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	Cell line
	Role in colonization

	BMP71
	MDA-231 (BC)
	?

	cAMP2
	NAMEC8 (B)
	?

	E-selectin expressed on the surface of BM cells3
	SUM159, MDA-MB-231 (BC)
	Yes

	BMP secreted by CAFs4 
	MMTV-PyMT (mouse BC)
	Yes

	Versican by myeloid cells5
	MDA-MB-231 (BC)
	Yes

	CTGF6
	SAS and FaDu (HNSCC)
	?

	Lumican7
	MCF-7, MDA-MB-231 (BC)
	?

	Presence of parenchymal liver cells8 
	DU-145, PC-3 (PC)
	?



Supplementary Table 1: MET driven by microenvironmental factors. Signaling agents identified as MET-promoting factors (column 1) have been studied in cell lines (column 2) and reported to have a role in colonization (column 3). Note that some studies used a specific derivative of the reported cell line and/or further validated their findings in cell lines not reported here. All the cell lines used presented a mesenchymal phenotype, which in some cases was obtained through EMT inducer treatment. BM: Bone Marrow, CAFs: Cancer-Associated Fibroblasts, BC: breast cancer, B: breast tissue, PC: prostate cancer, HNSSC: Head and neck squamous cell carcinoma. 


	[bookmark: _3rdcrjn]MET factor
	Cell line
	REF
	[bookmark: _3rdcrjn]Downstream targets 

	p53
	HMEC, MCF12A (B)
	9
	Induces miR200

	miR200
	NMuMG (mouse B), 4TO7 (BC)
	10
	– 

	∆Np63
	UM-UC3 (BLC)
	11
	–

	GRHL2
	HMLE (B), MDA-MB-231 (BC)
	12
	–

	OVOL2
	MDA-MB-231 (BC), PC3 (PC)
	13,14
	–

	OVOL1
	MDA-MB-231 (BC), PC3 (PC)
	13
	–

	Elf5
	MDA-MB-231 (BC)
	15
	Represses SNAI2

	Klf4
	MDA-MB-231 (BC)
	16
	Induces ECAD

	FBXO22
	MCF10A, MDA-MB-231, Hs578T (BC)
	17
	Represses SNAI1

	EHF
	HOC313, TSU (HNSSC), MDA-MB-231 (BC)
	18
	Represses ZEB1 and ZEB2

	CKB
	PC3, LN3 (PC)
	19
	Represses AKT

	LINC01133
	HCT116 (CC)
	20
	Represses SRSF6

	Claudin 7
	SW620 (CC)
	21
	Represses ERK and SRC through Rab25

	ID1
	HMLE (B)
	22
	– 

	C/EBPa
	HMLE (B)
	23,24
	Induces P63 and represses ZEB1

	GATA3
	MDA-MB-231, Hs578T, 4T1 (BC)
	25
	Induces miR-29b, which represses PDGF (RTK)

	Reprogramming factors
	HOC313, OSC-19 (OSCC)
	26
	Not clear, as it varies according to cell line

	miR30a
	H1299, Calu-1 (NSCLC)
	27,28
	Represses SNAI1 and VIM

	RUNX3
	BGC-823, SGC-7901, AGS (GA)
	28
	Represses SNAI1 and VIM through miR30a

	Rap1
	MDCK (K)
	29
	Required for cadherin junctions (AdhJunc)

	PRRX1a
	KPC1, KPC2 (mouse PanC)
	30
	Mechanism not clear 



Supplementary Table 2: MET driven by intracellular factors. The intracellular MET-promoting factors (column 1) that have been studied in cell lines (column 2) with the corresponding reference (column 3).  Note that the cell lines used in these studies presented a mesenchymal phenotype, which in some cases was obtained through EMT inducer treatment. BC: breast cancer, B: breast tissue, BLC: bladder cancer, PC: prostate cancer, HNSSC: Head and neck squamous cell carcinoma, CC: colorectal carcinoma, OSCC: oral squamous cell carcinoma, GA: gastric adenocarcinoma, PanC: Pancreatic cancer, NSCLC: non-small cell lung cancer, K: transformed kidney cells. 
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In this section, we extend our description of the model, focusing on the roles of some of the proteins in the non-canonical TGFβ pathway that are included in the model. 


