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Supplementary Figure 1 Benchmark accuracy by (a) question category for structural analysis and
fluid dynamics analysis showing performance across captioning, reasoning, grounding, and relation-
ship understanding tasks. (b) Benchmark accuracy by question type for structural analysis and fluid
dynamics analysis comparing binary classification, multiple-choice reasoning, and spatial grounding
performance. (c) Benchmark accuracy by simulation class for structural analysis across Wall Bracket,
Beams, Hip Implant, Pressure Vessel, and Dog Bone configurations, and fluid dynamics analysis
across Bent Pipe, Converging Nozzle, Mixing Pipe, Heat Sink, and Heat Exchanger configurations.
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Supplementary Figure 2 Failure rates for structural analysis and fluid dynamics analysis showing
model reliability in providing valid responses across all question types

Supplementary Table 1 Flagship model configurations (evaluated on 10% subset for both
images and videos). Temperature 0.0 indicates deterministic sampling; higher temperatures
follow official model deployment recommendations.

Model Model Identifier Max Tokens Temperature

GPT-5 gpt-5-2025-08-07 4096 –a

Qwen3-VL-235B Qwen3-VL-235B-A22B-Instruct 4096 0.7b

InternVL-3.5-241B internvl3.5-241b-a28b 4096 0.0
Gemini-2.5-Flash gemini-2.5-flash 4096 0.0

a GPT-5 uses reasoning effort: minimal, text verbosity: medium
b Qwen3-VL-235B uses top-p: 0.8, rate limit: 2s between requests

Supplementary Table 2 Video-specific model configurations (evaluated on video subset only, 32
frames uniformly sampled).

Model Model Identifier Frames Max Tokens Temp

GPT-5 gpt-5-2025-08-07 32 4096 –
Qwen3-VL-8B Qwen/Qwen3-VL-8B-Instruct 32 4096 0.0
InternVL-3.5-8B OpenGVLab/InternVL3 5-8B-Instruct 32 4096 0.0
Gemma-3-12B google/gemma-3-12b-it 32 4096 0.0
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Supplementary Table 3 Image-only model configurations (evaluated on complete image
dataset). All local models use bfloat16 precision with device map="auto" and do sample=False

except where noted.

Model Model Identifier Max Tokens Temp

Qwen3-VL-2B Qwen/Qwen3-VL-2B-Instruct 4096 0.7a

Qwen3-VL-8B Qwen/Qwen3-VL-8B-Instruct 4096 0.0
InternVL-3.5-1B OpenGVLab/InternVL3 5-1B-Instruct 4096 0.0
InternVL-3.5-8B OpenGVLab/InternVL3 5-8B-Instruct 4096 0.0
Gemma-3-4B google/gemma-3-4b-it 4096 0.0
Gemma-3-12B google/gemma-3-12b-it 4096 0.0
Gemma-3-27B google/gemma-3-27b-it 4096 0.0
LLaMA-3.2-11B meta-llama/Llama-3.2-11B-Vision-Instruct 4096 0.0

a Qwen3-VL-2B uses do sample=True per official guidelines
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Supplementary Table 4 Statistical Significance Analysis for Fluid Dynamics Domain.
One-tailed binomial test results (alternative: greater) comparing model performance against
chance-level accuracy (50% for binary classification, 25% for multiple-choice reasoning and
spatial grounding tasks). The test evaluates whether model accuracy significantly exceeds
random guessing. The table reports observed accuracies, uncorrected exact p-values,
Benjamini-Hochberg (BH) corrected p-values, significance markers, and sample sizes (correct
responses/total questions) for all vision-language models across three task categories.
Benjamini-Hochberg correction was applied to control the False Discovery Rate across 30
multiple comparisons (10 models × 3 question types). Significance levels: *** p < 0.001; **
p < 0.01; * p < 0.05; ns = not significant. All tests employed α = 0.05 with FDR control.

Model Task Acc (%) p-value p-value (BH) Sig Correct Total

GPT-5
Binary 55.1 2.11×10−47 4.88×10−47 *** 10817 19616

Multiple Q 32.5 6.30×10−123 2.10×10−122 *** 6364 19578
Spatial 24.5 0.868 1.000 ns 2438 9943

Claude-4.5
Binary 58.0 8.32×10−112 2.50×10−111 *** 11377 19617

Multiple Q 43.3 < 10−300 < 10−300 *** 8486 19581
Spatial 23.2 1.000 1.000 ns 2308 9943

Intern-1B
Binary 56.0 1.80×10−64 4.91×10−64 *** 10992 19617

Multiple Q 2.2 1.000 1.000 ns 429 19581

Spatial 29.8 4.68×10−28 9.35×10−28 *** 2967 9943

Intern-8B
Binary 65.5 < 10−300 < 10−300 *** 12858 19617

Multiple Q 20.2 1.000 1.000 ns 3957 19581
Spatial 22.0 1.000 1.000 ns 2192 9943

Qwen-2B
Binary 59.9 8.59×10−170 3.68×10−169 *** 11746 19617

Multiple Q 49.7 < 10−300 < 10−300 *** 9725 19581

Spatial 27.7 3.74×10−10 6.61×10−10 *** 2755 9943

Qwen-8B
Binary 46.7 1.000 1.000 ns 9161 19617

Multiple Q 38.3 < 10−300 < 10−300 *** 7497 19581
Spatial 21.7 1.000 1.000 ns 2160 9943

Llama-3.2-11B
Binary 62.5 1.67×10−273 1.00×10−272 *** 12269 19617

Multiple Q 16.9 1.000 1.000 ns 3305 19581

Spatial 29.8 4.68×10−28 9.35×10−28 *** 2967 9943

Gemma-4B
Binary 59.6 2.33×10−160 8.73×10−160 *** 11691 19617

Multiple Q 24.6 0.924 1.000 ns 4809 19581
Spatial 24.9 0.557 0.879 ns 2480 9943

Gemma-12B
Binary 51.8 1.99×10−7 3.32×10−7 *** 10164 19617

Multiple Q 27.0 6.83×10−11 1.28×10−10 *** 5288 19581
Spatial 24.4 0.926 1.000 ns 2424 9943

Gemma-27B
Binary 60.8 2.47×10−204 1.24×10−203 *** 11935 19617

Multiple Q 29.9 4.69×10−55 1.17×10−54 *** 5859 19581
Spatial 22.9 1.000 1.000 ns 2281 9943
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Supplementary Table 5 Statistical Significance Analysis for Structural Analysis Domain.
One-tailed binomial test results (alternative: greater) comparing model performance against
chance-level accuracy (50% for binary classification, 25% for multiple-choice reasoning and
spatial grounding tasks). The test evaluates whether model accuracy significantly exceeds
random guessing. The table reports observed accuracies, uncorrected exact p-values,
Benjamini-Hochberg (BH) corrected p-values, significance markers, and sample sizes (correct
responses/total questions) for all vision-language models across three task categories.
Benjamini-Hochberg correction was applied to control the False Discovery Rate across 30
multiple comparisons (10 models × 3 question types). Significance levels: *** p < 0.001; **
p < 0.01; * p < 0.05; ns = not significant. All tests employed α = 0.05 with FDR control.

