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I. Theoretical Analysis 

1.1 1D nearest-neighbor TBM model 

To demonstrate the ubiquity of the non-Hermitian reshaping effect, we investigate 

a 1D non-reciprocal nearest-neighbor Tight-Binding Model (TBM). This model 

elucidates the transition behavior of electrons within a 1D non-reciprocal atomic chain. 

By considering only nearest-neighbor interactions and neglecting the electron-electron 

coupling, the electron dynamics can be described using a single-particle Hamiltonian.  

             

Here,  represents the quantum states where an electron is located on the 𝑛-th unit 

cell. Such atomic chain comprises 𝑁  unit cells, and the flexibility of this model 

manifests in the parameter   and  , where the non-reciprocal transition 

coefficients between each pair of atoms can be entirely inhomogeneous and arbitrary.  

By introducing non-reciprocity into the hopping coefficients through 

 , a non-Hermitian TBM model can be constructed. A common 

definition sets the hopping coefficient  in one direction while setting the 

other  . In this article, we modify the hopping coefficient to the right as 

  and to the left as  . These two formulations are 

mathematically equivalent when . The item  is used to characterize 

the distribution of arbitrary non-reciprocity in the system. 

  

For the special case of , the Hamiltonian of such a non-Hermitian model can be 
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expressed as:  

               

The eigenvalues of the Hamiltonian can be obtained by solving the characteristic 

equation , where  is the identity matrix. The matrix associated with 

this determinant is known as a 𝑛th-order tridiagonal matrix in mathematics:  

                    

which possesses several interesting properties that can simplify the calculation of 

eigenvalues. It is revealed that  and  never appear separately in this determinant 

and they always emerge in pairs as products.  

Proof 

Assuming that neither |𝐻𝑛−1 − 𝐸𝐼𝑛−1|  nor |𝐻𝑛−2 − 𝐸𝐼𝑛−2|  contains terms 

involving 𝜅. From Eq. S5, it follows that: 

|𝐻𝑛 − 𝐸𝐼𝑛| = (𝑎𝑛−1 − 𝐸) ∙ |𝐻𝑛−1 − 𝐸𝐼𝑛−1| − 𝑏𝑛−1𝑐𝑛−1 ∙ |𝐻𝑛−2 − 𝐸𝐼𝑛−2|, 

where 𝑏𝑛−1 = 𝑤𝑛−1𝑒𝜅𝑛−1 , 𝑐𝑛−1 = 𝑤𝑛−1𝑒−𝜅𝑛−1 , giving 𝑏𝑛−1 ⋅ 𝑐𝑛−1 = 𝑤𝑛−1
2  . Since 

𝑏𝑛−1  and 𝑐𝑛−1  always appears as a product, the dependence on 𝜅𝑛  is exactly 

eliminated. 

As the induction bases, we note that  

|𝐻2 − 𝐸𝐼2| = 𝐸2 − 𝑤1
2 

|𝐻3 − 𝐸𝐼3| = −𝐸3 + 𝐸𝑤1
2 + 𝐸𝑤2

2 

neither of which contains terms associated with 𝜅𝑛 . Consequently, by induction, 

|𝐻𝑛 − 𝐸𝐼𝑛| is independent of κ for any tridiagonal matrix 𝐻𝑛. 
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The sequence 𝑓𝑛 satisfies the recurrence relation: 

                   

The subscript indicates the order of the tridiagonal matrix. It can be mathematically 

proved that  does not contain any terms related to . 

Thus, this non-Hermitian Hamiltonian can be related to the Hermitian Hamiltonian 

through a similarity transformation, and the relation can always be expressed as: 

                           

where   represents the similarity transformation matrix. In the nearest-neighbor 

TBM model discussed earlier,  can be a diagonal matrix  and 

 , where   is nonzero only when 𝑚 = 𝑛 ± 1 . The spatial 

distributed non-reciprocity  is directly related to the recursive relation for 𝑡𝑛:  

                         

This recursive relation completely determines the expression of the diagonal similarity 

matrix . Such a similarity transformation can be used to modify the eigenfunctions. 

As a result, regardless of the choice of spatial function of the non-Hermitian coefficients 

, we can achieve precise theoretical predictions of the modified eigenfunctions. This 

undoubtedly paves the way for new possibilities in non-Hermitian modulation. 

