Q  23.8 1.000 1.000 ns 6150 25811
Spatial 30.8  1.16x1073%  2.05x10739 #3149 10240




Supplementary Table 6 Practical Significance Analysis for Fluid Dynamics Domain.
Cohen’s h effect sizes measuring the magnitude of performance differences from
chance-level baselines (50% for binary classification, 25% for multiple-choice reasoning
and spatial grounding tasks). Effect size categories follow Cohen’s conventional
benchmarks: Negligible (|h| < 0.20), Small (0.20 < |h| < 0.50), Medium
(0.50 < |h| < 0.80), Large (|h| > 0.80). The table reports observed accuracies, percentage
point differences from chance (Diff), Cohen’s h values, effect size categories, and 95%
confidence intervals for all vision-language models across three task categories.

Model Task Acc Diff Cohen’s h Effect 95% CI
Binary 55.1% +5.1pp 0.103 Negligible [54.4%, 55.8%
GPT-5 Multiple Q 32.5% +7.5pp 0.166  Negligible [31.9%, 33.2%
Spatial 24.5% —0.5pp  —0.011 Negligible [23.7%, 25.4%
Binary 58.0% +8.0pp 0.161  Negligible [57.3%, 58.7%
Claude-4.5 Multiple Q 43.3% -+18.3pp 0.390 Small  [42.6%, 44.0%
Spatial 23.2% —1.8pp  —0.042 Negligible [22.4%, 24.1%
Binary 56.0% +6.0pp 0.121  Negligible [55.3%, 56.7%
Intern-1B Multiple Q 2.2% —22.8pp —0.750 Medium [2.0%, 2.4%)]
Spatial 29.8% +4.8pp 0.109  Negligible [28.9%, 30.7%
Binary  65.5% +155pp  0.316 Small [64.9%, 66.2%
Intern-8B Multiple Q 20.2% —4.8pp —0.115  Negligible [19.7%, 20.8%
Spatial 22.0% —3.0pp —0.070 Negligible [21.2%, 22.9%
Binary 59.9% +9.9pp 0.199  Negligible [59.2%, 60.6%
Qwen-2B Multiple Q 49.7% -+24.7pp 0.517 Medium [49.0%, 50.4%
Spatial 27.7% +2.7pp 0.061 Negligible [26.8%, 28.6%
Binary 46.7% —-3.3pp —0.066 Negligible [46.0%, 47.4%
Qwen-8B Multiple Q 38.3% +13.3pp  0.287 Small  [37.6%, 39.0%
Spatial 21.7% —3.3pp  —0.077 Negligible [20.9%, 22.5%
Binary 62.5% +12.5pp  0.254 Small  [61.9%, 63.2%
Llama-3.2-11B Multiple Q 16.9% —8.1pp  —0.200 Small  [16.4%, 17.4%
Spatial  29.8% +4.8pp 0.109  Negligible [28.9%, 30.7%
Binary 59.6% +9.6pp 0.193  Negligible [58.9%, 60.3%
Gemma-4B Multiple Q 24.6% —0.4pp  —0.010 Negligible [24.0%, 25.2%
Spatial 24.9% —0.1pp  —0.001 Negligible [24.1%, 25.8%
Binary 51.8% +1.8pp 0.036  Negligible [51.1%, 52.5%
Gemma-12B  Multiple Q 27.0% +2.0pp 0.046  Negligible [26.4%, 27.6%
Spatial 24.4% —0.6pp —0.014 Negligible [23.5%, 25.2%
Binary 60.8% +10.8pp  0.219 Small  [60.2%, 61.5%
Gemma-27B  Multiple Q 29.9% +4.9pp 0.110  Negligible [29.3%, 30.6%
Spatial 22.9% —2.1pp —0.048 Negligible [22.1%, 23.8%




Supplementary Table 7 Practical Significance Analysis for Structural Analysis
Domain. Cohen’s h effect sizes measuring the magnitude of performance differences from
chance-level baselines (50% for binary classification, 25% for multiple-choice reasoning
and spatial grounding tasks). Effect size categories follow Cohen’s conventional
benchmarks: Negligible (|h| < 0.20), Small (0.20 < |h| < 0.50), Medium
(0.50 < |h| < 0.80), Large (|| > 0.80). The table reports observed accuracies, percentage
point differences from chance (Diff), Cohen’s h values, effect size categories, and 95%
confidence intervals for all vision-language models across three task categories.