Model Task Acc (%) p-value p-value (BH) Sig Correct Total

GPT-5
Binary 61.1 1.35×10−168 3.68×10−168 *** 9458 15488

Multiple Q 32.7 2.05×10−170 6.16×10−170 *** 8446 25811

Spatial 46.5 < 10−300 < 10−300 *** 4756 10232

Claude-4.5
Binary 49.9 0.583 0.672 ns 7732 15489

Multiple Q 27.7 2.32×10−23 3.49×10−23 *** 7149 25811

Spatial 41.7 1.37×10−297 5.12×10−297 *** 4268 10240

Intern-1B
Binary 84.7 < 10−300 < 10−300 *** 13116 15489

Multiple Q 19.5 1.000 1.000 ns 5024 25811

Spatial 30.5 7.79×10−37 1.30×10−36 *** 3126 10240

Intern-8B
Binary 52.6 3.76×10−11 5.13×10−11 *** 8150 15489

Multiple Q 32.3 1.19×10−152 2.98×10−152 *** 8335 25811

Spatial 39.4 2.00×10−225 6.67×10−225 *** 4036 10240

Qwen-2B
Binary 85.3 < 10−300 < 10−300 *** 13215 15489

Multiple Q 11.8 1.000 1.000 ns 3051 25811

Spatial 35.1 3.93×10−114 7.86×10−114 *** 3592 10240

Qwen-8B
Binary 54.8 8.61×10−33 1.36×10−32 *** 8483 15489

Multiple Q 42.8 < 10−300 < 10−300 *** 11056 25811

Spatial 44.6 < 10−300 < 10−300 *** 4568 10240

Llama-3.2-11B
Binary 83.9 < 10−300 < 10−300 *** 12997 15489

Multiple Q 16.0 1.000 1.000 ns 4134 25811

Spatial 27.8 6.86×10−11 8.95×10−11 *** 2845 10240

Gemma-4B
Binary 66.4 < 10−300 < 10−300 *** 10284 15489

Multiple Q 27.6 3.71×10−22 5.30×10−22 *** 7129 25811

Spatial 31.9 1.17×10−55 2.19×10−55 *** 3266 10240

Gemma-12B
Binary 59.8 6.94×10−132 1.60×10−131 *** 9259 15489

Multiple Q 26.6 2.90×10−9 3.62×10−9 *** 6861 25811

Spatial 35.3 1.17×10−119 2.51×10−119 *** 3618 10240

Gemma-27B
Binary 50.2 0.321 0.385 ns 7774 15489

Multiple Q 23.8 1.000 1.000 ns 6150 25811

Spatial 30.8 1.16×10−39 2.05×10−39 *** 3149 10240
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Supplementary Table 6 Practical Significance Analysis for Fluid Dynamics Domain.
Cohen’s h effect sizes measuring the magnitude of performance differences from
chance-level baselines (50% for binary classification, 25% for multiple-choice reasoning
and spatial grounding tasks). Effect size categories follow Cohen’s conventional
benchmarks: Negligible (|h| < 0.20), Small (0.20 ≤ |h| < 0.50), Medium
(0.50 ≤ |h| < 0.80), Large (|h| ≥ 0.80). The table reports observed accuracies, percentage
point differences from chance (Diff), Cohen’s h values, effect size categories, and 95%
confidence intervals for all vision-language models across three task categories.

Model Task Acc Diff Cohen’s h Effect 95% CI

GPT-5
Binary 55.1% +5.1pp 0.103 Negligible [54.4%, 55.8%]

Multiple Q 32.5% +7.5pp 0.166 Negligible [31.9%, 33.2%]
Spatial 24.5% −0.5pp −0.011 Negligible [23.7%, 25.4%]

Claude-4.5
Binary 58.0% +8.0pp 0.161 Negligible [57.3%, 58.7%]

Multiple Q 43.3% +18.3pp 0.390 Small [42.6%, 44.0%]
Spatial 23.2% −1.8pp −0.042 Negligible [22.4%, 24.1%]

Intern-1B
Binary 56.0% +6.0pp 0.121 Negligible [55.3%, 56.7%]

Multiple Q 2.2% −22.8pp −0.750 Medium [2.0%, 2.4%]
Spatial 29.8% +4.8pp 0.109 Negligible [28.9%, 30.7%]

Intern-8B
Binary 65.5% +15.5pp 0.316 Small [64.9%, 66.2%]

Multiple Q 20.2% −4.8pp −0.115 Negligible [19.7%, 20.8%]
Spatial 22.0% −3.0pp −0.070 Negligible [21.2%, 22.9%]

Qwen-2B
Binary 59.9% +9.9pp 0.199 Negligible [59.2%, 60.6%]

Multiple Q 49.7% +24.7pp 0.517 Medium [49.0%, 50.4%]
Spatial 27.7% +2.7pp 0.061 Negligible [26.8%, 28.6%]

Qwen-8B
Binary 46.7% −3.3pp −0.066 Negligible [46.0%, 47.4%]

Multiple Q 38.3% +13.3pp 0.287 Small [37.6%, 39.0%]
Spatial 21.7% −3.3pp −0.077 Negligible [20.9%, 22.5%]

Llama-3.2-11B
Binary 62.5% +12.5pp 0.254 Small [61.9%, 63.2%]

Multiple Q 16.9% −8.1pp −0.200 Small [16.4%, 17.4%]
Spatial 29.8% +4.8pp 0.109 Negligible [28.9%, 30.7%]

Gemma-4B
Binary 59.6% +9.6pp 0.193 Negligible [58.9%, 60.3%]

Multiple Q 24.6% −0.4pp −0.010 Negligible [24.0%, 25.2%]
Spatial 24.9% −0.1pp −0.001 Negligible [24.1%, 25.8%]

Gemma-12B
Binary 51.8% +1.8pp 0.036 Negligible [51.1%, 52.5%]

Multiple Q 27.0% +2.0pp 0.046 Negligible [26.4%, 27.6%]
Spatial 24.4% −0.6pp −0.014 Negligible [23.5%, 25.2%]

Gemma-27B
Binary 60.8% +10.8pp 0.219 Small [60.2%, 61.5%]

Multiple Q 29.9% +4.9pp 0.110 Negligible [29.3%, 30.6%]
Spatial 22.9% −2.1pp −0.048 Negligible [22.1%, 23.8%]
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Supplementary Table 7 Practical Significance Analysis for Structural Analysis
Domain. Cohen’s h effect sizes measuring the magnitude of performance differences from
chance-level baselines (50% for binary classification, 25% for multiple-choice reasoning
and spatial grounding tasks). Effect size categories follow Cohen’s conventional
benchmarks: Negligible (|h| < 0.20), Small (0.20 ≤ |h| < 0.50), Medium
(0.50 ≤ |h| < 0.80), Large (|h| ≥ 0.80). The table reports observed accuracies, percentage
point differences from chance (Diff), Cohen’s h values, effect size categories, and 95%
confidence intervals for all vision-language models across three task categories.