1.2 General TBM models 

In the above derivation, we have relied on the mathematical properties of 

tridiagonal matrices. However, the Hamiltonian matrix is generally not tridiagonal. This 

implies that our derivation cannot be directly extended to cases involving next-nearest-

neighbor interactions or higher dimensions. 

Nevertheless, some aspects of the above results still hold in more general cases. 

While we can NOT guarantee that an arbitrary non-Hermitian Hamiltonian can always 

be transformed into a Hermitian one with well-defined dispersion spectrum and 
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topological property through the similarity transformation (this conclusion is inevitable; 

otherwise, no new physics would emerge from non-Hermitian systems), it is still 

possible to apply a diagonal similarity transformation 𝑇 to a well-defined system 𝐻𝑅. 

This Hamiltonian 𝐻𝑅 is not restricted to a Hermitian one but can be any TBM model 

with known properties. Consequently, a corresponding non-reciprocal Hamiltonian 

  can be constructed, which inherits the dispersion spectrum and 

topological properties of the base Hamiltonian 𝐻𝑅, while offering arbitrarily adjustable 

mode distribution. These features can be effectively applied to specific mode control 

applications, such as the design of laser cavities.  

  



5 

II. Numerical Verifications

2.1 1D NH-SSH model 

Fig. S1. Illustration of two typical models of NHRE. (a-b) Schematic 

diagram of the non-Hermitian skin effect, where the blue solid line in (a) 

represents a representative bulk state of the corresponding Hermitian SSH 

model, and the black solid line denotes the envelope function 𝑡𝑛. The product

of these two functions results in the solid line in (b), which signifies the bulk 

states of the non-Hermitian SSH model. (c-d) Schematic diagram of the non-

Hermitian morphing effect, where the blue solid line in (c) depicts the edge 

states at the domain wall, and the black solid line again represents the 

envelope function 𝑡𝑛 . Their product yields the blue solid line in (d), 

corresponding to the propagable topological zero mode. 

The theoretical analysis yielded promising results, demonstrating that non-

Hermitian manipulations can be applied to arbitrary models while preserving their 



6 

topological properties. In the following numerical calculations, we will validate these 

theoretical findings using the non-Hermitian SSH model and explore the intriguing 

aspects of this manipulation approach. 

Here, we consider two typical models. When taking   and setting 

[𝑤2𝑖, 𝑤2𝑖+1] to [𝑤, 𝑣], this scenario corresponds to the well-known non-Hermitian skin 

effect (NHSE). Therefore, 𝑇  can be solved as  , which directly 

leads to the non-Hermitian skin effect, as shown in Fig. S1(a-b). Furthermore, from the 

corresponding Hermitian Hamiltonian, it is evident that the topological transition point 

occurs at 𝑣 = 𝑤 , consistent with the result obtained from the generalized Brillouin 

zone theory.  

In the second model, we choose as a step function, with 

the non-Hermitian modulation applied only to the region where . Therefore, 𝑇 

can be expressed as   when and   when 

 . Preview article [37] combined two SSH models with different topological 

characteristics to induce edge states at the domain wall, where the index 𝑛0 denotes 

the interface separating the two model. These edge states can be represented by 

 when , where  denotes the decay rate of the 

edge state. When the parameters are appropriately chosen, the envelope function 𝑡𝑛 

applied to the edge states precisely counteracts the mode decay and yields a constant 

field distribution. This is fully consistent with the conclusions of the preview article on 

the non-Hermitian morphing effect, as shown in Fig. S1(c-d).  

A slightly more complex scenario than a piecewise  is when  is linearly 

distributed, i.e. 𝜅𝑛 = −𝛼 ⋅ (𝑛 − 𝑟) , where 𝛼  and 𝑟  are modulation parameters. 

According to Eq. S7, we can derive the expression for  in this case: 
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Here, represents the central position of the modulated function, and 

is a constant generated during the calculation that is not of concern. If is positive, 

the envelope function essentially becomes a Gaussian function. 

