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I. Theoretical Analysis

1.1 1D nearest-neighbor TBM model

To demonstrate the ubiquity of the non-Hermitian reshaping effect, we investigate
a 1D non-reciprocal nearest-neighbor Tight-Binding Model (TBM). This model
elucidates the transition behavior of electrons within a 1D non-reciprocal atomic chain.
By considering only nearest-neighbor interactions and neglecting the electron-electron
coupling, the electron dynamics can be described using a single-particle Hamiltonian.

N
H= Zw§>|n+1><n| +w®|n)(n+ 1| +1,|n)(n| (S1)
n=1

Here, |n) represents the quantum states where an electron is located on the n-th unit

cell. Such atomic chain comprises N unit cells, and the flexibility of this model

manifests in the parameter wd and w!? , where the non-reciprocal transition

coefficients between each pair of atoms can be entirely inhomogeneous and arbitrary.
By introducing non-reciprocity into the hopping coefficients through
w,(})iconj (w,(f) ) , a non-Hermitian TBM model can be constructed. A common

definition sets the hopping coefficient w =w, + & in one direction while setting the

other w¥ =w, . In this article, we modify the hopping coefficient to the right as

and to the left as wr(?):w"-e’”" . These two formulations are

K

wd =w, e

mathematically equivalent when w? =w, e ™. Theitem r, isused to characterize

the distribution of arbitrary non-reciprocity in the system.

H=> " Hygm - |m)(n|

(52)
= an (e ™ In)(n+1|+e~""|n+1)(n|)+1,|n)(n|

For the special case of N = 4, the Hamiltonian of such a non-Hermitian model can be



expressed as:

(§3)

The eigenvalues of the Hamiltonian can be obtained by solving the characteristic
equation |H — E-I|=0,where I is the identity matrix. The matrix associated with

this determinant is known as a nth-order tridiagonal matrix in mathematics:

a, bl
C1 Qo
54
fo= (54)

an—1 bnfl

Ch—1 Qan
which possesses several interesting properties that can simplify the calculation of

eigenvalues. It is revealed that b, and ¢, never appear separately in this determinant

and they always emerge in pairs as products.

Proof

Assuming that neither |H,_, — EIl,,_,| nor |H,_, — EI,_,| contains terms
involving k. From Eq. S5, it follows that:
|Hn - EInl = (an—l - E) ) |Hn—1 - EIn—ll - bn—lcn—l ) |Hn—2 - EIn—Zl:
where b,_; = wp_1e""1, cp_q = wy_je *n-1, giving b,_; - cp_q = wW2_;. Since
b,_1 and c,_; always appears as a product, the dependence on k, is exactly
eliminated.

As the induction bases, we note that
|H, — EI,| = E? — w?
|H; — EI;| = —E3 + Ew? + Ew?

neither of which contains terms associated with k,. Consequently, by induction,

|H, — EI,| is independent of k for any tridiagonal matrix H,,.
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The sequence f,, satisfies the recurrence relation:
fn=a'nfnfl_cnflbnflfn72 (‘5’5)
The subscript indicates the order of the tridiagonal matrix. It can be mathematically

proved that |H — E - I| does not contain any terms related to « .

Thus, this non-Hermitian Hamiltonian can be related to the Hermitian Hamiltonian
through a similarity transformation, and the relation can always be expressed as:
Hypg=TH,T ' (96)

where T represents the similarity transformation matrix. In the nearest-neighbor

TBM model discussed earlier, 7' can be a diagonal matrix T= diag(t,,t,--+) and

Hypon =ty 'ty Hpopmn » Where H,,, is nonzero only when m = n £ 1. The spatial
distributed non-reciprocity «, is directly related to the recursive relation for t,:

tn+1:el€” tn (‘97)
This recursive relation completely determines the expression of the diagonal similarity

matrix 7 . Such a similarity transformation can be used to modify the eigenfunctions.

As aresult, regardless of the choice of spatial function of the non-Hermitian coefficients

K, , We can achieve precise theoretical predictions of the modified eigenfunctions. This

undoubtedly paves the way for new possibilities in non-Hermitian modulation.