Model Task Acc Diff Cohen’s h Effect 95% CI

GPT-5
Binary 61.1% +11.1pp 0.223 Small [60.3%, 61.8%]

Multiple Q 32.7% +7.7pp 0.171 Negligible [32.2%, 33.3%]
Spatial 46.5% +21.5pp 0.453 Small [45.5%, 47.4%]

Claude-4.5
Binary 49.9% −0.1pp −0.002 Negligible [49.1%, 50.7%]

Multiple Q 27.7% +2.7pp 0.061 Negligible [27.2%, 28.2%]
Spatial 41.7% +16.7pp 0.356 Small [40.7%, 42.6%]

Intern-1B
Binary 84.7% +34.7pp 0.766 Medium [84.1%, 85.2%]

Multiple Q 19.5% −5.5pp −0.133 Negligible [19.0%, 20.0%]
Spatial 30.5% +5.5pp 0.124 Negligible [29.6%, 31.4%]

Intern-8B
Binary 52.6% +2.6pp 0.052 Negligible [51.8%, 53.4%]

Multiple Q 32.3% +7.3pp 0.162 Negligible [31.7%, 32.9%]
Spatial 39.4% +14.4pp 0.310 Small [38.5%, 40.4%]

Qwen-2B
Binary 85.3% +35.3pp 0.784 Medium [84.8%, 85.9%]

Multiple Q 11.8% −13.2pp −0.345 Small [11.4%, 12.2%]
Spatial 35.1% +10.1pp 0.221 Small [34.2%, 36.0%]

Qwen-8B
Binary 54.8% +4.8pp 0.096 Negligible [54.0%, 55.6%]

Multiple Q 42.8% +17.8pp 0.380 Small [42.2%, 43.4%]
Spatial 44.6% +19.6pp 0.416 Small [43.6%, 45.6%]

Llama-3.2-11B
Binary 83.9% +33.9pp 0.745 Medium [83.3%, 84.5%]

Multiple Q 16.0% −9.0pp −0.224 Small [15.6%, 16.5%]
Spatial 27.8% +2.8pp 0.063 Negligible [26.9%, 28.7%]

Gemma-4B
Binary 66.4% +16.4pp 0.334 Small [65.6%, 67.1%]

Multiple Q 27.6% +2.6pp 0.060 Negligible [27.1%, 28.2%]
Spatial 31.9% +6.9pp 0.153 Negligible [31.0%, 32.8%]

Gemma-12B
Binary 59.8% +9.8pp 0.197 Negligible [59.0%, 60.5%]

Multiple Q 26.6% +1.6pp 0.036 Negligible [26.0%, 27.1%]
Spatial 35.3% +10.3pp 0.226 Small [34.4%, 36.3%]

Gemma-27B
Binary 50.2% +0.2pp 0.004 Negligible [49.4%, 51.0%]

Multiple Q 23.8% −1.2pp −0.027 Negligible [23.3%, 24.4%]
Spatial 30.8% +5.8pp 0.128 Negligible [29.9%, 31.7%]
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1 Supplementary Note 1: Automated Ground Truth11

Extraction Protocols12

1.1 Selecting Simulation Examples13

Engineering simulation benchmarks traditionally rely on limited, manually curated14

datasets that may not capture the full diversity of real-world engineering applications.15

To address this limitation, we developed a systematic approach for generating a com-16

prehensive dataset of approximately 10,000 simulation examples through parametric17

variation of established simulation models. With 10 questions per simulation instance18

per domain (20 total per instance), this generates over 200,000 total question-answer19

pairs across both domains.20

Our simulation examples were sourced from publicly available Ansys Tutorial files,21

which provide validated baseline configurations with proper boundary conditions and22

convergence settings. From the extensive tutorial library, we selected base models23

using a structured selection framework based on three primary criteria designed to24

maximize dataset diversity and benchmark coverage.25

1. Parametric Variability: Base models were selected based on their capacity for26

meaningful geometric and boundary condition variations. Each selected simulation27

contained multiple adjustable parameters that could generate distinct simulation28

outcomes while maintaining physical validity. This approach captured the range of29

configurations rather than relying on static, single-configuration examples.30

2. Simulation Type Coverage: Models were chosen to represent the full spectrum of31

simulation categories required by our visual question-answering benchmark. This32

systematic selection ensured comprehensive coverage of essential engineering phe-33

nomena including turbulence modeling and structural failure modes across diverse34

geometric configurations and loading conditions.35

3. Representative Engineering Applications: Selected simulations span diverse engi-36

neering domains to ensure our benchmark reflects real-world analysis scenarios that37

practicing engineers encounter across different industries and applications.38

For each base simulation, we implemented parametric design automation using39

Ansys Python interfaces (PyMechanical, PyFluent, and PyGeometry) and list gener-40

ation software (MATLAB) to systematically vary five critical parameters encompassing41

geometric dimensions, boundary conditions, and material properties. Parameter ranges42

were established by expert designers to ensure all generated variations remained within43

physically meaningful bounds while maximizing solution diversity. Each parameter44

had 4 values chosen, linearly spaced between 2 ”extreme” cases, generating small,45

small-medium, large-medium, and large values that created substantial variations in46

each output instance. These 4 values across 5 parameters generated 1,024 unique sim-47

ulation instances per base model, with parameter settings generated using systematic48

looping to create each unique set of conditions.49

In the mechanical models, the geometry parameters led to different stress con-50

centrations and loading conditions. The boundary condition parameters (changes in51

axial or bending load forces) and material property parameters (changes in physical52

characteristics) produced distinct stress, strain, and displacement effects. In the fluid53
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models, the geometry parameters created unique turbulence regions and flow regimes.54

The boundary condition parameters (fluid velocity) and material property parameters55

(viscosity) affected the velocity, pressure, and turbulence results.56

1.1.1 Structural Analysis Models:57

The Dog Bone specimen represents standard tensile testing configurations with stress58

concentrations at the reduced cross-section, requiring interpretation of von Mises59

stress distributions and failure prediction across varying geometries and loading con-60

ditions. The Hip Implant model simulates complex biomedical loading with combined61

axial and bending stresses, presenting challenging stress visualization patterns around62

irregular geometries. The Pressure Vessel involves internal pressure loading creat-63

ing circumferential and axial stress fields with material-dependent responses. The64