Assuming the expression for the edge state satisfies , where 

 represents the decay rate of the edge state. According to Eq. S7, multiplying by 

the edge state wave function yields 

This is the analytical expression for the modulated wave function, indicating that the 

edge state is modulated into a Gaussian function and translated by a certain distance, 

shifting from the boundary into the bulk, as shown in Fig. 1(e). 

Fig. S2. Manipulation of bulk and edge states via NHRE. (a-b) Spatial 

distribution of the original (a) bulk state and (b) edge state, respectively. (c) 

Envelope function 𝑡𝑛. (d-e) Spatial distribution of the modified (d) bulk state 

and (e) edge state, respectively.  

Figure S2 illustrates the manipulation of bulk and edge states, respectively. Both 

the bulk states in Fig. S2(a) and edge states in Fig. S2(b) are shifted towards the center 

under the influence of the Gaussian shaped envelope function depicted in Fig. S2(c). 
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Notably, the positions of the modulated edge state in Fig. S2(d) are not fully correlated 

with the bulk state in Fig. S2(e). The bulk states are confined to the center while the 

edge states can still be shifted to any desired position, under fine-tuning of the system 

parameters. This indicates that, although NHRE acts on all modes simultaneously, we 

can still achieve relatively independent control over different types of modes. This 

further enhances the tunability of NHRE. 

2.2 2D NH-BBH model 

While our previous calculations validated the framework in 1D, we now apply it to 

the 2D BBH model to demonstrate its broader applicability to more general systems. 

The most notable feature of the BBH model is the corner-localized modes that emerge 

within the bandgap. We define the field distribution of the corner state as , and 

the target wavefunction as  . Consequently, the envelope function 𝑡𝑛  can be 

expressed as  . This similarity transformation introduces a non-

Hermitian modulation to all Hamiltonian elements connected to site 𝑛 . As the 

modulation simply rescales the original Hermitian couplings, the tight-binding 

connectivity is preserved while the coupling strengths are modified. In the BBH model, 

the resulting Hamiltonian thus retains only nearest-neighbor interactions, but with 

almost all couplings rendered nonreciprocal.  

This regulation allows for arbitrary control over a specific state. In the main text, 

we numerically demonstrated arbitrary manipulation of the field distribution of a corner 

state, localizing the field at another corner, two corners, the center, or any desired field 

configuration.  
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III. Topological Circuit Verification

3.1 Generation of Non-Reciprocity in Circuit Systems 

Fig. S3. Generation of nonreciprocity in circuit system. 

Non-reciprocal coupling in the topological circuit is realized via unidirectional 

coupling capacitors. As depicted in Fig. S3, each coupler comprises a voltage follower 

in series with one coupling capacitor, placed in parallel with another coupling capacitor. 

The voltage follower is implemented via an operational amplifier (Op-Amp) configured 

with negative feedback. Exploiting the virtual short and virtual open circuit conditions 

at the Op-Amp's input terminals, the left-side current path through the capacitor is 

blocked, while the right-side path remains conductive, as shown in Fig. S3. This 

asymmetry produces different effective conductance, 𝐽𝑎𝑏 = 𝐼1/(𝑉𝑏 − 𝑉𝑎) and 𝐽𝑏𝑎 =

−(𝐼1 + 𝐼2)/(𝑉𝑎 − 𝑉𝑏) , between the connected nodes, thereby establishing non-

reciprocal behavior. 

3.2 Non-Hermitian Model Analysis via Impedance Measurements 

For Hermitian topological circuits, the eigenstates can be directly extracted from 

self-impedance measurements. The circuit Laplacian  is generally expressed as: 

Here, is the effective Hamiltonian of the implemented Hermitian SSH model 

circuit. and  are the Laplacians corresponding to the coupling capacitor and the 

node resonance capacitor, respectively. Given that   is Hermitian, it is 
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diagonalizable by a unitary matrix composed of all its orthonormal eigenstates: 

Here, is a diagonal matrix containing all the eigenvalues of . Consequently, 

the impedance matrix , being the inverse of the admittance, takes the form: 

Denoting the 𝑛 -th eigenstate of Hamiltonian  , the self-impedance 𝑍𝑎𝑎  at 

node 𝑎 is therefore analytically given by: 

Analysis of Eq. S13 reveals that a resonance peak in  arises when the value 

matches a typical eigenvalue   of the Hamiltonian  , as the denominator 

approaches zero (remaining finite experimentally due to inherent resistance). This peak 

signifies the excitation of the 𝑛-th mode. By scanning frequency and measuring self-

impedance at each circuit node, one directly maps the squared modulus of the 

eigenstates  for each mode 𝑛. 