1.2 General TBM models

In the above derivation, we have relied on the mathematical properties of
tridiagonal matrices. However, the Hamiltonian matrix is generally not tridiagonal. This
implies that our derivation cannot be directly extended to cases involving next-nearest-
neighbor interactions or higher dimensions.

Nevertheless, some aspects of the above results still hold in more general cases.
While we can NOT guarantee that an arbitrary non-Hermitian Hamiltonian can always

be transformed into a Hermitian one with well-defined dispersion spectrum and
3



topological property through the similarity transformation (this conclusion is inevitable;
otherwise, no new physics would emerge from non-Hermitian systems), it is still
possible to apply a diagonal similarity transformation T to a well-defined system Hp.
This Hamiltonian Hjy is not restricted to a Hermitian one but can be any TBM model

with known properties. Consequently, a corresponding non-reciprocal Hamiltonian
Hyr, =T 'HpT can be constructed, which inherits the dispersion spectrum and
topological properties of the base Hamiltonian Hp, while offering arbitrarily adjustable

mode distribution. These features can be effectively applied to specific mode control

applications, such as the design of laser cavities.



II. Numerical Verifications

2.1 1D NH-SSH model
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Fig. S1. Illustration of two typical models of NHRE. (a-b) Schematic
diagram of the non-Hermitian skin effect, where the blue solid line in (a)
represents a representative bulk state of the corresponding Hermitian SSH
model, and the black solid line denotes the envelope function ¢,,. The product
of these two functions results in the solid line in (b), which signifies the bulk
states of the non-Hermitian SSH model. (c-d) Schematic diagram of the non-
Hermitian morphing effect, where the blue solid line in (c) depicts the edge
states at the domain wall, and the black solid line again represents the
envelope function t, . Their product yields the blue solid line in (d),

corresponding to the propagable topological zero mode.

The theoretical analysis yielded promising results, demonstrating that non-

Hermitian manipulations can be applied to arbitrary models while preserving their
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topological properties. In the following numerical calculations, we will validate these
theoretical findings using the non-Hermitian SSH model and explore the intriguing

aspects of this manipulation approach.

Here, we consider two typical models. When taking x =k, and setting

[Wai, Wyiy1] to [w, v], this scenario corresponds to the well-known non-Hermitian skin

effect (NHSE). Therefore, T can be solved as t,=C - exp(kon), which directly

leads to the non-Hermitian skin effect, as shown in Fig. S1(a-b). Furthermore, from the
corresponding Hermitian Hamiltonian, it is evident that the topological transition point
occurs at v = w, consistent with the result obtained from the generalized Brillouin

zone theory.

In the second model, we choose k, = — k- O (no—n) as astep function, with
the non-Hermitian modulation applied only to the region where n < n,. Therefore, T

can be expressed as t,=exp[-ko(n—mng)] when n<n, and ¢,=1 when
n >n,. Preview article [37] combined two SSH models with different topological

characteristics to induce edge states at the domain wall, where the index n, denotes
the interface separating the two model. These edge states can be represented by

¥ (n)=C'exp[o - (n—ny)] when n <n,, where o denotes the decay rate of the

edge state. When the parameters are appropriately chosen, the envelope function ¢,
applied to the edge states precisely counteracts the mode decay and yields a constant
field distribution. This is fully consistent with the conclusions of the preview article on

the non-Hermitian morphing effect, as shown in Fig. S1(c-d).
A slightly more complex scenario than a piecewise  is when k(n) is linearly

distributed, i.e. kK, = —a-(n—r1r), where @ and r are modulation parameters.

According to Eq. S7, we can derive the expression for ¢, in this case:

t, = Cexp —%oz(n—nc)2 (98)



Here, n.=1r —3/2 represents the central position of the modulated function, and C
is a constant generated during the calculation that is not of concern. If « is positive,
the envelope function ¢, essentially becomes a Gaussian function.