Beams utilize mechanical loading, requiring analysis of stress patterns and material65

property variations for different beam profiles. The Wall Bracket features complex66

three-dimensional stress distributions under bending loads with stress concentrations67

at geometric transitions.68

1.1.2 Fluid Dynamics Models:69

The Bent Pipe generates complex flow patterns and pressure losses with varying tur-70

bulence intensities dependent on bend geometry and flow conditions. The Converging71

Nozzle creates acceleration zones with pressure gradients and potential flow separa-72

tion requiring analysis of velocity vector fields and pressure contours. The Mixing73

Pipe involves multi-stream interactions with complex velocity and pressure patterns74

at the junction. The Heat Sink and Heat Exchanger models generate intricate flow75

patterns around fin geometries with heat transfer effects, creating complex visualiza-76

tion challenges involving velocity vectors and pressure fields that vary with geometric77

and boundary condition parameters.78

1.2 Automated Ground Truth Extraction Infrastructure79

The automated ground truth extraction system operates through direct programmatic80

interfaces to simulation software, bypassing visual interpretation entirely. For fluid81

dynamics simulations, we employ PyFluent’s solver session interface to export field82

data through Ansys Fluent’s Text User Interface (TUI) commands. All fluid simu-83

lations utilize three-dimensional representations with Cartesian coordinate systems,84

extracting velocity components (x-velocity, y-velocity, z-velocity), pressure fields, tem-85

perature distributions, and Mach numbers where applicable. Data exports generate86

ASCII-formatted files containing nodal coordinates and corresponding field values,87

with file sizes typically ranging from hundreds of kilobytes to several megabytes88

depending on mesh density.89

For structural analysis, PyMechanical provides access to finite element results90

through Ansys Mechanical’s scripting interface. The system extracts von Mises stress91

tensors, displacement vectors, strain components, and temperature fields at nodal92

locations. Each extraction preserves spatial coordinate information (X, Y, Z positions)93

alongside field values, enabling subsequent geometric analysis for symmetry detection94
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and spatial localization tasks. Session management follows a single-instance paradigm95

where each simulation case file loads once and serves all question extraction proce-96

dures sequentially. This approach minimizes computational overhead from repeated file97

loading operations while maintaining consistency in visualization parameters across98

questions sharing common data requirements. Fluent sessions initialize with double99

precision arithmetic and utilize multiple processor cores for parallel data extraction100

operations.101

1.3 Statistical Analysis Procedures102

Questions requiring identification of extreme values or aggregate statistics operate103

directly on extracted field arrays using standard numerical operations. The system104

loads relevant data files into pandas DataFrame structures, validates data quality105

through finite value checks (excluding NaN and infinite values), and applies appro-106

priate statistical functions. For maximum and minimum value queries, the system107

employs NumPy’s optimized array operations to identify extrema with computational108

complexity linear in the number of data points. Relative magnitude assessments, such109

as determining whether values span one, two, or three orders of magnitude, compute110

the ratio between maximum and minimum field values. The system applies the follow-111

ing classification scheme: ratios below 10 indicate less than one order of magnitude,112

ratios between 10 and 100 represent one to two orders, ratios between 100 and 1000113

span two to three orders, and ratios exceeding 1000 encompass more than three orders114

of magnitude. For fields containing negative values, the system employs alternative115

ratio calculations based on absolute value ranges to ensure meaningful magnitude116

comparisons.117

1.4 Distribution Analysis Implementation118

1.4.1 Structural Uniformity Assessment119

Stress distribution uniformity analysis employs coefficient of variation (CV) as the120

primary metric, defined as the ratio of standard deviation to mean value. The system121

extracts von Mises stress values across all nodes, computes statistical measures on the122

resulting distribution, and applies a uniformity threshold of CV ≤ 0.2 (20% coefficient123

of variation). The system requires a minimum of three data points for meaningful124

statistical analysis, rejecting datasets below this threshold. Distribution uniformity125

extends beyond simple variance measures to incorporate spatial considerations. The126

system validates that extracted stress values span the entire geometric domain rather127

than representing localized clusters, ensuring that uniformity assessments reflect global128

distribution characteristics rather than sampling artifacts.129

1.4.2 Fluid Stagnation Zone Detection130

Dead zone identification in fluid dynamics requires determining regions where flow131

velocity falls below thresholds indicating effective stagnation. The system applies a132

velocity magnitude threshold of 1 × 10−6 (one micron per second), representing a133

value several orders of magnitude below typical flow velocities that effectively indicates134
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numerical zero in the context of engineering simulations. For each node in the extracted135

velocity field, the system classifies velocities below this threshold as stagnant, comput-136

ing the fraction of total nodes meeting this criterion. Binary classification as yes/no137

for dead zone presence depends on whether any significant fraction of the domain138

exhibits stagnant flow characteristics. The system employs a conservative approach139

where even small percentages of stagnant nodes (above negligible numerical noise lev-140

els) trigger affirmative classification, acknowledging that engineering significance of141

dead zones relates more to their presence than their spatial extent.142

1.5 Symmetry Analysis Protocols143

Symmetry detection requires assessing whether field distributions exhibit mirror144

invariance about specified coordinate planes. The system implements a comprehensive145

symmetry analysis procedure applicable to both structural deformation patterns and146

fluid flow fields. For each candidate symmetry plane (X-plane, Y-plane, or Z-plane),147

the system first determines the plane’s spatial location by computing the midpoint148

of the geometric domain along the relevant axis. It then generates mirrored coor-149

dinate sets by reflecting each node’s position across this plane. Using scipy’s cdist150

function, the system computes Euclidean distances between original and mirrored151

coordinate sets, identifying symmetric node pairs where spatial separation falls below152

a coordinate matching tolerance of 1 × 10−3 (one millimeter). For each identified153

symmetric pair, the system compares field values through relative difference calcula-154

tions: |val1 − val2|/max(|val1|, |val2|, 10−10), where the denominator’s small constant155

prevents division by zero for near-zero values. The system applies a base symmetry156

tolerance of 5% for value comparisons, though certain structural analysis questions157

employ a relaxed 10% tolerance to accommodate numerical solution variability in finite158

element results. Classification as symmetric requires that at least 90% of identified159

node pairs exhibit value differences within the specified tolerance for fluid dynamics160

questions, while structural analysis employs a 60% threshold reflecting the greater161

solution variability inherent in solid mechanics computations. The system evaluates162

symmetry about all three coordinate planes independently, classifying overall symme-163

try based on whether any single plane meets the criteria (questions asking ”Is the164

pattern symmetric?”) or identifying which specific plane demonstrates the strongest165

symmetry (questions asking ”What is the axis of symmetry?”).166

1.6 Physics-Based Classification Methods167

1.6.1 Flow Regime Characterization168

Mach number analysis categorizes flow speed relative to the local speed of sound,169

employing standard aerospace engineering classification criteria. The system first170

attempts to extract Mach number fields directly from simulation results when avail-171

able. For simulations lacking explicit Mach data, the system computes Mach numbers172

from velocity magnitude fields by dividing by the appropriate speed of sound: 343.0173

m/s for air at standard conditions (20°C, 1 atmosphere) or 1482.0 m/s for water at174

