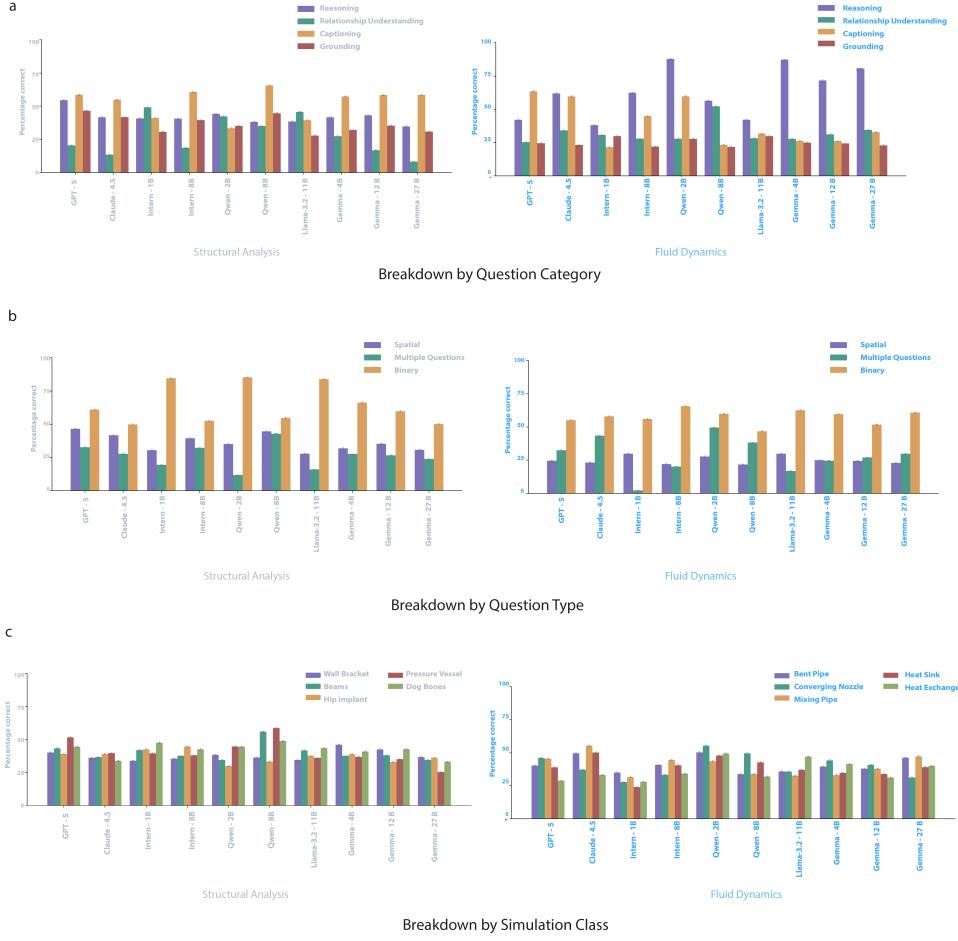


OpenSeeSimE: A Large Benchmark to Assess Vision-Language Model Question Answering Capabilities in Engineering Simulations

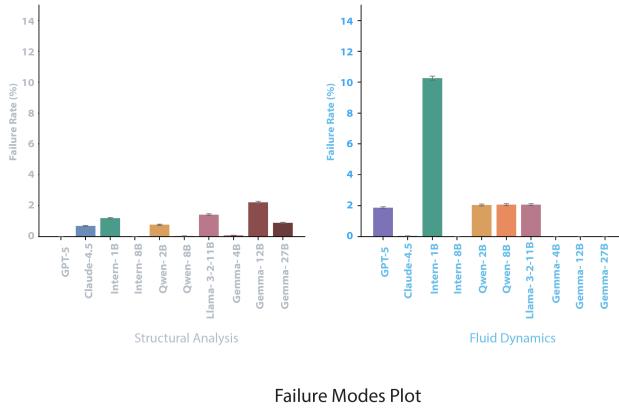
Jessica Ezemba^{1*}, Jason Pohl¹, Conrad Tucker¹,
Christopher McComb¹

^{1*}Department of Mechanical Engineering, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, 15213, PA, USA.

*Corresponding author(s). E-mail(s): jezemba@andrew.cmu.edu;
Contributing authors: jpohl@andrew.cmu.edu;
conradt@andrew.cmu.edu; ccm@andrew.cmu.edu;



Supplementary Figure 1 Benchmark accuracy by (a) question category for structural analysis and fluid dynamics analysis showing performance across captioning, reasoning, grounding, and relationship understanding tasks. (b) Benchmark accuracy by question type for structural analysis and fluid dynamics analysis comparing binary classification, multiple-choice reasoning, and spatial grounding performance. (c) Benchmark accuracy by simulation class for structural analysis across Wall Bracket, Beams, Hip Implant, Pressure Vessel, and Dog Bone configurations, and fluid dynamics analysis across Bent Pipe, Converging Nozzle, Mixing Pipe, Heat Sink, and Heat Exchanger configurations.



Supplementary Figure 2 Failure rates for structural analysis and fluid dynamics analysis showing model reliability in providing valid responses across all question types

Supplementary Table 1 Flagship model configurations (evaluated on 10% subset for both images and videos). Temperature 0.0 indicates deterministic sampling; higher temperatures follow official model deployment recommendations.

Model	Model Identifier	Max Tokens	Temperature
GPT-5	gpt-5-2025-08-07	4096	— ^a
Qwen3-VL-235B	Qwen3-VL-235B-A22B-Instruct	4096	0.7 ^b
InternVL-3.5-241B	internvl3.5-241b-a28b	4096	0.0
Gemini-2.5-Flash	gemini-2.5-flash	4096	0.0

^a GPT-5 uses reasoning effort: minimal, text verbosity: medium

^b Qwen3-VL-235B uses top-p: 0.8, rate limit: 2s between requests

Supplementary Table 2 Video-specific model configurations (evaluated on video subset only, 32 frames uniformly sampled).

Model	Model Identifier	Frames	Max Tokens	Temp
GPT-5	gpt-5-2025-08-07	32	4096	—
Qwen3-VL-8B	Qwen/Qwen3-VL-8B-Instruct	32	4096	0.0
InternVL-3.5-8B	OpenGVLab/InternVL3_5-8B-Instruct	32	4096	0.0
Gemma-3-12B	google/gemma-3-12b-it	32	4096	0.0

Supplementary Table 3 Image-only model configurations (evaluated on complete image dataset). All local models use bfloat16 precision with `device_map="auto"` and `do_sample=False` except where noted.

Model	Model Identifier	Max Tokens	Temp
Qwen3-VL-2B	<code>Qwen/Qwen3-VL-2B-Instruct</code>	4096	0.7 ^a
Qwen3-VL-8B	<code>Qwen/Qwen3-VL-8B-Instruct</code>	4096	0.0
InternVL-3.5-1B	<code>OpenGVLab/InternVL3_5-1B-Instruct</code>	4096	0.0
InternVL-3.5-8B	<code>OpenGVLab/InternVL3_5-8B-Instruct</code>	4096	0.0
Gemma-3-4B	<code>google/gemma-3-4b-bit</code>	4096	0.0
Gemma-3-12B	<code>google/gemma-3-12b-bit</code>	4096	0.0
Gemma-3-27B	<code>google/gemma-3-27b-bit</code>	4096	0.0
LLaMA-3.2-11B	<code>meta-llama/Llama-3.2-11B-Vision-Instruct</code>	4096	0.0

^a Qwen3-VL-2B uses `do_sample=True` per official guidelines

Supplementary Table 4 Statistical Significance Analysis for Fluid Dynamics Domain. One-tailed binomial test results (alternative: greater) comparing model performance against chance-level accuracy (50% for binary classification, 25% for multiple-choice reasoning and spatial grounding tasks). The test evaluates whether model accuracy significantly exceeds random guessing. The table reports observed accuracies, uncorrected exact p -values, Benjamini-Hochberg (BH) corrected p -values, significance markers, and sample sizes (correct responses/total questions) for all vision-language models across three task categories. Benjamini-Hochberg correction was applied to control the False Discovery Rate across 30 multiple comparisons (10 models \times 3 question types). Significance levels: *** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$; ns = not significant. All tests employed $\alpha = 0.05$ with FDR control.