Model Task Acc Diff Cohen’s h Effect 95% CI
Binary 61.1% +11.1pp  0.223 Small  [60.3%, 61.8%
GPT-5 Multiple Q 32.7% +7.7pp 0.171 Negligible [32.2%, 33.3%
Spatial  46.5% +21.5pp 0.453 Small  [45.5%, 47.4%
Binary 49.9% —0.1pp —0.002 Negligible [49.1%, 50.7%
Claude-4.5 Multiple Q 27.7% +2.7pp 0.061 Negligible [27.2%, 28.2%
Spatial  41.7% +16.7pp 0.356 Small  [40.7%, 42.6%
Binary 84.7% +34.7pp 0.766 Medium [84.1%, 85.2%
Intern-1B Multiple Q 19.5% —5.5pp —0.133  Negligible [19.0%, 20.0%
Spatial  30.5% +5.5pp 0.124  Negligible [29.6%, 31.4%
Bimary 52.6% +2.6pp  0.052  Negligible [51.8%, 53.4%
Intern-8B Multiple Q 32.3% +7.3pp 0.162 Negligible [31.7%, 32.9%
Spatial 39.4% +14.4pp  0.310 Small  [38.5%, 40.4%
Binary  85.3% +35.3pp 0.784 Medium [84.8%, 85.9%
Qwen-2B Multiple Q 11.8% —13.2pp —0.345 Small 11.4%, 12.2%
Spatial = 35.1% +10.1pp  0.221 Small  [34.2%, 36.0%
Binary 54.8% +4.8pp 0.096  Negligible [54.0%, 55.6%
Qwen-8B Multiple Q 42.8% +17.8pp 0.380 Small  [42.2%, 43.4%
Spatial 44.6% +19.6pp  0.416 Small  [43.6%, 45.6%
Binary 83.9% +33.9pp  0.745 Medium [83.3%, 84.5%
Llama-3.2-11B Multiple Q 16.0% —9.0pp —0.224 Small  [15.6%, 16.5%
Spatial 27.8% +2.8pp 0.063  Negligible [26.9%, 28.7%
Binary 66.4% +16.4pp  0.334 Small  [65.6%, 67.1%
Gemma-4B Multiple Q 27.6% +2.6pp 0.060 Negligible [27.1%, 28.2%
Spatial 31.9% +6.9pp 0.153  Negligible [31.0%, 32.8%
Binary 59.8% +9.8pp 0.197 Negligible [59.0%, 60.5%
Gemma-12B  Multiple Q 26.6% +1.6pp 0.036  Negligible [26.0%, 27.1%
Spatial  35.3% +10.3pp  0.226 Small  [34.4%, 36.3%
Binary 50.2% +0.2 0.004  Negligible [49.4%, 51.0%
Gemma-27B  Multiple Q 23.8% —1.2pp  —0.027 Negligible [23.3%, 24.4%
Spatial  30.8% +5.8pp 0.128  Negligible [29.9%, 31.7%
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1 Supplementary Note 1: Automated Ground Truth
Extraction Protocols

1.1 Selecting Simulation Examples

Engineering simulation benchmarks traditionally rely on limited, manually curated
datasets that may not capture the full diversity of real-world engineering applications.
To address this limitation, we developed a systematic approach for generating a com-
prehensive dataset of approximately 10,000 simulation examples through parametric
variation of established simulation models. With 10 questions per simulation instance
per domain (20 total per instance), this generates over 200,000 total question-answer
pairs across both domains.

Our simulation examples were sourced from publicly available Ansys Tutorial files,
which provide validated baseline configurations with proper boundary conditions and
convergence settings. From the extensive tutorial library, we selected base models
using a structured selection framework based on three primary criteria designed to
maximize dataset diversity and benchmark coverage.

1. Parametric Variability: Base models were selected based on their capacity for
meaningful geometric and boundary condition variations. Each selected simulation
contained multiple adjustable parameters that could generate distinct simulation
outcomes while maintaining physical validity. This approach captured the range of
configurations rather than relying on static, single-configuration examples.

2. Simulation Type Coverage: Models were chosen to represent the full spectrum of
simulation categories required by our visual question-answering benchmark. This
systematic selection ensured comprehensive coverage of essential engineering phe-
nomena including turbulence modeling and structural failure modes across diverse
geometric configurations and loading conditions.

3. Representative Engineering Applications: Selected simulations span diverse engi-
neering domains to ensure our benchmark reflects real-world analysis scenarios that
practicing engineers encounter across different industries and applications.

For each base simulation, we implemented parametric design automation using
Ansys Python interfaces (PyMechanical, PyFluent, and PyGeometry) and list gener-
ation software (MATLAB) to systematically vary five critical parameters encompassing
geometric dimensions, boundary conditions, and material properties. Parameter ranges
were established by expert designers to ensure all generated variations remained within
physically meaningful bounds while maximizing solution diversity. Each parameter
had 4 values chosen, linearly spaced between 2 ”extreme” cases, generating small,
small-medium, large-medium, and large values that created substantial variations in
each output instance. These 4 values across 5 parameters generated 1,024 unique sim-
ulation instances per base model, with parameter settings generated using systematic
looping to create each unique set of conditions.

In the mechanical models, the geometry parameters led to different stress con-
centrations and loading conditions. The boundary condition parameters (changes in
axial or bending load forces) and material property parameters (changes in physical
characteristics) produced distinct stress, strain, and displacement effects. In the fluid
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models, the geometry parameters created unique turbulence regions and flow regimes.
The boundary condition parameters (fluid velocity) and material property parameters
(viscosity) affected the velocity, pressure, and turbulence results.

1.1.1 Structural Analysis Models:

The Dog Bone specimen represents standard tensile testing configurations with stress
concentrations at the reduced cross-section, requiring interpretation of von Mises
stress distributions and failure prediction across varying geometries and loading con-
ditions. The Hip Implant model simulates complex biomedical loading with combined
axial and bending stresses, presenting challenging stress visualization patterns around
irregular geometries. The Pressure Vessel involves internal pressure loading creat-
ing circumferential and axial stress fields with material-dependent responses. The
Beams utilize mechanical loading, requiring analysis of stress patterns and material
property variations for different beam profiles. The Wall Bracket features complex
three-dimensional stress distributions under bending loads with stress concentrations
at geometric transitions.