Assuming the expression for the edge state satisfies ¢’(n) = Aexp (- on), where
o represents the decay rate of the edge state. According to Eq. S7, multiplying ¢, by

the edge state wave function yields

@b(n):C”eXp{Ho( — e — L)T (89)

2[4:0

This is the analytical expression for the modulated wave function, indicating that the
edge state is modulated into a Gaussian function and translated by a certain distance,

shifting from the boundary into the bulk, as shown in Fig. 1(e).
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Fig. S2. Manipulation of bulk and edge states via NHRE. (a-b) Spatial
distribution of the original (a) bulk state and (b) edge state, respectively. (c)
Envelope function t,. (d-e) Spatial distribution of the modified (d) bulk state

and (e) edge state, respectively.

Figure S2 illustrates the manipulation of bulk and edge states, respectively. Both

the bulk states in Fig. S2(a) and edge states in Fig. S2(b) are shifted towards the center

under the influence of the Gaussian shaped envelope function ¢, depicted in Fig. S2(c).
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Notably, the positions of the modulated edge state in Fig. S2(d) are not fully correlated
with the bulk state in Fig. S2(e). The bulk states are confined to the center while the
edge states can still be shifted to any desired position, under fine-tuning of the system
parameters. This indicates that, although NHRE acts on all modes simultaneously, we
can still achieve relatively independent control over different types of modes. This

further enhances the tunability of NHRE.

2.2 2D NH-BBH model

While our previous calculations validated the framework in 1D, we now apply it to
the 2D BBH model to demonstrate its broader applicability to more general systems.

The most notable feature of the BBH model is the corner-localized modes that emerge

within the bandgap. We define the field distribution of the corner state as P(n) , and
the target wavefunction as %' (n). Consequently, the envelope function t, can be

expressed as t, =1'(n)/1(n) . This similarity transformation introduces a non-

Hermitian modulation to all Hamiltonian elements connected to site n. As the
modulation simply rescales the original Hermitian couplings, the tight-binding
connectivity is preserved while the coupling strengths are modified. In the BBH model,
the resulting Hamiltonian thus retains only nearest-neighbor interactions, but with
almost all couplings rendered nonreciprocal.

This regulation allows for arbitrary control over a specific state. In the main text,
we numerically demonstrated arbitrary manipulation of the field distribution of a corner
state, localizing the field at another corner, two corners, the center, or any desired field

configuration.



I11. Topological Circuit Verification

3.1 Generation of Non-Reciprocity in Circuit Systems
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Fig. S3. Generation of nonreciprocity in circuit system.

Non-reciprocal coupling in the topological circuit is realized via unidirectional
coupling capacitors. As depicted in Fig. S3, each coupler comprises a voltage follower
in series with one coupling capacitor, placed in parallel with another coupling capacitor.
The voltage follower is implemented via an operational amplifier (Op-Amp) configured
with negative feedback. Exploiting the virtual short and virtual open circuit conditions
at the Op-Amp's input terminals, the left-side current path through the capacitor is
blocked, while the right-side path remains conductive, as shown in Fig. S3. This
asymmetry produces different effective conductance, J,, = I;/(V, —V,) and J,, =
—(; +1,)/(V, = Vp), between the connected nodes, thereby establishing non-

reciprocal behavior.
3.2 Non-Hermitian Model Analysis via Impedance Measurements

For Hermitian topological circuits, the eigenstates can be directly extracted from

self-impedance measurements. The circuit Laplacian J is generally expressed as:

J (W)= iwC - Hy+ (z’wC’t + M%)I —iwC-[Ha— AW (S10)
t

Here, Hj is the effective Hamiltonian of the implemented Hermitian SSH model
circuit. C' and C, are the Laplacians corresponding to the coupling capacitor and the

node resonance capacitor, respectively. Given that H, is Hermitian, it is
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diagonalizable by a unitary matrix & composed of all its orthonormal eigenstates:
J(w)=iwC - [¥DU"— X\ (w) VU] =wC - U[D— \(w)]¥" (S11)

Here, D is a diagonal matrix containing all the eigenvalues of H . Consequently,
the impedance matrix Z , being the inverse of the admittance, takes the form:

Z(w)z[J(w)]lzﬁ (D —AwW)I] T (512)

Denoting FE, the n-th eigenstate of Hamiltonian Hj, the self-impedance Z,, at

node a is therefore analytically given by:

(513)

=l @, = wC — B, — AMw)

Analysis of Eq. S13 reveals that a resonance peak in Z,, arises when the value \(w)
matches a typical eigenvalue E, of the Hamiltonian Hj, , as the denominator
approaches zero (remaining finite experimentally due to inherent resistance). This peak
signifies the excitation of the n-th mode. By scanning frequency and measuring self-
impedance at each circuit node, one directly maps the squared modulus of the
eigenstates |¥,,|? for each mode n.