Within the non-Hermitian framework considered here, Hermitian and non-

Hermitian Hamiltonians are mathematically connected via a similarity transformation, 

and their modes can be obtained through the transformation: 

Substituting this expression into Eq. S11 yields 

Consequently, the self-impedance for this non-Hermitian system is obtained as: 
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Crucially, for non-Hermitian models defined in this manner, self-impedance 

measurements reproduce the eigenstates of the corresponding Hermitian model, rather 

than the true eigenmodes of the non-Hermitian system, as shown in Fig. S4. 

Fig. S4. Measured 𝒁𝒂𝒂 of the topological circuit at (a) 𝛂 = 𝟎 , (b) 𝛂 =

𝟎. 𝟎𝟐 , (c) 𝛂 = 𝟎. 𝟎𝟒  and (d) 𝛂 = −𝟎. 𝟎𝟒 . The eigenstates remain 

delocalized in the non-Hermitian case, just as in the Hermitian scenario.  

To probe the intrinsic non-Hermitian properties, we employ the mutual impedance 

. Similar to Eq. S16, 𝑍𝑎𝑏 can be analytically expressed as:  

Similarly, the denominator  produces a resonance peak when . 

In the ideal model without parasitic resistance, the resonance peaks would diverge. To 

prevent numerical divergence, we manually introduce an additional imaginary 

component into 𝜆(𝜔) , i.e., 𝜆̃(𝜔) = 𝜆(𝜔) − 𝑖𝜂 , with 𝜂  a positive infinitesimal. At 

, the summation is dominated by the 𝑛-th mode, resulting in: 
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Here,   represents exactly the eigenstate of the non-Hermitian 

Hamiltonian , with a normalization factor depending on the excitation position 𝑏. 

By fixing 𝑏  (e.g., 𝑏 =  1 ) and scanning position 𝑎 , the spatial profile of the 

eigenstate  can be reconstructed. 

Importantly, the normalization factor depends on the choice of excitation site 𝑏 

through the eigenstate component Ψ𝑏𝑛
∗ . Consequently, while the resonant frequency,

i.e., , remains unchanged for different choice of 𝑏, the relative intensity distribution 

across different modes varies, as shown in Fig. S5. To minimize the dependence of the 

spectral profile on the specific choice of 𝑏, we summed the mutual impedance and 

defined   as   over multiple excitation positions 𝑏  to characterize 

the circuit’s spatial and frequency response. The   spectrum reveals all mode 

frequencies and spatial profiles with nearly uniform intensity, as shown in Fig. S5(d). 

Fig. S5. Measured mutual impedance spectra of the non-Hermitian 

topological circuit at α = 0.02 for different excitation sites 𝒃: (a) 𝑏 = 1, 

(b) 𝑏 = 10, (c) 𝑏 = 20, (d) summed over all 𝑏.
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3.3 Data Processing: Impedance Correction 

To clearly identify the modulation effect in our NHRE experiment, we deliberately 

selected a large value for 𝛼. This results in a large ratio of the coupling capacitance 𝐶 

to the resonance capacitance 𝐶𝑡 at each node. Consequently, the resonant frequencies 

are restricted to a very narrow frequency band. Therefore, the loss-induced broadening 

of the impedance peaks results in significant spectral overlap among the bulk modes, 

making them indistinguishable in the measured 𝑍̃𝑎 spectrum. 

Here, we introduce a method to recover the original system information and 

resolve spectral overlap, even when bulk states merge due to low Q-factors. Although 

resistances are present in inductors, capacitors, and interconnects, parasitic inductor 

resistance dominates, as confirmed by individual-component measurements. Our 

compensation strategy therefore primarily focuses on mitigating these inductor losses. 

The ideal admittance matrix, also known as circuit Laplacian, is defined by Eq. 