1.1.2 Fluid Dynamics Models:

The Bent Pipe generates complex flow patterns and pressure losses with varying tur-
bulence intensities dependent on bend geometry and flow conditions. The Converging
Nozzle creates acceleration zones with pressure gradients and potential flow separa-
tion requiring analysis of velocity vector fields and pressure contours. The Mixing
Pipe involves multi-stream interactions with complex velocity and pressure patterns
at the junction. The Heat Sink and Heat Exchanger models generate intricate flow
patterns around fin geometries with heat transfer effects, creating complex visualiza-
tion challenges involving velocity vectors and pressure fields that vary with geometric
and boundary condition parameters.

1.2 Automated Ground Truth Extraction Infrastructure

The automated ground truth extraction system operates through direct programmatic
interfaces to simulation software, bypassing visual interpretation entirely. For fluid
dynamics simulations, we employ PyFluent’s solver session interface to export field
data through Ansys Fluent’s Text User Interface (TUI) commands. All fluid simu-
lations utilize three-dimensional representations with Cartesian coordinate systems,
extracting velocity components (x-velocity, y-velocity, z-velocity), pressure fields, tem-
perature distributions, and Mach numbers where applicable. Data exports generate
ASCII-formatted files containing nodal coordinates and corresponding field values,
with file sizes typically ranging from hundreds of kilobytes to several megabytes
depending on mesh density.

For structural analysis, PyMechanical provides access to finite element results
through Ansys Mechanical’s scripting interface. The system extracts von Mises stress
tensors, displacement vectors, strain components, and temperature fields at nodal
locations. Each extraction preserves spatial coordinate information (X, Y, Z positions)
alongside field values, enabling subsequent geometric analysis for symmetry detection

10
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and spatial localization tasks. Session management follows a single-instance paradigm
where each simulation case file loads once and serves all question extraction proce-
dures sequentially. This approach minimizes computational overhead from repeated file
loading operations while maintaining consistency in visualization parameters across
questions sharing common data requirements. Fluent sessions initialize with double
precision arithmetic and utilize multiple processor cores for parallel data extraction
operations.

1.3 Statistical Analysis Procedures

Questions requiring identification of extreme values or aggregate statistics operate
directly on extracted field arrays using standard numerical operations. The system
loads relevant data files into pandas DataFrame structures, validates data quality
through finite value checks (excluding NaN and infinite values), and applies appro-
priate statistical functions. For maximum and minimum value queries, the system
employs NumPy’s optimized array operations to identify extrema with computational
complexity linear in the number of data points. Relative magnitude assessments, such
as determining whether values span one, two, or three orders of magnitude, compute
the ratio between maximum and minimum field values. The system applies the follow-
ing classification scheme: ratios below 10 indicate less than one order of magnitude,
ratios between 10 and 100 represent one to two orders, ratios between 100 and 1000
span two to three orders, and ratios exceeding 1000 encompass more than three orders
of magnitude. For fields containing negative values, the system employs alternative
ratio calculations based on absolute value ranges to ensure meaningful magnitude
comparisons.

1.4 Distribution Analysis Implementation
1.4.1 Structural Uniformity Assessment

Stress distribution uniformity analysis employs coefficient of variation (CV) as the
primary metric, defined as the ratio of standard deviation to mean value. The system
extracts von Mises stress values across all nodes, computes statistical measures on the
resulting distribution, and applies a uniformity threshold of CV < 0.2 (20% coefficient
of variation). The system requires a minimum of three data points for meaningful
statistical analysis, rejecting datasets below this threshold. Distribution uniformity
extends beyond simple variance measures to incorporate spatial considerations. The
system validates that extracted stress values span the entire geometric domain rather
than representing localized clusters, ensuring that uniformity assessments reflect global
distribution characteristics rather than sampling artifacts.

1.4.2 Fluid Stagnation Zone Detection

Dead zone identification in fluid dynamics requires determining regions where flow
velocity falls below thresholds indicating effective stagnation. The system applies a
velocity magnitude threshold of 1 x 107¢ (one micron per second), representing a
value several orders of magnitude below typical flow velocities that effectively indicates

11
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numerical zero in the context of engineering simulations. For each node in the extracted
velocity field, the system classifies velocities below this threshold as stagnant, comput-
ing the fraction of total nodes meeting this criterion. Binary classification as yes/no
for dead zone presence depends on whether any significant fraction of the domain
exhibits stagnant flow characteristics. The system employs a conservative approach
where even small percentages of stagnant nodes (above negligible numerical noise lev-
els) trigger affirmative classification, acknowledging that engineering significance of
dead zones relates more to their presence than their spatial extent.

1.5 Symmetry Analysis Protocols

Symmetry detection requires assessing whether field distributions exhibit mirror
invariance about specified coordinate planes. The system implements a comprehensive
symmetry analysis procedure applicable to both structural deformation patterns and
fluid flow fields. For each candidate symmetry plane (X-plane, Y-plane, or Z-plane),
the system first determines the plane’s spatial location by computing the midpoint
of the geometric domain along the relevant axis. It then generates mirrored coor-
dinate sets by reflecting each node’s position across this plane. Using scipy’s cdist
function, the system computes Euclidean distances between original and mirrored
coordinate sets, identifying symmetric node pairs where spatial separation falls below
a coordinate matching tolerance of 1 x 1073 (one millimeter). For each identified
symmetric pair, the system compares field values through relative difference calcula-
tions: |val; — valp|/ max(|valy|, [valz|, 10719), where the denominator’s small constant
prevents division by zero for near-zero values. The system applies a base symmetry
tolerance of 5% for value comparisons, though certain structural analysis questions
employ a relaxed 10% tolerance to accommodate numerical solution variability in finite
element results. Classification as symmetric requires that at least 90% of identified
node pairs exhibit value differences within the specified tolerance for fluid dynamics
questions, while structural analysis employs a 60% threshold reflecting the greater
solution variability inherent in solid mechanics computations. The system evaluates
symmetry about all three coordinate planes independently, classifying overall symme-
try based on whether any single plane meets the criteria (questions asking ”Is the
pattern symmetric?”) or identifying which specific plane demonstrates the strongest
symmetry (questions asking "What is the axis of symmetry?”).