20°C. Flow regime classification operates on maximum Mach numbers rather than175

domain-averaged values, recognizing that localized supersonic regions may exist within176
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predominantly subsonic flows. The system applies the following thresholds: maximum177

Mach below 0.8 classifies as subsonic, maximum Mach between 0.8 and 1.2 indicates178

transonic flow, and maximum Mach exceeding 1.2 designates supersonic conditions.179

1.6.2 Flow Direction Analysis180

Dominant flow direction determination analyzes mean absolute velocity magnitudes181

across spatial dimensions. For three-dimensional simulations, the system extracts182

velocity component fields (x-velocity, y-velocity, z-velocity), computes the mean of183

absolute values for each component independently, and identifies which component184

exhibits the largest mean magnitude. This approach correctly handles flows with signif-185

icant reverse components, where signed mean values would artificially reduce apparent186

flow strength. Classification as ”complex multidirectional” rather than dominant along187

a single axis employs a tolerance-based criterion. The system computes the mean of all188

component means and checks whether each individual component mean falls within189

5% of this global mean. When all components satisfy this proximity criterion, the190

flow exhibits insufficient directional bias for classification as dominant along any sin-191

gle axis. Otherwise, the component with maximum mean absolute velocity determines192

the dominant direction.193

1.6.3 Stress Type Classification194

Structural analysis questions requiring classification of dominant stress types (bend-195

ing, shear, axial, or torsion) extract relevant stress tensor components and compare196

their magnitudes according to solid mechanics principles. The system analyzes stress197

distributions in critical regions, typically identified as zones exhibiting maximum von198

Mises stress or maximum deformation magnitude. Classification criteria derive from199

examining ratios between normal stress components, shear stress components, and200

their spatial gradients, though specific implementation details vary by geometry and201

loading conditions.202

1.6.4 Deformation Direction Analysis203

Significant deformation direction identification follows analogous procedures to204

flow direction analysis, extracting displacement components (X-displacement, Y-205

displacement, Z-displacement) and computing mean absolute magnitudes. The system206

identifies whether deformation primarily occurs along a single coordinate axis or207

exhibits complex multi-directional character through the same tolerance-based com-208

parison used for fluid flow analysis. An additional classification distinguishes between209

in-plane and out-of-plane deformation patterns for planar structural geometries, com-210

puted through relative magnitude comparisons between displacement components211

parallel and perpendicular to the structure’s primary plane (that is user defined).212

1.6.5 Tensile Stress Predominance213

Determining whether stresses are predominantly tensile examines the signs of214

extracted normal stress values. The system counts nodes exhibiting positive (tensile)215
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versus negative (compressive) stress values, classifying the pattern as predominantly216

tensile when positive values outnumber negative values. This simple criterion suffices217

for binary classification while avoiding arbitrary threshold definitions for mixed stress218

states.219

1.7 Spatial Localization and Region Labeling220

Region-based grounding questions require generating visualizations with labeled loca-221

tions and determining which region contains specified target features. This process222

involves three distinct phases: target identification from numerical data, region gen-223

eration on rendered visualizations, and ground truth determination through spatial224

proximity calculations.225

1.7.1 Visualization Generation226

The system generates standardized visualizations through direct control of simula-227

tion software rendering parameters. For fluid dynamics, PyFluent’s graphics object228

interface sets contour and vector plot properties, camera positions, and color mapping229

schemes. Structural analysis employs PyMechanical’s result visualization controls to230

configure stress or displacement contour plots with consistent color schemes. All visu-231

alizations render at 1920×1440 pixel resolution to ensure sufficient detail for spatial232

localization tasks while maintaining consistent aspect ratios across instances. View ori-233

entations follow standardized definitions: front, back, left, right, top, and bottom views234

align camera positions with principal axes, while isometric views employ 45-degree235

elevation and azimuth angles. The system saves rendered images as PNG files with236

lossless compression, preserving color fidelity essential for subsequent region labeling237

operations.238

1.7.2 Legend and Text Detection239

Before placing region labels, the system must identify areas to avoid to prevent obscur-240

ing critical information or overlapping with existing annotations. We employ EasyOCR241

with English language models to detect text regions within generated visualizations,242

applying a confidence threshold of 0.3 to filter spurious detections. Detected text243

regions receive padding of 30 pixels on all sides to ensure labels maintain readable sepa-244

ration. Legend detection specifically identifies color bars and their associated numerical245

labels through pattern matching on scientific notation text. The system searches for246

text strings matching the regular expression pattern -?\d+\.\d*e[+-]?\d+, repre-247

senting floating-point numbers in exponential format commonly used for engineering248

field values. When multiple scientific notation strings appear vertically or horizontally249

aligned within 30 pixels, the system groups them as belonging to the same legend bar.250

Valid legend groups require at least two numerical labels to avoid false positives from251

isolated exponential notation. Once identified, the system estimates the spatial extent252

of each legend by computing bounding boxes around detected text groups, extending253

100 pixels to the left (the typical colorbar width) and 40 pixels above and below the254

text cluster. An additional safety margin applies a 20×20 pixel dilation kernel to cre-255

ate buffer zones around all detected legend areas, ensuring robust separation between256
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labels and legends even when initial detection boundaries prove imprecise. Additional257

avoidance regions include image borders (30 pixels from edges), very light areas (RGB258

values exceeding 240 on 0-255 scale, indicating white background), and very dark areas259

(RGB values below 20, indicating black background or unlabeled regions). For struc-260

tural visualizations, the system also detects and avoids axis indicators—small colored261

arrows or text typically rendered in pure red, green, or blue that denote coordinate262

system orientation. These indicators occupy areas between 50 and 2000 pixels, with263

40-pixel padding applied around each detected indicator.264

1.7.3 Color Gradient Analysis265

Engineering visualization standards employ rainbow color gradients mapping from red266

(maximum values) through yellow and green to blue (minimum values). The system267

generates a reference gradient containing 20 discrete color steps spanning this spectrum268

through RGB interpolation. For fluid dynamics, the gradient represents flow field269

magnitudes; for structural analysis, it represents stress or displacement magnitudes.270

