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Fig.S1 Elevated NPTX2 expression in PD dopaminergic neurons. a Forest plots showed

increased expression of NPTX2 in the single-cell RNA sequence in dopaminergic neurons of PD.
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Fig.S2 The baseline relationship between CSF NPTX2 and oa-synuclein, as well as the

dopaminergic degeneration. a-f Scatterplots showing the correlation between NPTX2 and total

a-syn amounts in CSF (a), the time to 50% max fluorescence (T50%) of a-syn SAA (b) , the time

to threshold (TTT) of a-syn SAA (¢), mean striatum binding ratio(d), mean putamen binding

ratio(e), and mean caudate binding ratio(f) in patients with PD. Measurements were adjusted for

age, sex, apolipoprotein E €4 status, LEDD, baseline Hoehn-Yahr stage, and disease duration.

Linear trend lines are shown, and the 95% confidence intervals are indicated by shading. h =

hours; SAA, seed amplification assay.
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Fig.S3 The relationship between baseline CSF NPTX2 and longitudinal a-synuclein, as well as
the dopaminergic degeneration. a-d LMMs were used to examine effects of baseline CSF NPTX2
levels with follow-up time on CSF longitudinal a-synuclein(a), mean striatum binding ratio(b),
mean putamen binding ratio (¢), and mean caudate binding ratio(d). Measurements were adjusted for

age, sex, apolipoprotein E €4 status, LEDD, baseline Hoehn-Yahr stage, and disease duration.
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Fig.S4 Baseline CSF NPTX2 predict motor subtype conversion. a, ¢ Baseline CSF NPTX2
was compared in non-converters and converters at baseline TD group (a) and PIGD group (¢).
Multivariate linear regression were used for group comparison. b, d Relationship between
baseline CSF GFAP and the probability of TD (b) and PIGD (d) motor subtypes after
correction for confounders. The confounders including age, sex, apolipoprotein E &4 status,
LEDD, baseline Hoehn-Yahr stage, and disease duration. NPTX2, Neuronal pentraxin II; TD,

tremor dominant; Ind, indeterminate, PIGD, postural instability and gait disturbance.
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Fig.S5 CSF NPTX2 level were nonlinearly associated with progression milestones in PD

a-f Using Cox regression model with RCS to explore non-linear relationship between CSF

NPTX2 levels and the milestones of Parkinson's Disease progression. Walking and balance(a);

Motor complications(b); Cognition(c); Autonomic dysfunction(d); Functional dependence(e);

Activities of daily living(f). The analyses were adjusted for age, sex, apolipoprotein E €4 status,

LEDD, baseline Hoehn-Yahr stage, and disease duration. In addition, in terms of cognition, the

model also corrected Baseline MoCA score and education.
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Fig.S6 Effects of NPTX1 and NPTXR on longitudinal symptoms in Parkinson’s disease. a
LMMs were used to examine effects of baseline CSF NPTXI1 level and NPTXR level with
follow-up time on longitudinal symptoms. b Cox proportional hazards models provided evidence
of associations between CSF NPTX1 level and CSF NPTXR level and incident Hoehn-Yahr stage
>4, incident dementia or the milestones of PD. LMM, linear mixed model; dementia, MoCA < 22;
TotRec, HVLT Immediate/Total Recognition Index t-score; JoLO, the Benton Judgment of Line
OrientRecall t-score; DelRec, HVLT Delayed Recall t-score; Retent, HVLT Retention t-score;
RecDisc, HVLT Discrimination ation, LNS, the Letter Number Sequencing; SFT, the Semantic
Fluency Test; SDMT, Symbol Digit Modalities Test; Scopa, SCOPA-AUT Total Score; Stai,
State-Trait Anxiety Index (STAI) Total Score; H-Y stage, Hoehn-Yahr stage.
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Fig.S7 The baseline relationship between CSF NPTX2 and brain cortical thickness and

cortical surface area. a Heatmap showing baseline associations between CSF NPTXs and brain

cortical thickness. b Heatmap showing baseline associations between CSF NPTXs and brain

cortical surface area. The analyses were adjusted for age, sex, apolipoprotein E &4 status, LEDD,

baseline Hoehn-Yahr stage, disease duration, signal-to-noise ratio. For the cortical surface area,

the model additionally adjusted for intracranial volume. Significant associations were determined
with FDR-adjusted P value < 0.05. (*FDR-adjusted P value < 0.05, ** FDR-adjusted P value <
0.01, and *** FDR-adjusted P value < 0.001)
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Fig.S8 The baseline relationship between CSF NPTX2 and CSF biomarkers. a-i Scatterplots
showing the correlation between NPTX2 and AR, 4,(a), T-tau(b), P-tau(c), NfL(d), GFAP(e), YKL-
40(f), sTREM2(g), S100(h), IL-6(i) in patients with PD. Measurements were adjusted for age, sex,

apolipoprotein E &4 status, LEDD, baseline Hoehn-Yahr stage, disease duration, baseline MoCA

scores and education. Linear trend lines are shown, and the 95% confidence intervals are indicated

by shading. AB,,,, Amyloid-beta (1-42); T-tau, total tau; P-tau, tau phosphorylated at the
threoninel181 position (p-taul81); GFAP, Glial fibrillary acid protein; YKL-40, Chitinase-3-like

Protein 1; sSTREM2, Soluble triggering receptor expressed on myeloid cells 2; S100, S100 calcium

binding protein B; IL-6, Interleukin 6.
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Fig.S9 Mediation of the association between CSF NPTX2 and tau pathology by sTREM2
and YKL-40. a, b sTREM2 and YKL-40 significantly mediated the association between CSF
NPTX2 level and T-tau(a) and P-tau (b). Model were adjusted for age, sex, apolipoprotein E &4

status, LEDD, baseline Hoehn-Yahr stage, disease duration, baseline MoCA scores and education.
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