1.6 Physics-Based Classification Methods

1.6.1 Flow Regime Characterization

Mach number analysis categorizes flow speed relative to the local speed of sound,
employing standard aerospace engineering classification criteria. The system first
attempts to extract Mach number fields directly from simulation results when avail-
able. For simulations lacking explicit Mach data, the system computes Mach numbers
from velocity magnitude fields by dividing by the appropriate speed of sound: 343.0
m/s for air at standard conditions (20°C, 1 atmosphere) or 1482.0 m/s for water at
20°C. Flow regime classification operates on maximum Mach numbers rather than
domain-averaged values, recognizing that localized supersonic regions may exist within
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predominantly subsonic flows. The system applies the following thresholds: maximum
Mach below 0.8 classifies as subsonic, maximum Mach between 0.8 and 1.2 indicates
transonic flow, and maximum Mach exceeding 1.2 designates supersonic conditions.

1.6.2 Flow Direction Analysis

Dominant flow direction determination analyzes mean absolute velocity magnitudes
across spatial dimensions. For three-dimensional simulations, the system extracts
velocity component fields (x-velocity, y-velocity, z-velocity), computes the mean of
absolute values for each component independently, and identifies which component
exhibits the largest mean magnitude. This approach correctly handles flows with signif-
icant reverse components, where signed mean values would artificially reduce apparent
flow strength. Classification as ” complex multidirectional” rather than dominant along
a single axis employs a tolerance-based criterion. The system computes the mean of all
component means and checks whether each individual component mean falls within
5% of this global mean. When all components satisfy this proximity criterion, the
flow exhibits insufficient directional bias for classification as dominant along any sin-
gle axis. Otherwise, the component with maximum mean absolute velocity determines
the dominant direction.

1.6.3 Stress Type Classification

Structural analysis questions requiring classification of dominant stress types (bend-
ing, shear, axial, or torsion) extract relevant stress tensor components and compare
their magnitudes according to solid mechanics principles. The system analyzes stress
distributions in critical regions, typically identified as zones exhibiting maximum von
Mises stress or maximum deformation magnitude. Classification criteria derive from
examining ratios between normal stress components, shear stress components, and
their spatial gradients, though specific implementation details vary by geometry and
loading conditions.

1.6.4 Deformation Direction Analysis

Significant deformation direction identification follows analogous procedures to
flow direction analysis, extracting displacement components (X-displacement, Y-
displacement, Z-displacement) and computing mean absolute magnitudes. The system
identifies whether deformation primarily occurs along a single coordinate axis or
exhibits complex multi-directional character through the same tolerance-based com-
parison used for fluid flow analysis. An additional classification distinguishes between
in-plane and out-of-plane deformation patterns for planar structural geometries, com-
puted through relative magnitude comparisons between displacement components
parallel and perpendicular to the structure’s primary plane (that is user defined).

1.6.5 Tensile Stress Predominance

Determining whether stresses are predominantly tensile examines the signs of
extracted normal stress values. The system counts nodes exhibiting positive (tensile)
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versus negative (compressive) stress values, classifying the pattern as predominantly
tensile when positive values outnumber negative values. This simple criterion suffices
for binary classification while avoiding arbitrary threshold definitions for mixed stress
states.

1.7 Spatial Localization and Region Labeling

Region-based grounding questions require generating visualizations with labeled loca-
tions and determining which region contains specified target features. This process
involves three distinct phases: target identification from numerical data, region gen-
eration on rendered visualizations, and ground truth determination through spatial
proximity calculations.

1.7.1 Visualization Generation

The system generates standardized visualizations through direct control of simula-
tion software rendering parameters. For fluid dynamics, PyFluent’s graphics object
interface sets contour and vector plot properties, camera positions, and color mapping
schemes. Structural analysis employs PyMechanical’s result visualization controls to
configure stress or displacement contour plots with consistent color schemes. All visu-
alizations render at 1920x 1440 pixel resolution to ensure sufficient detail for spatial
localization tasks while maintaining consistent aspect ratios across instances. View ori-
entations follow standardized definitions: front, back, left, right, top, and bottom views
align camera positions with principal axes, while isometric views employ 45-degree
elevation and azimuth angles. The system saves rendered images as PNG files with
lossless compression, preserving color fidelity essential for subsequent region labeling
operations.