To classify any pixel in the visualization as belonging to the simulation color scheme271

versus background or annotation elements, the system computes Euclidean distances272

in RGB space between the pixel’s color and all reference gradient colors. Colors falling273

within a tolerance of 80 Euclidean distance units (on a 0-255 RGB scale) from any274

reference gradient color classify as simulation colors; colors exceeding this threshold275

classify as background or annotation elements. This tolerance accommodates rendering276

antialiasing and color interpolation artifacts while maintaining sufficient specificity to277

distinguish simulation data from interface elements.278

1.7.4 Region Point Selection279

The system selects four points (A, B, C, D) for region labeling through a constrained280

random sampling procedure that ensures spatial distribution, simulation color associ-281

ation, and sufficient mutual separation. Starting from the set of all pixels classified as282

simulation colors and not falling within legend, text, or border avoidance masks, the283

system randomly shuffles candidate positions and iteratively selects points meeting284

the following criteria:285

• The pixel color must fall within the simulation color tolerance (80-unit Euclidean286

distance from the gradient)287

• Spatial separation from all previously selected points must exceed 50 pixels initially288

• If fewer than four points satisfy the initial constraint after exhaustive search, the289

system relaxes the spatial separation requirement to 20 pixels and repeats selection290

This approach balances the competing objectives of spatial distribution (ensuring291

labels span the visualization domain rather than clustering) and color diversity (ensur-292

ing labels correspond to meaningful field value ranges rather than uniform regions).293

The relaxed spatial constraint accommodates visualizations where simulation colors294

occupy relatively small portions of the image domain due to large legends or extensive295

background areas. For each selected point, the system determines its color gradi-296

ent level by identifying which of the 20 reference gradient colors exhibits minimum297

Euclidean distance in RGB space. Higher gradient indices correspond to colors closer298
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to red (representing higher field values), while lower indices correspond to colors299

closer to blue (representing lower field values). This mapping enables subsequent label300

assignment based on relative color intensities.301

1.7.5 Label Assignment and Ground Truth Determination302

For questions asking about maximum value locations, the system assigns labels such303

that at least one of the four selected points exhibits a local maximum color gradi-304

ent level among the four points. The point with the highest gradient level receives305

the ground truth label, while remaining points receive alternative labels in descending306

order of their gradient levels. This scheme ensures that selecting the ”reddest” region307

among the four labeled options yields correct answers, but critically, it does not guar-308

antee that any labeled region corresponds to the global maximum across the entire309

visualization domain. Conversely, for questions asking about minimum value locations,310

label assignment proceeds in reverse order, with the point exhibiting the lowest gra-311

dient level receiving the ground truth label. This bidirectional assignment strategy312

prevents models from learning simple heuristics such as ”always choose the reddest313

region” or ”always choose the bluest region” across different question types. The label314

assignment approach deliberately introduces variability in absolute color intensities of315

correct answers across different instances and viewing orientations. In isometric views316

where maximum stress concentrations may appear edge-on or obscured, the labeled317

point nearest to the numerical maximum location may not exhibit the deepest red318

coloring in the visualization. Similarly, certain viewing angles may render minimum319

value regions larger or smaller depending on three-dimensional geometry. This vari-320

ability ensures that successful localization depends on spatial reasoning about field321

distributions rather than simple color intensity comparisons among labeled regions.322

1.7.6 Validation and Consistency Checks323

After generating labeled visualizations and determining ground truth, the system per-324

forms consistency validation by verifying that numerical target locations extracted325

from simulation data correspond spatially to assigned ground truth regions. For max-326

imum value questions, the system computes the Euclidean distance between the327

coordinates exhibiting maximum field magnitude and the pixel coordinates of each328

labeled region, confirming that the minimum distance corresponds to the region des-329

ignated as ground truth. When validation fails—typically due to extreme viewing330

angles rendering target locations outside the visible domain or due to numerical preci-331

sion issues in coordinate transformations between three-dimensional simulation space332

and two-dimensional image space—the system flags the instance for manual review or333

regenerates the visualization with alternative camera parameters. Across the complete334

benchmark dataset, validation failure rates remain below 2%, occurring primarily in335

cases where maximum values concentrate at geometric features (corners, edges) that336

project to image boundaries in certain viewing orientations.337

16



1.8 OCR and Image Processing Parameters338

All image processing operations employ standardized parameters derived from exten-339

sive testing across diverse simulation visualizations. The EasyOCR reader initializes340

with English language models and processes images at their native 1920×1440 res-341

olution without downsampling. Text detection employs a confidence threshold of342

0.3, representing a balance between capturing legitimate text elements (which typ-343

ically exhibit confidence scores above 0.5) and avoiding false positives from visual344

artifacts or simulation features that superficially resemble text. Color distance cal-345

culations throughout the system employ Euclidean metrics in RGB space: d =346 √
(R1 −R2)2 + (G1 −G2)2 + (B1 −B2)2. While perceptually uniform color spaces347

such as CIELAB might provide more accurate color similarity measures, RGB348

Euclidean distance suffices for the relatively saturated rainbow gradients employed in349

engineering visualizations and avoids computational overhead from color space trans-350

formations. Grayscale detection identifies pixels where maximum channel differences351

fall below 30 units on the 0-255 scale: max(|R−G|, |G−B|, |B−R|) < 30. This criterion352

successfully distinguishes achromatic background elements, text, and annotations from353

chromatic simulation data across diverse visualization styles while accommodating354

subtle color casts that may arise from rendering antialiasing.355

1.9 Computational Efficiency and Scalability356

The automated extraction system processes complete question sets (10 questions span-357

ning multiple visualization orientations and field variables) for a single simulation358

case in approximately 5-15 minutes on standard workstation hardware, depending359

on mesh density and complexity of required analyses. This represents a 100-fold360

improvement in throughput compared to manual expert annotation while eliminat-361

ing subjective variability inherent in human interpretation of complex visualizations.362

Session reuse constitutes the primary efficiency optimization, avoiding repeated file363

loading and solver initialization overhead. Secondary optimizations include vectorized364

array operations through NumPy for statistical calculations and batched visualization365

generation for questions sharing common rendering parameters. The system’s architec-366

ture supports straightforward parallelization across multiple simulation cases, enabling367

scalable dataset generation limited only by available computational resources rather368

than human expert availability. All threshold values, tolerance parameters, and com-369

putational procedures remain consistent across the entire benchmark dataset, ensuring370

that ground truth quality depends on implementation fidelity rather than annotator371

expertise.372

2 Supplementary Note 2: Complete Evaluation373

Specifications and Protocols374

2.0.1 System Prompt375

The following system prompt was used across all models without modification:376
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"You are a visual question answering assistant. You MUST follow377