S10. The incorporation of resistive effects modifies this expression as follows: 

where the resonance frequency scale item becomes 𝜆′(𝜔) = −𝐶𝑡/𝐶 +

1/[(𝜔𝐿𝑡 − 𝑖𝑅𝑡)𝜔𝐿] , which is complex due to the parasitic inductor resistance  . 

Therefore, the mutual impedance 𝑍𝑎𝑏 can be analytically derived: 

This parasitic resistance broadens 𝑍𝑎𝑏  spectrum into Lorentzian lineshapes. While 

moderate loss is necessary for practical observation (avoiding delta-function 

singularities), excessive loss leads to mode aliasing, making individual modes 

indistinguishable in experiments. 

Now that the specific form of loss contribution in the admittance matrix is fully 

characterized, it can be computationally removed. This approach is conceptually 

analogous to the complex frequency excitation used in recent works to compensate for 

material loss, but is implemented here through a customized procedure. 
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In our experiment, mutual impedance spectrum was measured via transmission 

coefficient S21 across all nodes using a vector network analyzer (VNA). The 

corresponding admittance matrix was subsequently derived from the measured S-

matrix: 

The desired impedance matrix 𝑍 is then obtained by inverting the admittance matrix. 

To account for and remove the influence of inherent losses, we numerically subtracted 

the loss contribution using the expression:  

where  represents the loss compensation matrix, which is applied to account 

for and subtract experimental losses from the measured data. 

In principle, the compensation strategy employs a uniform gain 𝐽𝐶   across the 

entire system, which is theoretically derivable from a fixed resistance parameter: 

Here, 𝑅𝐶 serves as an approximation to the actual parasitic resistance 𝑅𝑡 in the circuit. 

However, this approach yields suboptimal performance due to the intrinsic spatial non-

uniformity of losses, applying a single compensation value leads inevitably to over-

correction at some nodes and under-correction at others. Moreover, 𝑅𝑡 itself exhibits 

strong frequency dependance, varying significantly across both high and low 

frequencies. Relying on a constant formula of 𝐽𝐶   for compensation is therefore 

fundamentally limited. Furthermore, since 𝐽𝐶   is typically chosen arbitrarily, the 

compensation process introduces a degree of subjectivity, which undermines the 

reproducibility of the results.  

To address these issues, we propose an experimental calibration protocol based on 

the measured diagonal elements 𝐽𝑛𝑛 of the impedance matrix. Since these elements are 

theoretically lossless, we introduce a compensating resistance 𝐽𝐶(𝑛, 𝜔) to cancel out 
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their real parts, retaining only the imaginary components. The value of 𝐽(𝑛, 𝜔)  is 

determined directly from experimental data, thereby eliminating any arbitrary choices 

in the data processing procedure. Moreover, the resistance value autonomously self-

adjusts according to both frequency and spatial position, as governed by the intrinsic 

response of the circuit system. Crucially, it inherently accounts for losses from all 

possible sources within the entire circuit—rather than being restricted only to parasitic 

resistance in inductive components, as is used in simplified models. This adaptive 

compensation effectively suppresses additional errors that would arise from idealized 

theoretical models. 

Fig. S6. Comparison of two compensation methods for the 𝒁̃𝒂 spectra 

in the non-Hermitian topological circuit. (a) Simulated data. (b) Raw 

experimental data. (c) Experimental data compensated via non-uniform 

𝐽𝑐(𝑛, 𝜔) , determined from the real part of 𝐽𝑛𝑛 . (d-f) Experimental data 

compensated via uniform 𝐽𝑐  to account for the parasitic inductor resistance, 

with trial values: (d) 𝑅𝑐 = 3 Ω, (e) 𝑅𝑐 = 5 Ω, and (f) 𝑅𝑐 = 5.5 Ω. The 

measured inductor resistance for a single loop is approximately 𝑅𝑡 ≈ 3 Ω. 

A comparison of different processing methods is presented in Fig. S6. It can be 

observed that the calibration scheme based on 𝐽𝑛𝑛 reproduces the theoretical results 

with excellent agreement, yielding a clear spectral profile while eliminating any 

arbitrariness in the numerical processing. 
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IV. Non-Hermitian Modulated CROWs

A single optical ring resonant supports two degenerate whispering-gallery modes 

at the 𝑛 − 𝑡ℎ characteristic frequency 𝜔𝑛: the clockwise (CW) and counterclockwise 

(CCW) modes, whose field profiles take the form 𝐸 ⋅ 𝑒𝑥𝑝(𝑖𝑘𝑛𝜃)  and 𝐸 ⋅

𝑒𝑥𝑝(−𝑖𝑘𝑛𝜃), respectively. For computational efficiency, we model the structure using 

a two-dimensional full-wave simulation.  