1.7.2 Legend and Text Detection

Before placing region labels, the system must identify areas to avoid to prevent obscur-
ing critical information or overlapping with existing annotations. We employ Easy0OCR
with English language models to detect text regions within generated visualizations,
applying a confidence threshold of 0.3 to filter spurious detections. Detected text
regions receive padding of 30 pixels on all sides to ensure labels maintain readable sepa-
ration. Legend detection specifically identifies color bars and their associated numerical
labels through pattern matching on scientific notation text. The system searches for
text strings matching the regular expression pattern -?7\d+\.\d*e[+-17\d+, repre-
senting floating-point numbers in exponential format commonly used for engineering
field values. When multiple scientific notation strings appear vertically or horizontally
aligned within 30 pixels, the system groups them as belonging to the same legend bar.
Valid legend groups require at least two numerical labels to avoid false positives from
isolated exponential notation. Once identified, the system estimates the spatial extent
of each legend by computing bounding boxes around detected text groups, extending
100 pixels to the left (the typical colorbar width) and 40 pixels above and below the
text cluster. An additional safety margin applies a 20x20 pixel dilation kernel to cre-
ate buffer zones around all detected legend areas, ensuring robust separation between
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labels and legends even when initial detection boundaries prove imprecise. Additional
avoidance regions include image borders (30 pixels from edges), very light areas (RGB
values exceeding 240 on 0-255 scale, indicating white background), and very dark areas
(RGB values below 20, indicating black background or unlabeled regions). For struc-
tural visualizations, the system also detects and avoids axis indicators—small colored
arrows or text typically rendered in pure red, green, or blue that denote coordinate
system orientation. These indicators occupy areas between 50 and 2000 pixels, with
40-pixel padding applied around each detected indicator.

1.7.3 Color Gradient Analysis

Engineering visualization standards employ rainbow color gradients mapping from red
(maximum values) through yellow and green to blue (minimum values). The system
generates a reference gradient containing 20 discrete color steps spanning this spectrum
through RGB interpolation. For fluid dynamics, the gradient represents flow field
magnitudes; for structural analysis, it represents stress or displacement magnitudes.
To classify any pixel in the visualization as belonging to the simulation color scheme
versus background or annotation elements, the system computes Euclidean distances
in RGB space between the pixel’s color and all reference gradient colors. Colors falling
within a tolerance of 80 Euclidean distance units (on a 0-255 RGB scale) from any
reference gradient color classify as simulation colors; colors exceeding this threshold
classify as background or annotation elements. This tolerance accommodates rendering
antialiasing and color interpolation artifacts while maintaining sufficient specificity to
distinguish simulation data from interface elements.

1.7.4 Region Point Selection

The system selects four points (A, B, C, D) for region labeling through a constrained
random sampling procedure that ensures spatial distribution, simulation color associ-
ation, and sufficient mutual separation. Starting from the set of all pixels classified as
simulation colors and not falling within legend, text, or border avoidance masks, the
system randomly shuffles candidate positions and iteratively selects points meeting
the following criteria:

® The pixel color must fall within the simulation color tolerance (80-unit Euclidean
distance from the gradient)

® Spatial separation from all previously selected points must exceed 50 pixels initially

o [f fewer than four points satisfy the initial constraint after exhaustive search, the
system relaxes the spatial separation requirement to 20 pixels and repeats selection

This approach balances the competing objectives of spatial distribution (ensuring
labels span the visualization domain rather than clustering) and color diversity (ensur-
ing labels correspond to meaningful field value ranges rather than uniform regions).
The relaxed spatial constraint accommodates visualizations where simulation colors
occupy relatively small portions of the image domain due to large legends or extensive
background areas. For each selected point, the system determines its color gradi-
ent level by identifying which of the 20 reference gradient colors exhibits minimum
FEuclidean distance in RGB space. Higher gradient indices correspond to colors closer
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to red (representing higher field values), while lower indices correspond to colors
closer to blue (representing lower field values). This mapping enables subsequent label
assignment based on relative color intensities.

1.7.5 Label Assignment and Ground Truth Determination

For questions asking about maximum value locations, the system assigns labels such
that at least one of the four selected points exhibits a local maximum color gradi-
ent level among the four points. The point with the highest gradient level receives
the ground truth label, while remaining points receive alternative labels in descending
order of their gradient levels. This scheme ensures that selecting the "reddest” region
among the four labeled options yields correct answers, but critically, it does not guar-
antee that any labeled region corresponds to the global maximum across the entire
visualization domain. Conversely, for questions asking about minimum value locations,
label assignment proceeds in reverse order, with the point exhibiting the lowest gra-
dient level receiving the ground truth label. This bidirectional assignment strategy
prevents models from learning simple heuristics such as ”always choose the reddest
region” or ”always choose the bluest region” across different question types. The label
assignment approach deliberately introduces variability in absolute color intensities of
correct answers across different instances and viewing orientations. In isometric views
where maximum stress concentrations may appear edge-on or obscured, the labeled
point nearest to the numerical maximum location may not exhibit the deepest red
coloring in the visualization. Similarly, certain viewing angles may render minimum
value regions larger or smaller depending on three-dimensional geometry. This vari-
ability ensures that successful localization depends on spatial reasoning about field
distributions rather than simple color intensity comparisons among labeled regions.