Within the non-Hermitian framework considered here, Hermitian and non-
Hermitian Hamiltonians are mathematically connected via a similarity transformation,

and their modes can be obtained through the transformation:
Hyg=TH ;T '=T¥-D-¥'T"! (514)
Substituting this expression into Eq. S11 yields

J(w)=iwC -TV-[D— X (w)] - ¥'T! (515)

Consequently, the self-impedance Z,, for this non-Hermitian system is obtained as:

. t, W, Wt " 1 |$l71m|2
=[J ' (w], wC Z( —A(w)) iwC 4~ E, — \w)
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Crucially, for non-Hermitian models defined in this manner, self-impedance
measurements reproduce the eigenstates of the corresponding Hermitian model, rather

than the true eigenmodes of the non-Hermitian system, as shown in Fig. S4.
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Fig. S4. Measured Z,, of the topological circuit at (a) a =0 ,(b) a =
0.02, (¢ a=0.04 and (d) a=—0.04. The eigenstates remain

delocalized in the non-Hermitian case, just as in the Hermitian scenario.

To probe the intrinsic non-Hermitian properties, we employ the mutual impedance

Z . - Similar to Eq. S16, Z,, can be analytically expressed as:

]- ta Wan ) gpl:kntb71
iwC 4~ E,—\(w) (517)

Zab:

Similarly, the denominator F, — A(w) produces a resonance peak when F, =~ MMw).
In the ideal model without parasitic resistance, the resonance peaks would diverge. To
prevent numerical divergence, we manually introduce an additional imaginary
component into A(w), i.e., A(w) = A(w) — in, with n a positive infinitesimal. At

E, = X\(w,), the summation is dominated by the n-th mode, resulting in:
11



_ Wl;kn tb7 !
nw, C

(2= ). (518)

Here, v, '=t,¥,, represents exactly the eigenstate of the non-Hermitian
Hamiltonian H .., with a normalization factor depending on the excitation position b.
By fixing b (e.g., b = 1) and scanning position a, the spatial profile of the
eigenstate ¥,,’ can be reconstructed.

Importantly, the normalization factor depends on the choice of excitation site b
through the eigenstate component ¥,,,. Consequently, while the resonant frequency,
ie., E,,remainsunchanged for different choice of b, the relative intensity distribution
across different modes varies, as shown in Fig. S5. To minimize the dependence of the
spectral profile on the specific choice of b, we summed the mutual impedance and
defined Za as Za=2b|Za,,| over multiple excitation positions b to characterize
the circuit’s spatial and frequency response. The Z, spectrum reveals all mode

frequencies and spatial profiles with nearly uniform intensity, as shown in Fig. S5(d).

(a) Z.1 at a=0.02 (b) Za0 at a=0.02
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Fig. S5. Measured mutual impedance spectra of the non-Hermitian
topological circuit at o = 0.02 for different excitation sites b: (a) b =1,
(b) b =10, (c) b = 20, (d) summed over all b.
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3.3 Data Processing: Impedance Correction

To clearly identify the modulation effect in our NHRE experiment, we deliberately
selected a large value for a. This results in a large ratio of the coupling capacitance C
to the resonance capacitance C; at each node. Consequently, the resonant frequencies
are restricted to a very narrow frequency band. Therefore, the loss-induced broadening
of the impedance peaks results in significant spectral overlap among the bulk modes,
making them indistinguishable in the measured Z, spectrum.

Here, we introduce a method to recover the original system information and
resolve spectral overlap, even when bulk states merge due to low Q-factors. Although
resistances are present in inductors, capacitors, and interconnects, parasitic inductor
resistance dominates, as confirmed by individual-component measurements. Our
compensation strategy therefore primarily focuses on mitigating these inductor losses.