In the Hermitian case, the coupled resonant optical waveguides (CROWs) are 

formed by linking adjacent ring resonators through a link ring, which couples modes of 

the same spin (CW or CCW) between neighboring sites. This coupled system still 

supports two degenerate modes, the CW and CCW modes. To avoid spectral overlap 

and suppress CW–CCW conversion, the link ring is deliberately designed with a 

different eigenfrequency. By tuning its radius, the link ring’s resonance is shifted 

outside the operational band, ensuring that its own mode does not interfere with the 

CROW dynamics. 

To introduce non-reciprocity, gain and loss are incorporated into different sections 

of the link ring, with the upper segment serving as the gain region and the lower 

segment as the loss region, as shown in Fig. S7(a). For a CW mode propagating from 

left to right, the field always passes through the loss section of the link ring, resulting 

in a reduced coupling strength to the next resonator. Conversely, when propagating 

from right to left, the field traverses the gain region, leading to an enhanced coupling 

strength. Consequently, the CW mode inside the site rings experiences direction-

dependent coupling strengths, establishing a non-reciprocal interaction. It’s worth 

noting that the CCW mode exhibits the same behavior, but with the roles of gain and 

loss reversed. For these two modes, the system forms two separate single-chain SSH 

models with opposite non-reciprocal interactions, as illustrated in Fig. S7(b). Two 

degenerate eigenvalues at each frequency correspond to the CW and CCW eigenstates, 

respectively.  

However, the gain and loss in the link ring slightly modify the material impedance, 

inducing a small amount of reflections from CW to CCW at the interface, thereby 

generating coupling between the two modes. Under weak non-Hermitian modulation, 
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this coupling is negligible. However, when the gain and loss become sufficiently strong, 

a small coupling emerges, lifting the degeneracy and modifying the system’s eigenstate 

properties. Consequently, the two modes are mixed in the resulting eigenstates. This 

interaction can be modelled by a two-chain non-Hermitian SSH model, where each site 

features an additional coupling 𝑡⊥ between the CW and CCW modes, as illustrated in 

Fig. 7(c). Once the weak coupling is introduced, the degeneracy is gradually lifted, 

altering the characteristics of the modes.  

In Figs. S7(d–f), we show the energy spectra from both full-wave simulations and 

the uncoupled/coupled two-chain SSH TBMs. The coupled TBMs reproduce the exact 

level-splitting behavior observed in the simulations, with slight shifts in 

eigenfrequencies relative to the Hermitian Hamiltonian. These shifts vanish completely 

when 𝑡⊥ is reset to zero, confirming that the source of the discrepancy with NHRE 

predictions lies in this offset.  

Nevertheless, even with such shifts, NHRE remains valid. To illustrate this, we 

show the mode corresponding to the smallest eigenvalue and project it onto the CW and 

CCW field profiles, 𝐸 ⋅ 𝑒xp(±𝑖𝑘𝑛𝜃), to resolve the spatial distributions of the CW and 

CCW components separately, as shown in Figs. S7(g–i). The results demonstrate 

excellent agreement between simulation and the coupled TBMs. Despite the mode 

coupling, NHRE still modulates the CW component toward the center while the CCW 

component accumulates at the boundaries , consistent with the modulation behavior of 

the TBM without additional coupling. This confirms that NHRE effectively controls 

mode localization even in the presence of inter-mode coupling. 
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Fig. S7 Verification of NHRE in CROWs. (a) Schematic of the CROW 

system. (b) Uncoupled and (c) coupled TBM SSH chains. (d–f) 

Eigenfrequencies of the CROWs and the two TBMs, comparing the 

Hermitian model (red cross) and the non-Hermitian model (blue circles). (g–

i) Projected eigenstates of the non-Hermitian model corresponding to the

CW and CCW modes for the eigenstate with the smallest real part of the 

eigenvalue.  