1.7.6 Validation and Consistency Checks

After generating labeled visualizations and determining ground truth, the system per-
forms consistency validation by verifying that numerical target locations extracted
from simulation data correspond spatially to assigned ground truth regions. For max-
imum value questions, the system computes the Euclidean distance between the
coordinates exhibiting maximum field magnitude and the pixel coordinates of each
labeled region, confirming that the minimum distance corresponds to the region des-
ignated as ground truth. When validation fails—typically due to extreme viewing
angles rendering target locations outside the visible domain or due to numerical preci-
sion issues in coordinate transformations between three-dimensional simulation space
and two-dimensional image space—the system flags the instance for manual review or
regenerates the visualization with alternative camera parameters. Across the complete
benchmark dataset, validation failure rates remain below 2%, occurring primarily in
cases where maximum values concentrate at geometric features (corners, edges) that
project to image boundaries in certain viewing orientations.
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1.8 OCR and Image Processing Parameters

All image processing operations employ standardized parameters derived from exten-
sive testing across diverse simulation visualizations. The EasyOCR reader initializes
with English language models and processes images at their native 1920x1440 res-
olution without downsampling. Text detection employs a confidence threshold of
0.3, representing a balance between capturing legitimate text elements (which typ-
ically exhibit confidence scores above 0.5) and avoiding false positives from visual
artifacts or simulation features that superficially resemble text. Color distance cal-
culations throughout the system employ Euclidean metrics in RGB space: d =
V(R1 — R2)2 + (G1 — G2)? + (B — B2)2. While perceptually uniform color spaces
such as CIELAB might provide more accurate color similarity measures, RGB
Euclidean distance suffices for the relatively saturated rainbow gradients employed in
engineering visualizations and avoids computational overhead from color space trans-
formations. Grayscale detection identifies pixels where maximum channel differences
fall below 30 units on the 0-255 scale: max(|R—G|,|G—B|, |B—R|) < 30. This criterion
successfully distinguishes achromatic background elements, text, and annotations from
chromatic simulation data across diverse visualization styles while accommodating
subtle color casts that may arise from rendering antialiasing.

1.9 Computational Efficiency and Scalability

The automated extraction system processes complete question sets (10 questions span-
ning multiple visualization orientations and field variables) for a single simulation
case in approximately 5-15 minutes on standard workstation hardware, depending
on mesh density and complexity of required analyses. This represents a 100-fold
improvement in throughput compared to manual expert annotation while eliminat-
ing subjective variability inherent in human interpretation of complex visualizations.
Session reuse constitutes the primary efficiency optimization, avoiding repeated file
loading and solver initialization overhead. Secondary optimizations include vectorized
array operations through NumPy for statistical calculations and batched visualization
generation for questions sharing common rendering parameters. The system’s architec-
ture supports straightforward parallelization across multiple simulation cases, enabling
scalable dataset generation limited only by available computational resources rather
than human expert availability. All threshold values, tolerance parameters, and com-
putational procedures remain consistent across the entire benchmark dataset, ensuring
that ground truth quality depends on implementation fidelity rather than annotator
expertise.

2 Supplementary Note 2: Complete Evaluation
Specifications and Protocols

2.0.1 System Prompt

The following system prompt was used across all models without modification:

17



377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

415

416

417

418

419

420

421

"You are a visual question answering assistant. You MUST follow
this exact format:\n\n"
"FORMAT REQUIREMENTS:\n"
"Line 1: Copy the EXACT answer text from the provided options (
word-for-word, including all symbols)\n"
"Line 2: One brief explanation sentence (10-15 words)\n\n"
"CRITICAL RULES:\n"
"1. The first line MUST be an EXACT COPY of omne option - do not
paraphrase or summarize\n"
"2. Copy ALL words, punctuation, and mathematical symbols
exactly as shown in the option\n"
"3. Do NOT add phrases like ’The answer is’ or explanatory text
on line 1\n"
"4. Do NOT shorten or reword long options - copy them
completely\n\n"
"EXAMPLE 1 (Simple):\n"
"Question: Is the sky blue?\n"
"Options: Yes, No\n"
"CORRECT :\n"
"Yes\n"
"The clear atmosphere scatters blue wavelengths effectively.\n\
nl|
"EXAMPLE 2 (Complex option with symbols):\n"
"Question: What is the range?\n"
"Options: Less than 10x min, More than 1000x min\n"
"CORRECT :\n"
"More than 1000x min\n"
"The values span from 7 billion to 1.6 trillion.\n\n"
"INCORRECT :\n"
"More than three orders of magnitude\n"
"(This paraphrases instead of copying the exact option)\n\n"
"Remember: Line 1 = EXACT COPY of option. Line 2 = explanation

2.0.2 User Prompt Template

For each question instance, the following template format was used:

prompt += "Instructions:\n"

prompt += "1. First line: Provide ONLY your answer exactly as
it appears in the options above (e.g., ’A’, ’Yes’, ’X axis’,
etc.). Do NOT add any other text on this line.\n"

prompt += "2. Second line onwards: Provide a brief summary (1-2
sentences) explaining your reasoning.\n\n"

prompt += "Answer:"

For video inputs, no prompt modifications were applied beyond the standard tem-

plate. Both image and video modalities received identical prompting to enable direct
performance comparison.
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2.0.3 Rationale

The two-line structured output format addresses two critical evaluation requirements:
(1) enabling automated answer extraction through simple line-based parsing without
requiring complex natural language interpretation of model responses, and (2) requir-
ing models to provide reasoning justification for post-hoc error analysis. Pilot testing
revealed that models frequently paraphrased answer options or embedded answers
within explanatory text when using free-form prompts, creating ambiguity in correct-
ness determination. The strict format requirements with explicit positive and negative
examples eliminate this source of evaluation error while maintaining consistency across
diverse model architectures and deployment methods.

2.1 Model Configurations

Supplementary tables 1, 2, and 3 present complete configuration parameters for all
evaluated models. All parameters remained fixed across the entire evaluation to ensure
reproducibility.

Temperature 0.0 configurations enforce deterministic sampling for reproducibil-
ity, while non-zero temperatures (Qwen models) follow official deployment guidelines
specifying optimal operating points for visual reasoning tasks.