Model	Task	Acc (%)	p -value	p -value (BH)	Sig	Correct	Total
GPT-5	Binary	55.1	2.11×10^{-47}	4.88×10^{-47}	***	10817	19616
	Multiple Q	32.5	6.30×10^{-123}	2.10×10^{-122}	***	6364	19578
	Spatial	24.5	0.868	1.000	ns	2438	9943
Claude-4.5	Binary	58.0	8.32×10^{-112}	2.50×10^{-111}	***	11377	19617
	Multiple Q	43.3	$< 10^{-300}$	$< 10^{-300}$	***	8486	19581
	Spatial	23.2	1.000	1.000	ns	2308	9943
Intern-1B	Binary	56.0	1.80×10^{-64}	4.91×10^{-64}	***	10992	19617
	Multiple Q	2.2	1.000	1.000	ns	429	19581
	Spatial	29.8	4.68×10^{-28}	9.35×10^{-28}	***	2967	9943
Intern-8B	Binary	65.5	$< 10^{-300}$	$< 10^{-300}$	***	12858	19617
	Multiple Q	20.2	1.000	1.000	ns	3957	19581
	Spatial	22.0	1.000	1.000	ns	2192	9943
Qwen-2B	Binary	59.9	8.59×10^{-170}	3.68×10^{-169}	***	11746	19617
	Multiple Q	49.7	$< 10^{-300}$	$< 10^{-300}$	***	9725	19581
	Spatial	27.7	3.74×10^{-10}	6.61×10^{-10}	***	2755	9943
Qwen-8B	Binary	46.7	1.000	1.000	ns	9161	19617
	Multiple Q	38.3	$< 10^{-300}$	$< 10^{-300}$	***	7497	19581
	Spatial	21.7	1.000	1.000	ns	2160	9943
Llama-3.2-11B	Binary	62.5	1.67×10^{-273}	1.00×10^{-272}	***	12269	19617
	Multiple Q	16.9	1.000	1.000	ns	3305	19581
	Spatial	29.8	4.68×10^{-28}	9.35×10^{-28}	***	2967	9943
Gemma-4B	Binary	59.6	2.33×10^{-160}	8.73×10^{-160}	***	11691	19617
	Multiple Q	24.6	0.924	1.000	ns	4809	19581
	Spatial	24.9	0.557	0.879	ns	2480	9943
Gemma-12B	Binary	51.8	1.99×10^{-7}	3.32×10^{-7}	***	10164	19617
	Multiple Q	27.0	6.83×10^{-11}	1.28×10^{-10}	***	5288	19581
	Spatial	24.4	0.926	1.000	ns	2424	9943
Gemma-27B	Binary	60.8	2.47×10^{-204}	1.24×10^{-203}	***	11935	19617
	Multiple Q	29.9	4.69×10^{-55}	1.17×10^{-54}	***	5859	19581
	Spatial	22.9	1.000	1.000	ns	2281	9943

Supplementary Table 5 Statistical Significance Analysis for Structural Analysis Domain. One-tailed binomial test results (alternative: greater) comparing model performance against chance-level accuracy (50% for binary classification, 25% for multiple-choice reasoning and spatial grounding tasks). The test evaluates whether model accuracy significantly exceeds random guessing. The table reports observed accuracies, uncorrected exact p -values, Benjamini-Hochberg (BH) corrected p -values, significance markers, and sample sizes (correct responses/total questions) for all vision-language models across three task categories. Benjamini-Hochberg correction was applied to control the False Discovery Rate across 30 multiple comparisons (10 models \times 3 question types). Significance levels: *** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$; ns = not significant. All tests employed $\alpha = 0.05$ with FDR control.

Model	Task	Acc (%)	p -value	p -value (BH)	Sig	Correct	Total
GPT-5	Binary	61.1	1.35×10^{-168}	3.68×10^{-168}	***	9458	15488
	Multiple Q	32.7	2.05×10^{-170}	6.16×10^{-170}	***	8446	25811
	Spatial	46.5	$< 10^{-300}$	$< 10^{-300}$	***	4756	10232
Claude-4.5	Binary	49.9	0.583	0.672	ns	7732	15489
	Multiple Q	27.7	2.32×10^{-23}	3.49×10^{-23}	***	7149	25811
	Spatial	41.7	1.37×10^{-297}	5.12×10^{-297}	***	4268	10240
Intern-1B	Binary	84.7	$< 10^{-300}$	$< 10^{-300}$	***	13116	15489
	Multiple Q	19.5	1.000	1.000	ns	5024	25811
	Spatial	30.5	7.79×10^{-37}	1.30×10^{-36}	***	3126	10240
Intern-8B	Binary	52.6	3.76×10^{-11}	5.13×10^{-11}	***	8150	15489
	Multiple Q	32.3	1.19×10^{-152}	2.98×10^{-152}	***	8335	25811
	Spatial	39.4	2.00×10^{-225}	6.67×10^{-225}	***	4036	10240
Qwen-2B	Binary	85.3	$< 10^{-300}$	$< 10^{-300}$	***	13215	15489
	Multiple Q	11.8	1.000	1.000	ns	3051	25811
	Spatial	35.1	3.93×10^{-114}	7.86×10^{-114}	***	3592	10240
Qwen-8B	Binary	54.8	8.61×10^{-33}	1.36×10^{-32}	***	8483	15489
	Multiple Q	42.8	$< 10^{-300}$	$< 10^{-300}$	***	11056	25811
	Spatial	44.6	$< 10^{-300}$	$< 10^{-300}$	***	4568	10240
Llama-3.2-11B	Binary	83.9	$< 10^{-300}$	$< 10^{-300}$	***	12997	15489
	Multiple Q	16.0	1.000	1.000	ns	4134	25811
	Spatial	27.8	6.86×10^{-11}	8.95×10^{-11}	***	2845	10240
Gemma-4B	Binary	66.4	$< 10^{-300}$	$< 10^{-300}$	***	10284	15489
	Multiple Q	27.6	3.71×10^{-22}	5.30×10^{-22}	***	7129	25811
	Spatial	31.9	1.17×10^{-55}	2.19×10^{-55}	***	3266	10240
Gemma-12B	Binary	59.8	6.94×10^{-132}	1.60×10^{-131}	***	9259	15489
	Multiple Q	26.6	2.90×10^{-9}	3.62×10^{-9}	***	6861	25811
	Spatial	35.3	1.17×10^{-119}	2.51×10^{-119}	***	3618	10240
Gemma-27B	Binary	50.2	0.321	0.385	ns	7774	15489
	Multiple Q	23.8	1.000	1.000	ns	6150	25811
	Spatial	30.8	1.16×10^{-39}	2.05×10^{-39}	***	3149	10240

Supplementary Table 6 Practical Significance Analysis for Fluid Dynamics Domain. Cohen’s h effect sizes measuring the magnitude of performance differences from chance-level baselines (50% for binary classification, 25% for multiple-choice reasoning and spatial grounding tasks). Effect size categories follow Cohen’s conventional benchmarks: Negligible ($|h| < 0.20$), Small ($0.20 \leq |h| < 0.50$), Medium ($0.50 \leq |h| < 0.80$), Large ($|h| \geq 0.80$). The table reports observed accuracies, percentage point differences from chance (Diff), Cohen’s h values, effect size categories, and 95% confidence intervals for all vision-language models across three task categories.