this exact format :\n\n"378

"FORMAT REQUIREMENTS :\n"379

"Line 1: Copy the EXACT answer text from the provided options (380

word -for -word , including all symbols)\n"381

"Line 2: One brief explanation sentence (10-15 words)\n\n"382

"CRITICAL RULES:\n"383

"1. The first line MUST be an EXACT COPY of one option - do not384

paraphrase or summarize\n"385

"2. Copy ALL words , punctuation , and mathematical symbols386

exactly as shown in the option\n"387

"3. Do NOT add phrases like ’The answer is ’ or explanatory text388

on line 1\n"389

"4. Do NOT shorten or reword long options - copy them390

completely\n\n"391

"EXAMPLE 1 (Simple):\n"392

"Question: Is the sky blue?\n"393

"Options: Yes , No\n"394

"CORRECT :\n"395

"Yes\n"396

"The clear atmosphere scatters blue wavelengths effectively .\n\397

n"398

"EXAMPLE 2 (Complex option with symbols):\n"399

"Question: What is the range?\n"400

"Options: Less than 10x min , More than 1000x min\n"401

"CORRECT :\n"402

"More than 1000x min\n"403

"The values span from 7 billion to 1.6 trillion .\n\n"404

"INCORRECT :\n"405

"More than three orders of magnitude\n"406

"(This paraphrases instead of copying the exact option)\n\n"407

"Remember: Line 1 = EXACT COPY of option. Line 2 = explanation408

."409

2.0.2 User Prompt Template410

For each question instance, the following template format was used:411

prompt += "Instructions :\n"412

prompt += "1. First line: Provide ONLY your answer exactly as413

it appears in the options above (e.g., ’A’, ’Yes ’, ’X axis ’,414

etc.). Do NOT add any other text on this line.\n"415

prompt += "2. Second line onwards: Provide a brief summary (1-2416

sentences) explaining your reasoning .\n\n"417

prompt += "Answer :"418

For video inputs, no prompt modifications were applied beyond the standard tem-419

plate. Both image and video modalities received identical prompting to enable direct420

performance comparison.421
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2.0.3 Rationale422

The two-line structured output format addresses two critical evaluation requirements:423

(1) enabling automated answer extraction through simple line-based parsing without424

requiring complex natural language interpretation of model responses, and (2) requir-425

ing models to provide reasoning justification for post-hoc error analysis. Pilot testing426

revealed that models frequently paraphrased answer options or embedded answers427

within explanatory text when using free-form prompts, creating ambiguity in correct-428

ness determination. The strict format requirements with explicit positive and negative429

examples eliminate this source of evaluation error while maintaining consistency across430

diverse model architectures and deployment methods.431

2.1 Model Configurations432

Supplementary tables 1, 2, and 3 present complete configuration parameters for all433

evaluated models. All parameters remained fixed across the entire evaluation to ensure434

reproducibility.435

Temperature 0.0 configurations enforce deterministic sampling for reproducibil-436

ity, while non-zero temperatures (Qwen models) follow official deployment guidelines437

specifying optimal operating points for visual reasoning tasks.438

2.2 Video Processing Specifications439

2.2.1 Source Video Characteristics440

Original simulation videos were generated with domain-specific parameters:441

1. Structural Analysis: 200 frames at 29 frames/second (7 seconds duration).442

Maximum deformation occurs at frame 100 (temporal midpoint), after which the443

simulation reverses to initial state.444

2. Fluid Dynamics: 200 frames at 40 frames/second (5 seconds duration). Frames445

represent pathlines showing steady-state flow solution.446

All videos rendered at 1920×1440 pixel resolution with H.264 compression,447

matching static image resolution to ensure consistent visual detail across media types.448

2.2.2 Frame Extraction Strategy449

Video frame extraction employed middle-frame-centered uniform sampling: for videos450

with N total frames requiring K extracted frames, the system first selected the middle451

frame at position ⌊N/2⌋, then sampled (K − 1)/2 frames before and after this mid-452

point at uniform intervals. This strategy ensures that structural analysis videos always453

include the maximum deformation state (which occurs at the temporal midpoint) in454

the frame set provided to models.455

Extracted frames maintained 1920×1440 resolution and saved as PNG with lossless456

compression before model input.457
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2.3 Reproducibility Protocols458

2.3.1 Dataset Access459

The benchmark dataset is available through HuggingFace for both structural anal-460

ysis (https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Structural) and fluid461

dynamics (https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Fluid).462

2.3.2 Random Seed Configuration463

All stochastic components (Python random module, NumPy random number gen-464

erator, PyTorch CUDA random number generator) initialized with seed value 42465

before evaluation. For models employing non-deterministic sampling (Qwen-235B at466

temperature 0.7), complete response logs can be requested for exact replication.467

2.3.3 Software Environment468

Critical dependency versions: Python 3.10, PyTorch 2.1.0 (CUDA 12.8), HuggingFace469

Transformers 4.36.0, HuggingFace Datasets 2.16.0, OpenCV 4.8.1, OpenAI Python470

SDK 1.6.1, Anthropic Python SDK 0.8.1, Google Generative AI 0.3.2. Hardware: 2471

X NVIDIA 5090 32GB GPUs with single-GPU inference for models ≤8B parameters472

and dual-GPU tensor parallelism for larger models.473

2.3.4 Code Availability474

Complete evaluation code, configuration files, and documentation are available at475

https://github.com/cmudrc/OpenSeeSimE-Full under MIT License. The reposi-476

tory includes shared utilities for prompt construction and response parsing, checkpoint477

management infrastructure, and setup instructions.478

3 Supplementary Note 3: Complete Question479

Specifications and Failure Analysis480

During experiments we observed that VLMs would produce a variety of noncompliant481

responses. We categorize these responses into three primary types: explicit refusals482

(models claim insufficient information despite adequate visual evidence), contradic-483

tory reasoning (models generate conflicting analyses without resolution), and purely484

descriptive responses (models describe observations without completing reasoning to485

answer).486

3.0.1 Explicit Refusals487

In fluid dynamics evaluation, models occasionally refuse to answer despite adequate488

visual information. The most extreme case occurs in InternVL-1B which displayed489

systematic refusals. The dominant refusal phrase “not directly comparable to the490

sound speed in water without additional context” appears in these failures, despite491

images containing sufficient information (velocity values) to perform straightforward492

Mach number calculations. Additional refusals citing “not specified in the image” occur493
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even when velocity magnitudes are explicitly displayed. This represents a calibration494

failure where the model refuses to make reasonable inferences from available visual495

data. In structural analysis, refusal rates remain negligible across all models, suggesting496

this failure mode is task-specific.497

3.0.2 Contradictory/Conflicting Information498

Models frequently generate internally inconsistent analyses, particularly in spatial rea-499

soning tasks. In structural analysis, models exhibit contradictory reasoning in 44.7%500

of None responses, describing spatial features or stress distributions without mapping501

these observations to required answer choices. Representative examples include state-502

ments like “The color red in the color bar and the ‘Max’ label indicate the highest503

value, which corresponds to the maximum displacement” or “clear axis of symmetry504

along the X-axis, as indicated by the symmetrical pattern,” but failing to conclude505

which labeled point (A/B/C/D) corresponds to these observations. In fluid dynamics,506

contradictory reasoning manifests as factually incorrect assessments that contradict507

the correct answer. The most prominent pattern occurs in Llama-3.2-11B, where 38.3%508

of its fluid failures contain the phrase “greater than the speed of sound in water,”509

without specifying transonic or supersonic. These contradictions indicate reasoning510

failures where models generate contradictory answers rather than merely failing to511

format answers correctly.512

3.0.3 Purely Descriptive Responses513

Several models are solely in observation mode, providing detailed descriptions without514

reasoning to conclusions. This pattern appears predominantly in structural analysis,515

affecting 60% of None responses in smaller models. Representative responses include516