2.2 Video Processing Specifications
2.2.1 Source Video Characteristics
Original simulation videos were generated with domain-specific parameters:

1. Structural Analysis: 200 frames at 29 frames/second (7 seconds duration).
Maximum deformation occurs at frame 100 (temporal midpoint), after which the
simulation reverses to initial state.

2. Fluid Dynamics: 200 frames at 40 frames/second (5 seconds duration). Frames
represent pathlines showing steady-state flow solution.

All videos rendered at 1920x1440 pixel resolution with H.264 compression,
matching static image resolution to ensure consistent visual detail across media types.

2.2.2 Frame Extraction Strategy

Video frame extraction employed middle-frame-centered uniform sampling: for videos
with IV total frames requiring K extracted frames, the system first selected the middle
frame at position |N/2], then sampled (K — 1)/2 frames before and after this mid-
point at uniform intervals. This strategy ensures that structural analysis videos always
include the maximum deformation state (which occurs at the temporal midpoint) in
the frame set provided to models.

Extracted frames maintained 1920 x 1440 resolution and saved as PNG with lossless
compression before model input.
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2.3 Reproducibility Protocols
2.3.1 Dataset Access

The benchmark dataset is available through HuggingFace for both structural anal-
ysis (https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Structural) and fluid
dynamics (https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Fluid).

2.3.2 Random Seed Configuration

All stochastic components (Python random module, NumPy random number gen-
erator, PyTorch CUDA random number generator) initialized with seed value 42
before evaluation. For models employing non-deterministic sampling (Qwen-235B at
temperature 0.7), complete response logs can be requested for exact replication.

2.3.3 Software Environment

Critical dependency versions: Python 3.10, PyTorch 2.1.0 (CUDA 12.8), HuggingFace
Transformers 4.36.0, HuggingFace Datasets 2.16.0, OpenCV 4.8.1, OpenAl Python
SDK 1.6.1, Anthropic Python SDK 0.8.1, Google Generative Al 0.3.2. Hardware: 2
X NVIDIA 5090 32GB GPUs with single-GPU inference for models <8B parameters
and dual-GPU tensor parallelism for larger models.

2.3.4 Code Availability

Complete evaluation code, configuration files, and documentation are available at
https://github.com/cmudrc/OpenSeeSimE-Full under MIT License. The reposi-
tory includes shared utilities for prompt construction and response parsing, checkpoint
management infrastructure, and setup instructions.

3 Supplementary Note 3: Complete Question
Specifications and Failure Analysis

During experiments we observed that VLMs would produce a variety of noncompliant
responses. We categorize these responses into three primary types: explicit refusals
(models claim insufficient information despite adequate visual evidence), contradic-
tory reasoning (models generate conflicting analyses without resolution), and purely
descriptive responses (models describe observations without completing reasoning to
answer).

3.0.1 Explicit Refusals

In fluid dynamics evaluation, models occasionally refuse to answer despite adequate
visual information. The most extreme case occurs in InternVL-1B which displayed
systematic refusals. The dominant refusal phrase “not directly comparable to the
sound speed in water without additional context” appears in these failures, despite
images containing sufficient information (velocity values) to perform straightforward
Mach number calculations. Additional refusals citing “not specified in the image” occur
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even when velocity magnitudes are explicitly displayed. This represents a calibration
failure where the model refuses to make reasonable inferences from available visual
data. In structural analysis, refusal rates remain negligible across all models, suggesting
this failure mode is task-specific.

3.0.2 Contradictory/Conflicting Information

Models frequently generate internally inconsistent analyses, particularly in spatial rea-
soning tasks. In structural analysis, models exhibit contradictory reasoning in 44.7%
of None responses, describing spatial features or stress distributions without mapping
these observations to required answer choices. Representative examples include state-
ments like “The color red in the color bar and the ‘Max’ label indicate the highest
value, which corresponds to the maximum displacement” or “clear axis of symmetry
along the X-axis, as indicated by the symmetrical pattern,” but failing to conclude
which labeled point (A/B/C/D) corresponds to these observations. In fluid dynamics,
contradictory reasoning manifests as factually incorrect assessments that contradict
the correct answer. The most prominent pattern occurs in Llama-3.2-11B, where 38.3%
of its fluid failures contain the phrase “greater than the speed of sound in water,”
without specifying transonic or supersonic. These contradictions indicate reasoning
failures where models generate contradictory answers rather than merely failing to
format answers correctly.

3.0.3 Purely Descriptive Responses

Several models are solely in observation mode, providing detailed descriptions without
reasoning to conclusions. This pattern appears predominantly in structural analysis,
affecting 60% of None responses in smaller models. Representative responses include
“The image shows a 3D stress distribution with a clear axis of symmetry” or “color-
coded map representing total deformation, indicating a gradual change across the
structure” without identifying requested locations or classifying deformation types.
Models provide accurate visual observations but fail to complete the reasoning chain to
categorical answers. This failure mode is notably less prevalent in fluid dynamics tasks,
suggesting particular difficulty in bridging visual observations to spatial categorical
answers in structural mechanics contexts.