Model	Task	Acc	Diff	Cohen’s h	Effect	95% CI
GPT-5	Binary	55.1%	+5.1pp	0.103	Negligible	[54.4%, 55.8%]
	Multiple Q	32.5%	+7.5pp	0.166	Negligible	[31.9%, 33.2%]
	Spatial	24.5%	-0.5pp	-0.011	Negligible	[23.7%, 25.4%]
Claude-4.5	Binary	58.0%	+8.0pp	0.161	Negligible	[57.3%, 58.7%]
	Multiple Q	43.3%	+18.3pp	0.390	Small	[42.6%, 44.0%]
	Spatial	23.2%	-1.8pp	-0.042	Negligible	[22.4%, 24.1%]
Intern-1B	Binary	56.0%	+6.0pp	0.121	Negligible	[55.3%, 56.7%]
	Multiple Q	2.2%	-22.8pp	-0.750	Medium	[2.0%, 2.4%]
	Spatial	29.8%	+4.8pp	0.109	Negligible	[28.9%, 30.7%]
Intern-8B	Binary	65.5%	+15.5pp	0.316	Small	[64.9%, 66.2%]
	Multiple Q	20.2%	-4.8pp	-0.115	Negligible	[19.7%, 20.8%]
	Spatial	22.0%	-3.0pp	-0.070	Negligible	[21.2%, 22.9%]
Qwen-2B	Binary	59.9%	+9.9pp	0.199	Negligible	[59.2%, 60.6%]
	Multiple Q	49.7%	+24.7pp	0.517	Medium	[49.0%, 50.4%]
	Spatial	27.7%	+2.7pp	0.061	Negligible	[26.8%, 28.6%]
Qwen-8B	Binary	46.7%	-3.3pp	-0.066	Negligible	[46.0%, 47.4%]
	Multiple Q	38.3%	+13.3pp	0.287	Small	[37.6%, 39.0%]
	Spatial	21.7%	-3.3pp	-0.077	Negligible	[20.9%, 22.5%]
Llama-3.2-11B	Binary	62.5%	+12.5pp	0.254	Small	[61.9%, 63.2%]
	Multiple Q	16.9%	-8.1pp	-0.200	Small	[16.4%, 17.4%]
	Spatial	29.8%	+4.8pp	0.109	Negligible	[28.9%, 30.7%]
Gemma-4B	Binary	59.6%	+9.6pp	0.193	Negligible	[58.9%, 60.3%]
	Multiple Q	24.6%	-0.4pp	-0.010	Negligible	[24.0%, 25.2%]
	Spatial	24.9%	-0.1pp	-0.001	Negligible	[24.1%, 25.8%]
Gemma-12B	Binary	51.8%	+1.8pp	0.036	Negligible	[51.1%, 52.5%]
	Multiple Q	27.0%	+2.0pp	0.046	Negligible	[26.4%, 27.6%]
	Spatial	24.4%	-0.6pp	-0.014	Negligible	[23.5%, 25.2%]
Gemma-27B	Binary	60.8%	+10.8pp	0.219	Small	[60.2%, 61.5%]
	Multiple Q	29.9%	+4.9pp	0.110	Negligible	[29.3%, 30.6%]
	Spatial	22.9%	-2.1pp	-0.048	Negligible	[22.1%, 23.8%]

Supplementary Table 7 Practical Significance Analysis for Structural Analysis Domain. Cohen’s h effect sizes measuring the magnitude of performance differences from chance-level baselines (50% for binary classification, 25% for multiple-choice reasoning and spatial grounding tasks). Effect size categories follow Cohen’s conventional benchmarks: Negligible ($|h| < 0.20$), Small ($0.20 \leq |h| < 0.50$), Medium ($0.50 \leq |h| < 0.80$), Large ($|h| \geq 0.80$). The table reports observed accuracies, percentage point differences from chance (Diff), Cohen’s h values, effect size categories, and 95% confidence intervals for all vision-language models across three task categories.

Model	Task	Acc	Diff	Cohen’s h	Effect	95% CI
GPT-5	Binary	61.1%	+11.1pp	0.223	Small	[60.3%, 61.8%]
	Multiple Q	32.7%	+7.7pp	0.171	Negligible	[32.2%, 33.3%]
	Spatial	46.5%	+21.5pp	0.453	Small	[45.5%, 47.4%]
Claude-4.5	Binary	49.9%	-0.1pp	-0.002	Negligible	[49.1%, 50.7%]
	Multiple Q	27.7%	+2.7pp	0.061	Negligible	[27.2%, 28.2%]
	Spatial	41.7%	+16.7pp	0.356	Small	[40.7%, 42.6%]
Intern-1B	Binary	84.7%	+34.7pp	0.766	Medium	[84.1%, 85.2%]
	Multiple Q	19.5%	-5.5pp	-0.133	Negligible	[19.0%, 20.0%]
	Spatial	30.5%	+5.5pp	0.124	Negligible	[29.6%, 31.4%]
Intern-8B	Binary	52.6%	+2.6pp	0.052	Negligible	[51.8%, 53.4%]
	Multiple Q	32.3%	+7.3pp	0.162	Negligible	[31.7%, 32.9%]
	Spatial	39.4%	+14.4pp	0.310	Small	[38.5%, 40.4%]
Qwen-2B	Binary	85.3%	+35.3pp	0.784	Medium	[84.8%, 85.9%]
	Multiple Q	11.8%	-13.2pp	-0.345	Small	[11.4%, 12.2%]
	Spatial	35.1%	+10.1pp	0.221	Small	[34.2%, 36.0%]
Qwen-8B	Binary	54.8%	+4.8pp	0.096	Negligible	[54.0%, 55.6%]
	Multiple Q	42.8%	+17.8pp	0.380	Small	[42.2%, 43.4%]
	Spatial	44.6%	+19.6pp	0.416	Small	[43.6%, 45.6%]
Llama-3.2-11B	Binary	83.9%	+33.9pp	0.745	Medium	[83.3%, 84.5%]
	Multiple Q	16.0%	-9.0pp	-0.224	Small	[15.6%, 16.5%]
	Spatial	27.8%	+2.8pp	0.063	Negligible	[26.9%, 28.7%]
Gemma-4B	Binary	66.4%	+16.4pp	0.334	Small	[65.6%, 67.1%]
	Multiple Q	27.6%	+2.6pp	0.060	Negligible	[27.1%, 28.2%]
	Spatial	31.9%	+6.9pp	0.153	Negligible	[31.0%, 32.8%]
Gemma-12B	Binary	59.8%	+9.8pp	0.197	Negligible	[59.0%, 60.5%]
	Multiple Q	26.6%	+1.6pp	0.036	Negligible	[26.0%, 27.1%]
	Spatial	35.3%	+10.3pp	0.226	Small	[34.4%, 36.3%]
Gemma-27B	Binary	50.2%	+0.2pp	0.004	Negligible	[49.4%, 51.0%]
	Multiple Q	23.8%	-1.2pp	-0.027	Negligible	[23.3%, 24.4%]
	Spatial	30.8%	+5.8pp	0.128	Negligible	[29.9%, 31.7%]

11 **1 Supplementary Note 1: Automated Ground Truth
12 Extraction Protocols**

13 **1.1 Selecting Simulation Examples**

14 Engineering simulation benchmarks traditionally rely on limited, manually curated
15 datasets that may not capture the full diversity of real-world engineering applications.
16 To address this limitation, we developed a systematic approach for generating a com-
17 prehensive dataset of approximately 10,000 simulation examples through parametric
18 variation of established simulation models. With 10 questions per simulation instance
19 per domain (20 total per instance), this generates over 200,000 total question-answer
20 pairs across both domains.