The ideal admittance matrix, also known as circuit Laplacian, is defined by Eq.

S10. The incorporation of resistive effects modifies this expression as follows:

. . 1
J(w)—’wa'HNR-I-(Zth‘F m

>-I=z’wC’- (Hoyn— N () 1]
(519)

where the resonance frequency scale item A (w) becomes A'(w) = —C,/C +
1/[(wL; — iR;)wL], which is complex due to the parasitic inductor resistance R, .

Therefore, the mutual impedance Z,;, can be analytically derived:

1 Uit ! ,
e Z:<En—Re[A(w)]—z'Im[A(w)]> ' (520)

This parasitic resistance broadens Z,, spectrum into Lorentzian lineshapes. While

moderate loss is necessary for practical observation (avoiding delta-function
singularities), excessive loss leads to mode aliasing, making individual modes
indistinguishable in experiments.

Now that the specific form of loss contribution in the admittance matrix is fully
characterized, it can be computationally removed. This approach is conceptually
analogous to the complex frequency excitation used in recent works to compensate for
material loss, but is implemented here through a customized procedure.

13



In our experiment, mutual impedance spectrum was measured via transmission
coefficient S>; across all nodes using a vector network analyzer (VNA). The
corresponding admittance matrix was subsequently derived from the measured S-

matrix:
J=z'-(I—-9)-I+9)! (521)

The desired impedance matrix Z is then obtained by inverting the admittance matrix.
To account for and remove the influence of inherent losses, we numerically subtracted

the loss contribution using the expression:
Jw)=zt[I-SW]-I+8w)] " +diaglJe(nw)]  (522)

where Jo (n,w) represents the loss compensation matrix, which is applied to account
for and subtract experimental losses from the measured data.
In principle, the compensation strategy employs a uniform gain J. across the

entire system, which is theoretically derivable from a fixed resistance parameter:

1 1 R
_(_ T = . 523
Je < iwL, + Ro + ith> I iwL, iwL, + R¢) I (523)

Here, R, serves as an approximation to the actual parasitic resistance R, in the circuit.
However, this approach yields suboptimal performance due to the intrinsic spatial non-
uniformity of losses, applying a single compensation value leads inevitably to over-
correction at some nodes and under-correction at others. Moreover, R; itself exhibits
strong frequency dependance, varying significantly across both high and low
frequencies. Relying on a constant formula of J. for compensation is therefore
fundamentally limited. Furthermore, since J. is typically chosen arbitrarily, the
compensation process introduces a degree of subjectivity, which undermines the
reproducibility of the results.

To address these issues, we propose an experimental calibration protocol based on
the measured diagonal elements J,, of the impedance matrix. Since these elements are

theoretically lossless, we introduce a compensating resistance J.(n,w) to cancel out

14



their real parts, retaining only the imaginary components. The value of J(n,w) is
determined directly from experimental data, thereby eliminating any arbitrary choices
in the data processing procedure. Moreover, the resistance value autonomously self-
adjusts according to both frequency and spatial position, as governed by the intrinsic
response of the circuit system. Crucially, it inherently accounts for losses from all
possible sources within the entire circuit—rather than being restricted only to parasitic
resistance in inductive components, as is used in simplified models. This adaptive

compensation effectively suppresses additional errors that would arise from idealized

theoretical models.

(a) Simulated data (b) Raw data © Non-uniform J,
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Fig. S6. Comparison of two compensation methods for the Z, spectra
in the non-Hermitian topological circuit. (a) Simulated data. (b) Raw
experimental data. (c) Experimental data compensated via non-uniform
J.(n,w), determined from the real part of J,,. (d-f) Experimental data
compensated via uniform J. to account for the parasitic inductor resistance,
with trial values: (d) R, =3 Q, (e) R, =5 Q, and (f) R, = 5.5 Q. The

measured inductor resistance for a single loop is approximately R; = 3 Q.