3.0.4 Model-Specific Patterns

InternVL-1B demonstrates the most severe and systematic failures, with 5,042 None
responses in fluid dynamics (55.9% of all fluid failures across models) driven pri-
marily by explicit refusals. This substantially exceeds other models’ failure rates and
represents a fundamental limitation in the model’s ability to perform basic inferen-
tial reasoning from visual data. In structural analysis, the same model shows 84.8%
purely descriptive failures, indicating consistent difficulty in completing reasoning
chains across both domains. Larger models (GPT-5, Claude-Sonnet-4-5) show minimal
non-extraction failures, with most None responses attributable to API infrastructure
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issues rather than cognitive limitations. Mid-size models (Gemma-12B, Llama-3.2-
11B) demonstrate intermediate failure rates with more varied patterns including
incomplete analyses and contradictory answers.

3.1 Complete Question Specifications

This section provides the comprehensive question sets employed in OpenSeeSimE. All
questions were designed to assess engineering visualization interpretation across two
primary analysis domains: structural mechanics and computational fluid dynamics.

3.1.1 Structural Analysis Questions

The structural analysis question set comprises ten questions spanning symmetry
detection, stress classification, deformation characterization, and spatial localization
tasks.

1. Is the deformation pattern symmetric across any axis?

® Question Category: Relationship Understanding
® Question Type: Binary
e Options: Yes, No

2. Are the stresses predominantly tensile in nature?
® Question Category: Reasoning

® Question Type: Binary
e Options: Yes, No

3. Is the [stress/strain/temperature/pressure] distribution pattern uniform?
® Question Category: Captioning

® Question Type: Binary
® Options: Yes, No

4. The significant deformation in the model is primarily:

® Question Category: Relationship Understanding
® Question Type: Multiple Question
® Options:

(

(b) X axis

(¢) Z axis

(d) Complex multi-directional

a) Y axis
c

5. What is the axis of symmetry?

® Question Category: Relationship Understanding
® Question Type: Multiple Question
® Options:

(a) X
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10.

(b) Y
(c) Z
(d) None/Multiple

. The dominant stress type in the critical region is:

® Question Category: Reasoning
® Question Type: Multiple Question
e Options:

(

(b) Shear dominant
(¢) Axial dominant
(d) Torsion dominant

a) Bending dominant
c

Where is the maximum [displacement/stress/strain/temperature] located in the
model?

® Question Category: Grounding
® Question Type: Spatial
® Options: A, B, C, D

Where is the minimum [displacement /stress/strain/temperature] located in the
model?

® Question Category: Grounding
® Question Type: Spatial
® Options: A, B, C, D

What is the approximate range (maximum-minimum) of values in the displayed
contour plot?

® Question Category: Captioning
® Question Type: Multiple Question

® Options:

(a) Less than one order of magnitude (max < 10x min)

(b) One to two orders of magnitude (10x min < max < 100x min)

(¢) Two to three orders of magnitude (100x min < max < 1000x min)
(d) More than three orders of magnitude (max > 1000x min)

There is primarily what type of deformation?

® Question Category: Captioning
® Question Type: Multiple Question
® Options:

(a) In-plane deformation

(b) Out-of-plane deformation

(¢) Complex multi-directional deformation
(d) No significant deformation
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3.1.2 Fluid Analysis Questions

The computational fluid dynamics question set comprises ten questions evaluating
flow field interpretation, symmetry detection, flow regime classification, and spatial
pattern recognition. These questions assess comprehension of velocity, pressure, and
temperature distributions in fluid simulations.

1. Are there dead zones (stagnant flow areas) visible in the simulation?

® Question Category: Reasoning
® Question Type: Binary
e Options: Yes, No

2. Is the flow field symmetric across any axis?

® Question Category: Captioning
® Question Type: Binary
e Options: Yes, No

3. The flow is only in one direction

® Question Category: Captioning
® Question Type: Binary
® Options: Yes, No

4. Are there regions of low velocity and low pressure?

® Question Category: Relationship Understanding
® Question Type: Binary
® Options: Yes, No

5. What is the axis of symmetry?

® Question Category: Relationship Understanding
® Question Type: Multiple Question

® Options:

(a) X

(b) Y
(c) Z
(d) None/Multiple

6. How would you characterize the flow speed relative to sound speed?

® Question Category: Reasoning
® Question Type: Multiple Question
e Options:

(a) Subsonic (Mach < 0.8)

(b) Transonic (0.8 < Mach < 1.2)
(¢) Supersonic (Mach > 1.2)

(d) N/A
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7. Where is the maximum [velocity/pressure/temperature| located in the flow field?

® Question Category: Grounding
® Question Type: Spatial
® Options: A, B, C, D

8. Where is the minimum [velocity /pressure/temperature] located in the flow field?

® Question Category: Grounding
® Question Type: Spatial
® Options: A, B, C, D

9. What is the approximate range (maximum-minimum) of values in the displayed
contour plot?

® Question Category: Captioning
® Question Type: Multiple Question
e Options:

(A) Less than one order of magnitude (max < 10X min)

(B) One to two orders of magnitude (10X min < max < 100X min)

(C) Two to three orders of magnitude (100x min < max < 1000x min)
(D) More than three orders of magnitude (max > 1000x min)

10. Flow is dominantly along which axis (If axis is not visible, select between axial and
radial as X and Y respectively)?

® Question Category: Relationship Understanding
e Question Type: Multiple Question
® Options:

(a) X
(b) Y
(c) Z
(d

) Complex Multidirectional

The complete OpenSeeSimE dataset including all simulation instances, question-
answer pairs, visualizations, and metadata is publicly available for both struc-
tural analysis (https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Structural)
and fluid analysis (https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Fluid).
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