The role of ERK and AKT in TGFB-EMT programs
Through its downstream effectors, ERK can activate ZEB135. Both ERK and AKT can phosphorylate and inactivate GSK3β. When active, GSK3β degrades SNAI1/2 and the β-catenin (CTNNB1) that is liberated from its interaction with E-cadherin 36,37. When β-catenin is not degraded, it can translocate to the nucleus and bind with members of the T-cell and lymphoid enhancer (TCF/LEF) factors and further promote EMT38,39. For instance, βcatenin-TCF4 can induce ZEB1 and vimentin and MMT1-MMP40–43. β-catenin-TCF4 can be regulated by miR200 which represses both CTNBB1 and TCF444,45. AKT can further contribute to EMT by activating NFkB, which subsequently acts as a direct transcriptional activator of SNAI2, ZEB2, and TWIST138,46. Finally, JNK activates c-Jun, a component of the AP-1 complex which is in turn implicated in the transcriptional upregulation of ZEB1/247 (Figure 2). Of note, ERK can also activate JNK and upregulate the AP-1 complex component Fra-1, highlighting the cooperation between these signaling cascades48–50.

The role of the NRTK

TGFβ is also involved in the activation of non-receptor tyrosine kinases (NRTK) PYK2, FAK, and SRC. On one hand, SRC and FAK cooperate with integrins, such as β3, to phosphorylate TGFβR-II and allow TGFβ to induce MAPK-ERK and other pathways31–33. On the other hand, TGFβ has been shown to increase PYK2 activity, an effect dependent on TGFβR-I, SRC, and SMAD434 (Figure 2 in the main text and Supplementary Figure 1). 

NRTKs are important players of EMT, acting as mediators of several processes: (1) the disorganization of E-cadherin cell-cell contacts 51, (2) the formation of invadosome, which is a structure crucial for ECM degradation, (3) the basement membrane penetration 52, and (4) the activation of several pathways such as Ras-ERK and STAT3 upon signaling through Receptor Tyrosine Kinases (RTKs), which can be activated by several growth factors (GF) and clusters of integrins 53–55. RTKs also activate other pathways, such as PI3K-AKT 56. Downstream of integrins and GF, SRC can drive the phosphorylation and destabilization of Adherens Junction, leading to the release of β-catenin from E-cadherin57. TGFβ can activate SRC directly through its receptor and by inducing its activators 58,59. For instance, TWIST1 induced by TGFβ-EMT can activate the transcription of PDGFRα (a RTK highly linked to the direct activation of SRC) and its ligand to mediate invadosome formation through the TWIST-PDGFRα-SRC signaling axis60.

PYK2 can activate STAT3, which in turn binds to the TWIST1 promoter and activates its transcription56,61. PYK2 forms a positive feedback loop with STAT3, the latter being crucial for PYK2 activation in response to EGF. In this condition, PYK2 cooperates with SRC to activate the ERK pathway56. Moreover, EGF and SRC also cooperate to activate STAT3, which further promotes PYK2 signal62. 
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Supplementary Figure 1: A) Main axis of the TGFβ-EMT program. B) BMP and TGFβ interfere with each other. Regulatory network of the interactions between EMT-TFs and some MET drivers.
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Supplementary Figure 2: PCA plot showing PC1 and PC2 of the model steady states. Color indicates phenotype. Similar stable states cluster together according to the 4 phenotypes defined in the text.. 
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Supplementary Figure 3: The 25 steady states of the model showing all the nodes’s status. 


[image: ]Supplementary Figure 4: Final node probabilities of simulations under epithelial initial condition (EpiIC) under different Input combinations.
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Supplementary Figure 5: Final node probabilities of simulations under mesenchymal initial condition (MesIC) under different Input combinations.

[image: ]
Supplementary Figure 6: Final node probabilities of simulations under mesenchymal initial condition (MesIC) under different Input combinations for OVOL1 modified model. 
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Supplementary Figure 7: Activating mutations of MET drivers. Each row represents the proportion of the final state probabilities, according to the phenotype. Mutations of nodes not included in the network are indicated by *. Mutant simulations were performed in MesIC with inputs TGFB_L=1, BMP=0, GF=1 (left) and TGFB_L=0, BMP=0, GF=1 (right).
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Supplementary Figure 8: Mutations in MesIC generate distinct outcomes. Inactivating mutations in  MesIC with inputs  (TGFB_L=1, BMP=0,  GF=0), wild type is highlighted in red.
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Supplementary Figure 9: Simulation of SNAI2 KO on MesIC under TGFB_L 
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Supplementary Figure 10. Knockouts in  MesIC with inputs  (TGFB_L=1, BMP=0,  GF=0) and their corresponding phenotype.
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