21 Our simulation examples were sourced from publicly available **Ansys** Tutorial files,
22 which provide validated baseline configurations with proper boundary conditions and
23 convergence settings. From the extensive tutorial library, we selected base models
24 using a structured selection framework based on three primary criteria designed to
25 maximize dataset diversity and benchmark coverage.

- 26 1. Parametric Variability: Base models were selected based on their capacity for
27 meaningful geometric and boundary condition variations. Each selected simulation
28 contained multiple adjustable parameters that could generate distinct simulation
29 outcomes while maintaining physical validity. This approach captured the range of
30 configurations rather than relying on static, single-configuration examples.
- 31 2. Simulation Type Coverage: Models were chosen to represent the full spectrum of
32 simulation categories required by our visual question-answering benchmark. This
33 systematic selection ensured comprehensive coverage of essential engineering phe-
34 nomena including turbulence modeling and structural failure modes across diverse
35 geometric configurations and loading conditions.
- 36 3. Representative Engineering Applications: Selected simulations span diverse engi-
37 neering domains to ensure our benchmark reflects real-world analysis scenarios that
38 practicing engineers encounter across different industries and applications.

39 For each base simulation, we implemented parametric design automation using
40 **Ansys** Python interfaces (**PyMechanical**, **PyFluent**, and **PyGeometry**) and list gener-
41 ation software (**MATLAB**) to systematically vary five critical parameters encompassing
42 geometric dimensions, boundary conditions, and material properties. Parameter ranges
43 were established by expert designers to ensure all generated variations remained within
44 physically meaningful bounds while maximizing solution diversity. Each parameter
45 had 4 values chosen, linearly spaced between 2 "extreme" cases, generating small,
46 small-medium, large-medium, and large values that created substantial variations in
47 each output instance. These 4 values across 5 parameters generated 1,024 unique sim-
48 ulation instances per base model, with parameter settings generated using systematic
49 looping to create each unique set of conditions.

50 In the mechanical models, the geometry parameters led to different stress con-
51 centrations and loading conditions. The boundary condition parameters (changes in
52 axial or bending load forces) and material property parameters (changes in physical
53 characteristics) produced distinct stress, strain, and displacement effects. In the fluid

54 models, the geometry parameters created unique turbulence regions and flow regimes.
55 The boundary condition parameters (fluid velocity) and material property parameters
56 (viscosity) affected the velocity, pressure, and turbulence results.

57 **1.1.1 Structural Analysis Models:**

58 The *Dog Bone* specimen represents standard tensile testing configurations with stress
59 concentrations at the reduced cross-section, requiring interpretation of von Mises
60 stress distributions and failure prediction across varying geometries and loading con-
61 ditions. The *Hip Implant* model simulates complex biomedical loading with combined
62 axial and bending stresses, presenting challenging stress visualization patterns around
63 irregular geometries. The *Pressure Vessel* involves internal pressure loading creat-
64 ing circumferential and axial stress fields with material-dependent responses. The
65 *Beams* utilize mechanical loading, requiring analysis of stress patterns and material
66 property variations for different beam profiles. The *Wall Bracket* features complex
67 three-dimensional stress distributions under bending loads with stress concentrations
68 at geometric transitions.

69 **1.1.2 Fluid Dynamics Models:**

70 The *Bent Pipe* generates complex flow patterns and pressure losses with varying tur-
71 bulence intensities dependent on bend geometry and flow conditions. The *Converging*
72 *Nozzle* creates acceleration zones with pressure gradients and potential flow sepa-
73 ration requiring analysis of velocity vector fields and pressure contours. The *Mixing*
74 *Pipe* involves multi-stream interactions with complex velocity and pressure patterns
75 at the junction. The *Heat Sink* and *Heat Exchanger* models generate intricate flow
76 patterns around fin geometries with heat transfer effects, creating complex visualiza-
77 tion challenges involving velocity vectors and pressure fields that vary with geometric
78 and boundary condition parameters.

79 **1.2 Automated Ground Truth Extraction Infrastructure**

80 The automated ground truth extraction system operates through direct programmatic
81 interfaces to simulation software, bypassing visual interpretation entirely. For fluid
82 dynamics simulations, we employ PyFluent's solver session interface to export field
83 data through Ansys Fluent's Text User Interface (TUI) commands. All fluid simu-
84 lations utilize three-dimensional representations with Cartesian coordinate systems,
85 extracting velocity components (x-velocity, y-velocity, z-velocity), pressure fields,
86 temperature distributions, and Mach numbers where applicable. Data exports generate
87 ASCII-formatted files containing nodal coordinates and corresponding field values,
88 with file sizes typically ranging from hundreds of kilobytes to several megabytes
89 depending on mesh density.

90 For structural analysis, PyMechanical provides access to finite element results
91 through Ansys Mechanical's scripting interface. The system extracts von Mises stress
92 tensors, displacement vectors, strain components, and temperature fields at nodal
93 locations. Each extraction preserves spatial coordinate information (X, Y, Z positions)
94 alongside field values, enabling subsequent geometric analysis for symmetry detection

95 and spatial localization tasks. Session management follows a single-instance paradigm
96 where each simulation case file loads once and serves all question extraction proce-
97 dures sequentially. This approach minimizes computational overhead from repeated file
98 loading operations while maintaining consistency in visualization parameters across
99 questions sharing common data requirements. Fluent sessions initialize with double
100 precision arithmetic and utilize multiple processor cores for parallel data extraction
101 operations.

102 **1.3 Statistical Analysis Procedures**

103 Questions requiring identification of extreme values or aggregate statistics operate
104 directly on extracted field arrays using standard numerical operations. The system
105 loads relevant data files into pandas DataFrame structures, validates data quality
106 through finite value checks (excluding NaN and infinite values), and applies appro-
107 priate statistical functions. For maximum and minimum value queries, the system
108 employs NumPy's optimized array operations to identify extrema with computational
109 complexity linear in the number of data points. Relative magnitude assessments, such
110 as determining whether values span one, two, or three orders of magnitude, compute
111 the ratio between maximum and minimum field values. The system applies the follow-
112 ing classification scheme: ratios below 10 indicate less than one order of magnitude,
113 ratios between 10 and 100 represent one to two orders, ratios between 100 and 1000
114 span two to three orders, and ratios exceeding 1000 encompass more than three orders
115 of magnitude. For fields containing negative values, the system employs alternative
116 ratio calculations based on absolute value ranges to ensure meaningful magnitude
117 comparisons.

118 **1.4 Distribution Analysis Implementation**

119 **1.4.1 Structural Uniformity Assessment**

120 Stress distribution uniformity analysis employs coefficient of variation (CV) as the
121 primary metric, defined as the ratio of standard deviation to mean value. The system
122 extracts von Mises stress values across all nodes, computes statistical measures on the
123 resulting distribution, and applies a uniformity threshold of $CV \leq 0.2$ (20% coefficient
124 of variation). The system requires a minimum of three data points for meaningful
125 statistical analysis, rejecting datasets below this threshold. Distribution uniformity
126 extends beyond simple variance measures to incorporate spatial considerations. The
127 system validates that extracted stress values span the entire geometric domain rather
128 than representing localized clusters, ensuring that uniformity assessments reflect global
129 distribution characteristics rather than sampling artifacts.

130 **1.4.2 Fluid Stagnation Zone Detection**

131 Dead zone identification in fluid dynamics requires determining regions where flow
132 velocity falls below thresholds indicating effective stagnation. The system applies a
133 velocity magnitude threshold of 1×10^{-6} (one micron per second), representing a
134 value several orders of magnitude below typical flow velocities that effectively indicates

numerical zero in the context of engineering simulations. For each node in the extracted velocity field, the system classifies velocities below this threshold as stagnant, computing the fraction of total nodes meeting this criterion. Binary classification as yes/no for dead zone presence depends on whether any significant fraction of the domain exhibits stagnant flow characteristics. The system employs a conservative approach where even small percentages of stagnant nodes (above negligible numerical noise levels) trigger affirmative classification, acknowledging that engineering significance of dead zones relates more to their presence than their spatial extent.