“The image shows a 3D stress distribution with a clear axis of symmetry” or “color-517

coded map representing total deformation, indicating a gradual change across the518

structure” without identifying requested locations or classifying deformation types.519

Models provide accurate visual observations but fail to complete the reasoning chain to520

categorical answers. This failure mode is notably less prevalent in fluid dynamics tasks,521

suggesting particular difficulty in bridging visual observations to spatial categorical522

answers in structural mechanics contexts.523

3.0.4 Model-Specific Patterns524

InternVL-1B demonstrates the most severe and systematic failures, with 5,042 None525

responses in fluid dynamics (55.9% of all fluid failures across models) driven pri-526

marily by explicit refusals. This substantially exceeds other models’ failure rates and527

represents a fundamental limitation in the model’s ability to perform basic inferen-528

tial reasoning from visual data. In structural analysis, the same model shows 84.8%529

purely descriptive failures, indicating consistent difficulty in completing reasoning530

chains across both domains. Larger models (GPT-5, Claude-Sonnet-4-5) show minimal531

non-extraction failures, with most None responses attributable to API infrastructure532
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issues rather than cognitive limitations. Mid-size models (Gemma-12B, Llama-3.2-533

11B) demonstrate intermediate failure rates with more varied patterns including534

incomplete analyses and contradictory answers.535

3.1 Complete Question Specifications536

This section provides the comprehensive question sets employed in OpenSeeSimE. All537

questions were designed to assess engineering visualization interpretation across two538

primary analysis domains: structural mechanics and computational fluid dynamics.539

3.1.1 Structural Analysis Questions540

The structural analysis question set comprises ten questions spanning symmetry541

detection, stress classification, deformation characterization, and spatial localization542

tasks.543

1. Is the deformation pattern symmetric across any axis?544

• Question Category: Relationship Understanding545

• Question Type: Binary546

• Options: Yes, No547

2. Are the stresses predominantly tensile in nature?548

• Question Category: Reasoning549

• Question Type: Binary550

• Options: Yes, No551

3. Is the [stress/strain/temperature/pressure] distribution pattern uniform?552

• Question Category: Captioning553

• Question Type: Binary554

• Options: Yes, No555

4. The significant deformation in the model is primarily:556

• Question Category: Relationship Understanding557

• Question Type: Multiple Question558

• Options:559

(a) Y axis560

(b) X axis561

(c) Z axis562

(d) Complex multi-directional563

5. What is the axis of symmetry?564

• Question Category: Relationship Understanding565

• Question Type: Multiple Question566

• Options:567

(a) X568
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(b) Y569

(c) Z570

(d) None/Multiple571

6. The dominant stress type in the critical region is:572

• Question Category: Reasoning573

• Question Type: Multiple Question574

• Options:575

(a) Bending dominant576

(b) Shear dominant577

(c) Axial dominant578

(d) Torsion dominant579

7. Where is the maximum [displacement/stress/strain/temperature] located in the580

model?581

• Question Category: Grounding582

• Question Type: Spatial583

• Options: A, B, C, D584

8. Where is the minimum [displacement/stress/strain/temperature] located in the585

model?586

• Question Category: Grounding587

• Question Type: Spatial588

• Options: A, B, C, D589

9. What is the approximate range (maximum-minimum) of values in the displayed590

contour plot?591

• Question Category: Captioning592

• Question Type: Multiple Question593

• Options:594

(a) Less than one order of magnitude (max < 10× min)595

(b) One to two orders of magnitude (10× min < max < 100× min)596

(c) Two to three orders of magnitude (100× min < max < 1000× min)597

(d) More than three orders of magnitude (max > 1000× min)598

10. There is primarily what type of deformation?599

• Question Category: Captioning600

• Question Type: Multiple Question601

• Options:602

(a) In-plane deformation603

(b) Out-of-plane deformation604

(c) Complex multi-directional deformation605

(d) No significant deformation606
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3.1.2 Fluid Analysis Questions607

The computational fluid dynamics question set comprises ten questions evaluating608

flow field interpretation, symmetry detection, flow regime classification, and spatial609

pattern recognition. These questions assess comprehension of velocity, pressure, and610

temperature distributions in fluid simulations.611

1. Are there dead zones (stagnant flow areas) visible in the simulation?612

• Question Category: Reasoning613

• Question Type: Binary614

• Options: Yes, No615

2. Is the flow field symmetric across any axis?616

• Question Category: Captioning617

• Question Type: Binary618

• Options: Yes, No619

3. The flow is only in one direction620

• Question Category: Captioning621

• Question Type: Binary622

• Options: Yes, No623

4. Are there regions of low velocity and low pressure?624

• Question Category: Relationship Understanding625

• Question Type: Binary626

• Options: Yes, No627

5. What is the axis of symmetry?628

• Question Category: Relationship Understanding629

• Question Type: Multiple Question630

• Options:631

(a) X632

(b) Y633

(c) Z634

(d) None/Multiple635

6. How would you characterize the flow speed relative to sound speed?636

• Question Category: Reasoning637

• Question Type: Multiple Question638

• Options:639

(a) Subsonic (Mach < 0.8)640

(b) Transonic (0.8 < Mach < 1.2)641

(c) Supersonic (Mach > 1.2)642

(d) N/A643
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7. Where is the maximum [velocity/pressure/temperature] located in the flow field?644

• Question Category: Grounding645

• Question Type: Spatial646

• Options: A, B, C, D647

8. Where is the minimum [velocity/pressure/temperature] located in the flow field?648

• Question Category: Grounding649

• Question Type: Spatial650

• Options: A, B, C, D651

9. What is the approximate range (maximum-minimum) of values in the displayed652

contour plot?653

• Question Category: Captioning654

• Question Type: Multiple Question655

• Options:656

(A) Less than one order of magnitude (max < 10× min)657

(B) One to two orders of magnitude (10× min < max < 100× min)658

(C) Two to three orders of magnitude (100× min < max < 1000× min)659

(D) More than three orders of magnitude (max > 1000× min)660

10. Flow is dominantly along which axis (If axis is not visible, select between axial and661

radial as X and Y respectively)?662

• Question Category: Relationship Understanding663

• Question Type: Multiple Question664

• Options:665

(a) X666

(b) Y667

(c) Z668

(d) Complex Multidirectional669

The complete OpenSeeSimE dataset including all simulation instances, question-670

answer pairs, visualizations, and metadata is publicly available for both struc-671

tural analysis (https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Structural)672

and fluid analysis (https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Fluid).673
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