A comparison of different processing methods is presented in Fig. S6. It can be
observed that the calibration scheme based on J,,,, reproduces the theoretical results

with excellent agreement, yielding a clear spectral profile while eliminating any

arbitrariness in the numerical processing.
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IV. Non-Hermitian Modulated CROWSs

A single optical ring resonant supports two degenerate whispering-gallery modes
at the n — th characteristic frequency w,,: the clockwise (CW) and counterclockwise
(CCW) modes, whose field profiles take the form E -exp(ik,0) and E -
exp(—ik,0), respectively. For computational efficiency, we model the structure using
a two-dimensional full-wave simulation.

In the Hermitian case, the coupled resonant optical waveguides (CROWSs) are
formed by linking adjacent ring resonators through a link ring, which couples modes of
the same spin (CW or CCW) between neighboring sites. This coupled system still
supports two degenerate modes, the CW and CCW modes. To avoid spectral overlap
and suppress CW—CCW conversion, the link ring is deliberately designed with a
different eigenfrequency. By tuning its radius, the link ring’s resonance is shifted
outside the operational band, ensuring that its own mode does not interfere with the
CROW dynamics.

To introduce non-reciprocity, gain and loss are incorporated into different sections
of the link ring, with the upper segment serving as the gain region and the lower
segment as the loss region, as shown in Fig. S7(a). For a CW mode propagating from
left to right, the field always passes through the loss section of the link ring, resulting
in a reduced coupling strength to the next resonator. Conversely, when propagating
from right to left, the field traverses the gain region, leading to an enhanced coupling
strength. Consequently, the CW mode inside the site rings experiences direction-
dependent coupling strengths, establishing a non-reciprocal interaction. It’s worth
noting that the CCW mode exhibits the same behavior, but with the roles of gain and
loss reversed. For these two modes, the system forms two separate single-chain SSH
models with opposite non-reciprocal interactions, as illustrated in Fig. S7(b). Two
degenerate eigenvalues at each frequency correspond to the CW and CCW eigenstates,
respectively.

However, the gain and loss in the link ring slightly modify the material impedance,
inducing a small amount of reflections from CW to CCW at the interface, thereby

generating coupling between the two modes. Under weak non-Hermitian modulation,
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this coupling is negligible. However, when the gain and loss become sufficiently strong,
a small coupling emerges, lifting the degeneracy and modifying the system’s eigenstate
properties. Consequently, the two modes are mixed in the resulting eigenstates. This
interaction can be modelled by a two-chain non-Hermitian SSH model, where each site
features an additional coupling t; between the CW and CCW modes, as illustrated in
Fig. 7(c). Once the weak coupling is introduced, the degeneracy is gradually lifted,
altering the characteristics of the modes.

In Figs. S7(d—f), we show the energy spectra from both full-wave simulations and
the uncoupled/coupled two-chain SSH TBMs. The coupled TBMs reproduce the exact
level-splitting behavior observed in the simulations, with slight shifts in
eigenfrequencies relative to the Hermitian Hamiltonian. These shifts vanish completely
when t, is reset to zero, confirming that the source of the discrepancy with NHRE
predictions lies in this offset.

Nevertheless, even with such shifts, NHRE remains valid. To illustrate this, we
show the mode corresponding to the smallest eigenvalue and project it onto the CW and
CCW field profiles, E - exp(£ik,8), to resolve the spatial distributions of the CW and
CCW components separately, as shown in Figs. S7(g—1). The results demonstrate
excellent agreement between simulation and the coupled TBMs. Despite the mode
coupling, NHRE still modulates the CW component toward the center while the CCW
component accumulates at the boundaries , consistent with the modulation behavior of
the TBM without additional coupling. This confirms that NHRE effectively controls

mode localization even in the presence of inter-mode coupling.
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Fig. S7 Verification of NHRE in CROWs. (a) Schematic of the CROW
system. (b) Uncoupled and (c) coupled TBM SSH chains. (d—f)
Eigenfrequencies of the CROWSs and the two TBMSs, comparing the
Hermitian model (red cross) and the non-Hermitian model (blue circles). (g—
1) Projected eigenstates of the non-Hermitian model corresponding to the
CW and CCW modes for the eigenstate with the smallest real part of the

eigenvalue.
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