1.5 Symmetry Analysis Protocols

Symmetry detection requires assessing whether field distributions exhibit mirror invariance about specified coordinate planes. The system implements a comprehensive symmetry analysis procedure applicable to both structural deformation patterns and fluid flow fields. For each candidate symmetry plane (X-plane, Y-plane, or Z-plane), the system first determines the plane's spatial location by computing the midpoint of the geometric domain along the relevant axis. It then generates mirrored coordinate sets by reflecting each node's position across this plane. Using scipy's cdist function, the system computes Euclidean distances between original and mirrored coordinate sets, identifying symmetric node pairs where spatial separation falls below a coordinate matching tolerance of 1×10^{-3} (one millimeter). For each identified symmetric pair, the system compares field values through relative difference calculations: $|\text{val}_1 - \text{val}_2| / \max(|\text{val}_1|, |\text{val}_2|, 10^{-10})$, where the denominator's small constant prevents division by zero for near-zero values. The system applies a base symmetry tolerance of 5% for value comparisons, though certain structural analysis questions employ a relaxed 10% tolerance to accommodate numerical solution variability in finite element results. Classification as symmetric requires that at least 90% of identified node pairs exhibit value differences within the specified tolerance for fluid dynamics questions, while structural analysis employs a 60% threshold reflecting the greater solution variability inherent in solid mechanics computations. The system evaluates symmetry about all three coordinate planes independently, classifying overall symmetry based on whether any single plane meets the criteria (questions asking "Is the pattern symmetric?") or identifying which specific plane demonstrates the strongest symmetry (questions asking "What is the axis of symmetry?").

1.6 Physics-Based Classification Methods

1.6.1 Flow Regime Characterization

Mach number analysis categorizes flow speed relative to the local speed of sound, employing standard aerospace engineering classification criteria. The system first attempts to extract Mach number fields directly from simulation results when available. For simulations lacking explicit Mach data, the system computes Mach numbers from velocity magnitude fields by dividing by the appropriate speed of sound: 343.0 m/s for air at standard conditions (20°C, 1 atmosphere) or 1482.0 m/s for water at 20°C. Flow regime classification operates on maximum Mach numbers rather than domain-averaged values, recognizing that localized supersonic regions may exist within

177 predominantly subsonic flows. The system applies the following thresholds: maximum
178 Mach below 0.8 classifies as subsonic, maximum Mach between 0.8 and 1.2 indicates
179 transonic flow, and maximum Mach exceeding 1.2 designates supersonic conditions.

180 **1.6.2 Flow Direction Analysis**

181 Dominant flow direction determination analyzes mean absolute velocity magnitudes
182 across spatial dimensions. For three-dimensional simulations, the system extracts
183 velocity component fields (x-velocity, y-velocity, z-velocity), computes the mean of
184 absolute values for each component independently, and identifies which component
185 exhibits the largest mean magnitude. This approach correctly handles flows with signif-
186 icant reverse components, where signed mean values would artificially reduce apparent
187 flow strength. Classification as "complex multidirectional" rather than dominant along
188 a single axis employs a tolerance-based criterion. The system computes the mean of all
189 component means and checks whether each individual component mean falls within
190 5% of this global mean. When all components satisfy this proximity criterion, the
191 flow exhibits insufficient directional bias for classification as dominant along any sin-
192 gle axis. Otherwise, the component with maximum mean absolute velocity determines
193 the dominant direction.

194 **1.6.3 Stress Type Classification**

195 Structural analysis questions requiring classification of dominant stress types (bend-
196 ing, shear, axial, or torsion) extract relevant stress tensor components and compare
197 their magnitudes according to solid mechanics principles. The system analyzes stress
198 distributions in critical regions, typically identified as zones exhibiting maximum von
199 Mises stress or maximum deformation magnitude. Classification criteria derive from
200 examining ratios between normal stress components, shear stress components, and
201 their spatial gradients, though specific implementation details vary by geometry and
202 loading conditions.

203 **1.6.4 Deformation Direction Analysis**

204 Significant deformation direction identification follows analogous procedures to
205 flow direction analysis, extracting displacement components (X-displacement, Y-
206 displacement, Z-displacement) and computing mean absolute magnitudes. The system
207 identifies whether deformation primarily occurs along a single coordinate axis or
208 exhibits complex multi-directional character through the same tolerance-based com-
209 parison used for fluid flow analysis. An additional classification distinguishes between
210 in-plane and out-of-plane deformation patterns for planar structural geometries, com-
211 puted through relative magnitude comparisons between displacement components
212 parallel and perpendicular to the structure's primary plane (that is user defined).

213 **1.6.5 Tensile Stress Predominance**

214 Determining whether stresses are predominantly tensile examines the signs of
215 extracted normal stress values. The system counts nodes exhibiting positive (tensile)

216 versus negative (compressive) stress values, classifying the pattern as predominantly
217 tensile when positive values outnumber negative values. This simple criterion suffices
218 for binary classification while avoiding arbitrary threshold definitions for mixed stress
219 states.

220 1.7 Spatial Localization and Region Labeling

221 Region-based grounding questions require generating visualizations with labeled loca-
222 tions and determining which region contains specified target features. This process
223 involves three distinct phases: target identification from numerical data, region gen-
224 eration on rendered visualizations, and ground truth determination through spatial
225 proximity calculations.

226 1.7.1 Visualization Generation

227 The system generates standardized visualizations through direct control of simula-
228 tion software rendering parameters. For fluid dynamics, PyFluent’s graphics object
229 interface sets contour and vector plot properties, camera positions, and color mapping
230 schemes. Structural analysis employs PyMechanical’s result visualization controls to
231 configure stress or displacement contour plots with consistent color schemes. All visu-
232 alizations render at 1920×1440 pixel resolution to ensure sufficient detail for spatial
233 localization tasks while maintaining consistent aspect ratios across instances. View ori-
234 entations follow standardized definitions: front, back, left, right, top, and bottom views
235 align camera positions with principal axes, while isometric views employ 45-degree
236 elevation and azimuth angles. The system saves rendered images as PNG files with
237 lossless compression, preserving color fidelity essential for subsequent region labeling
238 operations.

239 1.7.2 Legend and Text Detection

240 Before placing region labels, the system must identify areas to avoid to prevent obscuring
241 critical information or overlapping with existing annotations. We employ `EasyOCR`
242 with English language models to detect text regions within generated visualizations,
243 applying a confidence threshold of 0.3 to filter spurious detections. Detected text
244 regions receive padding of 30 pixels on all sides to ensure labels maintain readable sepa-
245 ration. Legend detection specifically identifies color bars and their associated numerical
246 labels through pattern matching on scientific notation text. The system searches for
247 text strings matching the regular expression pattern `-?\d+\.\d*e[+-]?\d+`, repre-
248 senting floating-point numbers in exponential format commonly used for engineering
249 field values. When multiple scientific notation strings appear vertically or horizontally
250 aligned within 30 pixels, the system groups them as belonging to the same legend bar.
251 Valid legend groups require at least two numerical labels to avoid false positives from
252 isolated exponential notation. Once identified, the system estimates the spatial extent
253 of each legend by computing bounding boxes around detected text groups, extending
254 100 pixels to the left (the typical colorbar width) and 40 pixels above and below the
255 text cluster. An additional safety margin applies a 20×20 pixel dilation kernel to cre-
256 ate buffer zones around all detected legend areas, ensuring robust separation between

257 labels and legends even when initial detection boundaries prove imprecise. Additional
258 avoidance regions include image borders (30 pixels from edges), very light areas (RGB
259 values exceeding 240 on 0-255 scale, indicating white background), and very dark areas
260 (RGB values below 20, indicating black background or unlabeled regions). For struc-
261 tural visualizations, the system also detects and avoids axis indicators—small colored
262 arrows or text typically rendered in pure red, green, or blue that denote coordinate
263 system orientation. These indicators occupy areas between 50 and 2000 pixels, with
264 40-pixel padding applied around each detected indicator.

265 **1.7.3 Color Gradient Analysis**

266 Engineering visualization standards employ rainbow color gradients mapping from red
267 (maximum values) through yellow and green to blue (minimum values). The system
268 generates a reference gradient containing 20 discrete color steps spanning this spectrum
269 through RGB interpolation. For fluid dynamics, the gradient represents flow field
270 magnitudes; for structural analysis, it represents stress or displacement magnitudes.
271 To classify any pixel in the visualization as belonging to the simulation color scheme
272 versus background or annotation elements, the system computes Euclidean distances
273 in RGB space between the pixel's color and all reference gradient colors. Colors falling
274 within a tolerance of 80 Euclidean distance units (on a 0-255 RGB scale) from any
275 reference gradient color classify as simulation colors; colors exceeding this threshold
276 classify as background or annotation elements. This tolerance accommodates rendering
277 antialiasing and color interpolation artifacts while maintaining sufficient specificity to
278 distinguish simulation data from interface elements.

279 **1.7.4 Region Point Selection**

280 The system selects four points (A, B, C, D) for region labeling through a constrained
281 random sampling procedure that ensures spatial distribution, simulation color associa-
282 tion, and sufficient mutual separation. Starting from the set of all pixels classified as
283 simulation colors and not falling within legend, text, or border avoidance masks, the
284 system randomly shuffles candidate positions and iteratively selects points meeting
285 the following criteria:

- 286 • The pixel color must fall within the simulation color tolerance (80-unit Euclidean
287 distance from the gradient)
- 288 • Spatial separation from all previously selected points must exceed 50 pixels initially
- 289 • If fewer than four points satisfy the initial constraint after exhaustive search, the
290 system relaxes the spatial separation requirement to 20 pixels and repeats selection

291 This approach balances the competing objectives of spatial distribution (ensuring
292 labels span the visualization domain rather than clustering) and color diversity (ensur-
293 ing labels correspond to meaningful field value ranges rather than uniform regions).
294 The relaxed spatial constraint accommodates visualizations where simulation colors
295 occupy relatively small portions of the image domain due to large legends or extensive
296 background areas. For each selected point, the system determines its color grad-
297 ient level by identifying which of the 20 reference gradient colors exhibits minimum
298 Euclidean distance in RGB space. Higher gradient indices correspond to colors closer

299 to red (representing higher field values), while lower indices correspond to colors
300 closer to blue (representing lower field values). This mapping enables subsequent label
301 assignment based on relative color intensities.

302 **1.7.5 Label Assignment and Ground Truth Determination**

303 For questions asking about maximum value locations, the system assigns labels such
304 that at least one of the four selected points exhibits a local maximum color gradi-
305 ent level among the four points. The point with the highest gradient level receives
306 the ground truth label, while remaining points receive alternative labels in descending
307 order of their gradient levels. This scheme ensures that selecting the "reddest" region
308 among the four labeled options yields correct answers, but critically, it does not guar-
309 antee that any labeled region corresponds to the global maximum across the entire
310 visualization domain. Conversely, for questions asking about minimum value locations,
311 label assignment proceeds in reverse order, with the point exhibiting the lowest gra-
312 dient level receiving the ground truth label. This bidirectional assignment strategy
313 prevents models from learning simple heuristics such as "always choose the reddest
314 region" or "always choose the bluest region" across different question types. The label
315 assignment approach deliberately introduces variability in absolute color intensities of
316 correct answers across different instances and viewing orientations. In isometric views
317 where maximum stress concentrations may appear edge-on or obscured, the labeled
318 point nearest to the numerical maximum location may not exhibit the deepest red
319 coloring in the visualization. Similarly, certain viewing angles may render minimum
320 value regions larger or smaller depending on three-dimensional geometry. This vari-
321 ability ensures that successful localization depends on spatial reasoning about field
322 distributions rather than simple color intensity comparisons among labeled regions.

323 **1.7.6 Validation and Consistency Checks**

324 After generating labeled visualizations and determining ground truth, the system per-
325 forms consistency validation by verifying that numerical target locations extracted
326 from simulation data correspond spatially to assigned ground truth regions. For max-
327 imum value questions, the system computes the Euclidean distance between the
328 coordinates exhibiting maximum field magnitude and the pixel coordinates of each
329 labeled region, confirming that the minimum distance corresponds to the region des-
330 ignated as ground truth. When validation fails—typically due to extreme viewing
331 angles rendering target locations outside the visible domain or due to numerical preci-
332 sion issues in coordinate transformations between three-dimensional simulation space
333 and two-dimensional image space—the system flags the instance for manual review or
334 regenerates the visualization with alternative camera parameters. Across the complete
335 benchmark dataset, validation failure rates remain below 2%, occurring primarily in
336 cases where maximum values concentrate at geometric features (corners, edges) that
337 project to image boundaries in certain viewing orientations.

338 **1.8 OCR and Image Processing Parameters**

339 All image processing operations employ standardized parameters derived from exten-
340 sive testing across diverse simulation visualizations. The `EasyOCR` reader initializes
341 with English language models and processes images at their native 1920×1440 res-
342 olution without downsampling. Text detection employs a confidence threshold of
343 0.3, representing a balance between capturing legitimate text elements (which typ-
344 ically exhibit confidence scores above 0.5) and avoiding false positives from visual
345 artifacts or simulation features that superficially resemble text. Color distance cal-
346 culations throughout the system employ Euclidean metrics in RGB space: $d =$
347 $\sqrt{(R_1 - R_2)^2 + (G_1 - G_2)^2 + (B_1 - B_2)^2}$. While perceptually uniform color spaces
348 such as CIELAB might provide more accurate color similarity measures, RGB
349 Euclidean distance suffices for the relatively saturated rainbow gradients employed in
350 engineering visualizations and avoids computational overhead from color space trans-
351 formations. Grayscale detection identifies pixels where maximum channel differences
352 fall below 30 units on the 0-255 scale: $\max(|R-G|, |G-B|, |B-R|) < 30$. This criterion
353 successfully distinguishes achromatic background elements, text, and annotations from
354 chromatic simulation data across diverse visualization styles while accommodating
355 subtle color casts that may arise from rendering antialiasing.

356 **1.9 Computational Efficiency and Scalability**

357 The automated extraction system processes complete question sets (10 questions span-
358 ning multiple visualization orientations and field variables) for a single simulation
359 case in approximately 5-15 minutes on standard workstation hardware, depending
360 on mesh density and complexity of required analyses. This represents a 100-fold
361 improvement in throughput compared to manual expert annotation while eliminat-
362 ing subjective variability inherent in human interpretation of complex visualizations.
363 Session reuse constitutes the primary efficiency optimization, avoiding repeated file
364 loading and solver initialization overhead. Secondary optimizations include vectorized
365 array operations through NumPy for statistical calculations and batched visualization
366 generation for questions sharing common rendering parameters. The system's architec-
367 ture supports straightforward parallelization across multiple simulation cases, enabling
368 scalable dataset generation limited only by available computational resources rather
369 than human expert availability. All threshold values, tolerance parameters, and com-
370 putational procedures remain consistent across the entire benchmark dataset, ensuring
371 that ground truth quality depends on implementation fidelity rather than annotator
372 expertise.

373 **2 Supplementary Note 2: Complete Evaluation
374 Specifications and Protocols**

375 **2.0.1 System Prompt**

376 The following system prompt was used across all models without modification:

```

377 "You are a visual question answering assistant. You MUST follow
378     this exact format:\n\n"
379 "FORMAT REQUIREMENTS:\n"
380 "Line 1: Copy the EXACT answer text from the provided options (
381     word-for-word, including all symbols)\n"
382 "Line 2: One brief explanation sentence (10-15 words)\n\n"
383 "CRITICAL RULES:\n"
384 "1. The first line MUST be an EXACT COPY of one option - do not
385     paraphrase or summarize\n"
386 "2. Copy ALL words, punctuation, and mathematical symbols
387     exactly as shown in the option\n"
388 "3. Do NOT add phrases like 'The answer is' or explanatory text
389     on line 1\n"
390 "4. Do NOT shorten or reword long options - copy them
391     completely\n\n"
392 "EXAMPLE 1 (Simple):\n"
393 "Question: Is the sky blue?\n"
394 "Options: Yes, No\n"
395 "CORRECT:\n"
396 "Yes\n"
397 "The clear atmosphere scatters blue wavelengths effectively.\n\n"
398     n"
399 "EXAMPLE 2 (Complex option with symbols):\n"
400 "Question: What is the range?\n"
401 "Options: Less than 10x min, More than 1000x min\n"
402 "CORRECT:\n"
403 "More than 1000x min\n"
404 "The values span from 7 billion to 1.6 trillion.\n\n"
405 "INCORRECT:\n"
406 "More than three orders of magnitude\n"
407 "(This paraphrases instead of copying the exact option)\n\n"
408 "Remember: Line 1 = EXACT COPY of option. Line 2 = explanation
409     ."

```

410 2.0.2 User Prompt Template

411 For each question instance, the following template format was used:

```

412 prompt += "Instructions:\n"
413 prompt += "1. First line: Provide ONLY your answer exactly as
414     it appears in the options above (e.g., 'A', 'Yes', 'X axis',
415     etc.). Do NOT add any other text on this line.\n"
416 prompt += "2. Second line onwards: Provide a brief summary (1-2
417     sentences) explaining your reasoning.\n\n"
418 prompt += "Answer:"

```

419 For video inputs, no prompt modifications were applied beyond the standard template. Both image and video modalities received identical prompting to enable direct
420 performance comparison.

422 **2.0.3 Rationale**

423 The two-line structured output format addresses two critical evaluation requirements:
424 (1) enabling automated answer extraction through simple line-based parsing without
425 requiring complex natural language interpretation of model responses, and (2) requiring
426 models to provide reasoning justification for post-hoc error analysis. Pilot testing
427 revealed that models frequently paraphrased answer options or embedded answers
428 within explanatory text when using free-form prompts, creating ambiguity in correctness
429 determination. The strict format requirements with explicit positive and negative
430 examples eliminate this source of evaluation error while maintaining consistency across
431 diverse model architectures and deployment methods.

432 **2.1 Model Configurations**

433 Supplementary tables 1, 2, and 3 present complete configuration parameters for all
434 evaluated models. All parameters remained fixed across the entire evaluation to ensure
435 reproducibility.

436 Temperature 0.0 configurations enforce deterministic sampling for reproducibility,
437 while non-zero temperatures (Qwen models) follow official deployment guidelines
438 specifying optimal operating points for visual reasoning tasks.

439 **2.2 Video Processing Specifications**

440 **2.2.1 Source Video Characteristics**

441 Original simulation videos were generated with domain-specific parameters:

- 442 1. **Structural Analysis:** 200 frames at 29 frames/second (7 seconds duration).
443 Maximum deformation occurs at frame 100 (temporal midpoint), after which the
444 simulation reverses to initial state.
- 445 2. **Fluid Dynamics:** 200 frames at 40 frames/second (5 seconds duration). Frames
446 represent pathlines showing steady-state flow solution.

447 All videos rendered at 1920×1440 pixel resolution with H.264 compression,
448 matching static image resolution to ensure consistent visual detail across media types.

449 **2.2.2 Frame Extraction Strategy**

450 Video frame extraction employed middle-frame-centered uniform sampling: for videos
451 with N total frames requiring K extracted frames, the system first selected the middle
452 frame at position $\lfloor N/2 \rfloor$, then sampled $(K - 1)/2$ frames before and after this mid-
453 point at uniform intervals. This strategy ensures that structural analysis videos always
454 include the maximum deformation state (which occurs at the temporal midpoint) in
455 the frame set provided to models.

456 Extracted frames maintained 1920×1440 resolution and saved as PNG with lossless
457 compression before model input.

458 **2.3 Reproducibility Protocols**

459 **2.3.1 Dataset Access**

460 The benchmark dataset is available through HuggingFace for both structural anal-
461 ysis (<https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Structural>) and fluid
462 dynamics (<https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Fluid>).

463 **2.3.2 Random Seed Configuration**

464 All stochastic components (Python random module, NumPy random number gen-
465 erator, PyTorch CUDA random number generator) initialized with seed value 42
466 before evaluation. For models employing non-deterministic sampling (Qwen-235B at
467 temperature 0.7), complete response logs can be requested for exact replication.

468 **2.3.3 Software Environment**

469 Critical dependency versions: Python 3.10, PyTorch 2.1.0 (CUDA 12.8), HuggingFace
470 Transformers 4.36.0, HuggingFace Datasets 2.16.0, OpenCV 4.8.1, OpenAI Python
471 SDK 1.6.1, Anthropic Python SDK 0.8.1, Google Generative AI 0.3.2. Hardware: 2
472 X NVIDIA 5090 32GB GPUs with single-GPU inference for models \leq 8B parameters
473 and dual-GPU tensor parallelism for larger models.

474 **2.3.4 Code Availability**

475 Complete evaluation code, configuration files, and documentation are available at
476 <https://github.com/cmudrc/OpenSeeSimE-Full> under MIT License. The reposi-
477 tory includes shared utilities for prompt construction and response parsing, checkpoint
478 management infrastructure, and setup instructions.

479 **3 Supplementary Note 3: Complete Question
480 Specifications and Failure Analysis**

481 During experiments we observed that VLMs would produce a variety of noncompliant
482 responses. We categorize these responses into three primary types: explicit refusals
483 (models claim insufficient information despite adequate visual evidence), contradic-
484 tory reasoning (models generate conflicting analyses without resolution), and purely
485 descriptive responses (models describe observations without completing reasoning to
486 answer).

487 **3.0.1 Explicit Refusals**

488 In fluid dynamics evaluation, models occasionally refuse to answer despite adequate
489 visual information. The most extreme case occurs in InternVL-1B which displayed
490 systematic refusals. The dominant refusal phrase “not directly comparable to the
491 sound speed in water without additional context” appears in these failures, despite
492 images containing sufficient information (velocity values) to perform straightforward
493 Mach number calculations. Additional refusals citing “not specified in the image” occur

494 even when velocity magnitudes are explicitly displayed. This represents a calibration
495 failure where the model refuses to make reasonable inferences from available visual
496 data. In structural analysis, refusal rates remain negligible across all models, suggesting
497 this failure mode is task-specific.

498 **3.0.2 Contradictory/Conflicting Information**

499 Models frequently generate internally inconsistent analyses, particularly in spatial rea-
500 soning tasks. In structural analysis, models exhibit contradictory reasoning in 44.7%
501 of None responses, describing spatial features or stress distributions without mapping
502 these observations to required answer choices. Representative examples include state-
503 ments like “The color red in the color bar and the ‘Max’ label indicate the highest
504 value, which corresponds to the maximum displacement” or “clear axis of symmetry
505 along the X-axis, as indicated by the symmetrical pattern,” but failing to conclude
506 which labeled point (A/B/C/D) corresponds to these observations. In fluid dynamics,
507 contradictory reasoning manifests as factually incorrect assessments that contradict
508 the correct answer. The most prominent pattern occurs in Llama-3.2-11B, where 38.3%
509 of its fluid failures contain the phrase “greater than the speed of sound in water,”
510 without specifying transonic or supersonic. These contradictions indicate reasoning
511 failures where models generate contradictory answers rather than merely failing to
512 format answers correctly.

513 **3.0.3 Purely Descriptive Responses**

514 Several models are solely in observation mode, providing detailed descriptions without
515 reasoning to conclusions. This pattern appears predominantly in structural analysis,
516 affecting 60% of None responses in smaller models. Representative responses include
517 “The image shows a 3D stress distribution with a clear axis of symmetry” or “color-
518 coded map representing total deformation, indicating a gradual change across the
519 structure” without identifying requested locations or classifying deformation types.
520 Models provide accurate visual observations but fail to complete the reasoning chain to
521 categorical answers. This failure mode is notably less prevalent in fluid dynamics tasks,
522 suggesting particular difficulty in bridging visual observations to spatial categorical
523 answers in structural mechanics contexts.

524 **3.0.4 Model-Specific Patterns**

525 InternVL-1B demonstrates the most severe and systematic failures, with 5,042 None
526 responses in fluid dynamics (55.9% of all fluid failures across models) driven pri-
527 marily by explicit refusals. This substantially exceeds other models’ failure rates and
528 represents a fundamental limitation in the model’s ability to perform basic inferen-
529 tial reasoning from visual data. In structural analysis, the same model shows 84.8%
530 purely descriptive failures, indicating consistent difficulty in completing reasoning
531 chains across both domains. Larger models (GPT-5, Claude-Sonnet-4-5) show minimal
532 non-extraction failures, with most None responses attributable to API infrastructure

533 issues rather than cognitive limitations. Mid-size models (Gemma-12B, Llama-3.2-
534 11B) demonstrate intermediate failure rates with more varied patterns including
535 incomplete analyses and contradictory answers.

536 **3.1 Complete Question Specifications**

537 This section provides the comprehensive question sets employed in OpenSeeSimE. All
538 questions were designed to assess engineering visualization interpretation across two
539 primary analysis domains: structural mechanics and computational fluid dynamics.

540 **3.1.1 Structural Analysis Questions**

541 The structural analysis question set comprises ten questions spanning symmetry
542 detection, stress classification, deformation characterization, and spatial localization
543 tasks.

544 1. Is the deformation pattern symmetric across any axis?

- 545 • Question Category: Relationship Understanding
- 546 • Question Type: Binary
- 547 • Options: Yes, No

548 2. Are the stresses predominantly tensile in nature?

- 549 • Question Category: Reasoning
- 550 • Question Type: Binary
- 551 • Options: Yes, No

552 3. Is the [stress/strain/temperature/pressure] distribution pattern uniform?

- 553 • Question Category: Captioning
- 554 • Question Type: Binary
- 555 • Options: Yes, No

556 4. The significant deformation in the model is primarily:

- 557 • Question Category: Relationship Understanding
- 558 • Question Type: Multiple Question
- 559 • Options:
 - 560 (a) Y axis
 - 561 (b) X axis
 - 562 (c) Z axis
 - 563 (d) Complex multi-directional

564 5. What is the axis of symmetry?

- 565 • Question Category: Relationship Understanding
- 566 • Question Type: Multiple Question
- 567 • Options:
 - 568 (a) X

569 (b) Y
570 (c) Z
571 (d) None/Multiple

572 6. The dominant stress type in the critical region is:

- 573 • Question Category: Reasoning
- 574 • Question Type: Multiple Question
- 575 • Options:
 - 576 (a) Bending dominant
 - 577 (b) Shear dominant
 - 578 (c) Axial dominant
 - 579 (d) Torsion dominant

580 7. Where is the maximum [displacement/stress/strain/temperature] located in the
581 model?

- 582 • Question Category: Grounding
- 583 • Question Type: Spatial
- 584 • Options: A, B, C, D

585 8. Where is the minimum [displacement/stress/strain/temperature] located in the
586 model?

- 587 • Question Category: Grounding
- 588 • Question Type: Spatial
- 589 • Options: A, B, C, D

590 9. What is the approximate range (maximum-minimum) of values in the displayed
591 contour plot?

- 592 • Question Category: Captioning
- 593 • Question Type: Multiple Question
- 594 • Options:
 - 595 (a) Less than one order of magnitude ($\max < 10 \times \min$)
 - 596 (b) One to two orders of magnitude ($10 \times \min < \max < 100 \times \min$)
 - 597 (c) Two to three orders of magnitude ($100 \times \min < \max < 1000 \times \min$)
 - 598 (d) More than three orders of magnitude ($\max > 1000 \times \min$)

599 10. There is primarily what type of deformation?

- 600 • Question Category: Captioning
- 601 • Question Type: Multiple Question
- 602 • Options:
 - 603 (a) In-plane deformation
 - 604 (b) Out-of-plane deformation
 - 605 (c) Complex multi-directional deformation
 - 606 (d) No significant deformation

607 **3.1.2 Fluid Analysis Questions**

608 The computational fluid dynamics question set comprises ten questions evaluating
609 flow field interpretation, symmetry detection, flow regime classification, and spatial
610 pattern recognition. These questions assess comprehension of velocity, pressure, and
611 temperature distributions in fluid simulations.

612 1. Are there dead zones (stagnant flow areas) visible in the simulation?

613 • Question Category: Reasoning
614 • Question Type: Binary
615 • Options: Yes, No

616 2. Is the flow field symmetric across any axis?

617 • Question Category: Captioning
618 • Question Type: Binary
619 • Options: Yes, No

620 3. The flow is only in one direction

621 • Question Category: Captioning
622 • Question Type: Binary
623 • Options: Yes, No

624 4. Are there regions of low velocity and low pressure?

625 • Question Category: Relationship Understanding
626 • Question Type: Binary
627 • Options: Yes, No

628 5. What is the axis of symmetry?

629 • Question Category: Relationship Understanding
630 • Question Type: Multiple Question
631 • Options:
632 (a) X
633 (b) Y
634 (c) Z
635 (d) None/Multiple

636 6. How would you characterize the flow speed relative to sound speed?

637 • Question Category: Reasoning
638 • Question Type: Multiple Question
639 • Options:
640 (a) Subsonic (Mach < 0.8)
641 (b) Transonic (0.8 < Mach < 1.2)
642 (c) Supersonic (Mach > 1.2)
643 (d) N/A

644 7. Where is the maximum [velocity/pressure/temperature] located in the flow field?

- 645 • Question Category: Grounding
- 646 • Question Type: Spatial
- 647 • Options: A, B, C, D

648 8. Where is the minimum [velocity/pressure/temperature] located in the flow field?

- 649 • Question Category: Grounding
- 650 • Question Type: Spatial
- 651 • Options: A, B, C, D

652 9. What is the approximate range (maximum-minimum) of values in the displayed
653 contour plot?

- 654 • Question Category: Captioning
- 655 • Question Type: Multiple Question
- 656 • Options:
 - 657 (A) Less than one order of magnitude ($\max < 10 \times \min$)
 - 658 (B) One to two orders of magnitude ($10 \times \min < \max < 100 \times \min$)
 - 659 (C) Two to three orders of magnitude ($100 \times \min < \max < 1000 \times \min$)
 - 660 (D) More than three orders of magnitude ($\max > 1000 \times \min$)

661 10. Flow is dominantly along which axis (If axis is not visible, select between axial and
662 radial as X and Y respectively)?

- 663 • Question Category: Relationship Understanding
- 664 • Question Type: Multiple Question
- 665 • Options:
 - 666 (a) X
 - 667 (b) Y
 - 668 (c) Z
 - 669 (d) Complex Multidirectional

670 The complete OpenSeeSimE dataset including all simulation instances, question-
671 answer pairs, visualizations, and metadata is publicly available for both struc-
672 tural analysis (<https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Structural>)
673 and fluid analysis (<https://huggingface.co/datasets/cmudrc/OpenSeeSimE-Fluid>).