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Conventional synthetic approach

The synthesis of any new MOF still follows the conventional synthetic approach

that begins with a thorough literature survey, risk assessment, calculations of
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reagent starting quantities and a series of trial-and-error syntheses that are followed

by purification and characterisation. This approach is inherently cost-ineffective,

environmentally unfriendly and does not provide any heuristics for effective synthe-

ses. The adoption of electronic laboratory notebooks have contributed significantly

in speeding up several intermediary processes like enabling proper understanding

of risk assessment and determining of quantities of starting reagents and in some

cases assisting with characterisation procedures. [1, 2] However, a proper under-

standing in mitigating the trial-and-error synthesis for optimising the synthesis of

novel MOFs is still elusive.

Recently, newer synthetic methods have been developed in an effort to reduce

the environmentally unfriendly nature of the existing synthetic approach as well

as to intelligently improve the morphology of the newly synthesised MOF. [3] The

synthetic methods have gradually moved from traditional solvo(hydro) thermal

synthesis to greener methods such as microwave assisted synthesis, mechanochem-

ical synthesis, electrochemical synthesis and sol-gel method. However, although

these methods have proven to be resourceful in scalability, which is vital for in-

dustrial scale application of MOF, they still do not provide an effective solution

to the trial-and-error synthesis of novel MOFs.

Hence, in this study we take a step into providing a solution to this unreliable

approach by implementing a framework consisting of a FAIR dataset of MOFs that

maps carefully curated crystal structures to experimental synthetic conditions and

models for predicting the synthesis conditions directly from 3D structures so as to

make experimental synthesis to be more cost-effective and less time consuming.
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S-1 Data Mining

S-1.1 Extract MOF refcodes from the CSD

The refcode is a unique identifier given to every crystal structure in the CSD.

Since there is no generalised convention on how to systematically name MOFs,

the CSD refcodes have become the main tool for querying MOFs structures in

different databases such as in the CoRE MOF and QMOF. A list of refcodes of

the MOF subset in the CSD can be extracted using Conquest as illustrated in

Fig. S1. Once conquest is opened, simply click on the icon view Databases.

From the dropdown menu click on the Subset in CSD version ... then click on

the CSD MOF subset and finally select the subset you desire from the list of

subsets. Once this is done the refcodes can be saved in a .gcd text file.

Fig. S1 Extracting the refcodes of the MOF-subset in CSD using Conquest

S-1.2 Downloading crystal structures from the CSD

The crystal structures can be downloaded from the CSD in an automated manner

using the CSD python API. To facilitate this process, we implemented a python

module (csd_data_extraction) that can be used to manipulate structures using
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the CSD python library. With this module the MOFs structures can be downloaded

into a cif format using the following command, where in refcodes is a list of csd

refcodes extracted from a file or pandas dataframe.

from csd_data_extraction import download_structures

download_structures . main_downloader ( r e f code s , format=’ c i f ’ )

Note that the above script will work only when csd python api is installed and

the environment has been properly set up. However, this can only be done if you

own a CCDC license. You can always contact us if you require any assistance with

setting this up.

S-1.3 Common errors in the CSD

Despite the requirement for rigorous structural refinement, the MOF subset from

the CSD are known to possess several errors in their crystal structures. Lillerud

and co-workers showed that while 56 % of all crystal structures in the CSD were

of high quality (with an R-factor < 5 %) only 20 % of the crystal structures of

MOFs had an R-factor < 5%. Meanwhile more than 22 % of the MOFs structures

were of significantly poor quality possessing an R-factor > 10 %. [4] The R-factor

is a numerical value that indicates how well the modelled powder X-ray diffraction

(PXRD) pattern matches the experimentally determine PXRD. Generally systems

with R-factor < 5 % are considered to be of good quality meanwhile those with

R-factor > 10 % are of extremely low quality with the tendency of systematic

errors corresponding to wrong assignment of Laue class. [5]

The three most common errors found in the MOF subsets are missing hydrogens,

presence of unbound guest molecules and multiple atoms occupying the

same symmetrical position as illustrated in Fig. S2a, Fig. S2b and Fig. S2c

respectively.
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Fig. S2 Illustration of some of the most common errors found in the CSD. a

represents an example of a system with one or more missing hydrogen atoms

(refcode:ABAVUV). b is an example of a system with one or more unbound guest

molecules (refcode:CISVEH) and c is an example of a system in which multiple

atoms occupy the same symmetrical positions in space (refcode:XUDPUJ)

S-1.3-1 Missing hydrogen

The occurrence of missing hydrogen is expected from crystal structures analysed

using X-ray diffraction. This is because X-ray diffraction patterns do not provide

information on the position of light atoms like hydrogen and these positions are

rather approximated. Hence to add missing hydrogen, we used the CSD Python

API to normalise all the bonds from which we added missing hydrogen atoms.

This approach is by far the most rigorous bond typing method because it performs

bond typing by using a machine learning model that has been trained on millions

of structures found in the database. [6] The algorithm begins by dividing a system

into small fragments and then calculates the frequencies of the fragments in the

CSD. Finally, geometry tests are performed to obtain conditional probability from
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which Baye's model is applied to assign bond types.

S-1.3-2 Removal of unbound guest

The presence of unbound guest molecules are ubiquitous in porous systems, which

can result from the adsorption of gases in the atmosphere, unreacted reagents and

solvents. Fairen-Jimenez and co-workers reported that more than 52 % of MOFs

in the CSD have unbound guest molecules in their crystal structures. [7] For this

reason, we decided to implement a robust guest removal method, given that sev-

eral errors have been reported from the existing approaches, which in some cases

removes the MOF instead of the guest.

Our guest removal method heavily relies on the Atom Simulation Environment

neighbour (ASE) list, in which bonded atoms in a system correspond to atoms

whose bond lengths are smaller or equal to the sum of their covalent radii plus an

empirical skin value of 0.3. [8, 9] Our approach begins by creating a graph of the

system that correspond to a Python dictionary in which each key correspond to an

atom and the value correspond to a list of neighbouring atoms. From this graph,

we compute a list of connected components using a Depth-first search graph algo-

rithm. This list of connected components correspond to a list of all unconnected

entities in the system. The entity that is periodic is then selected as the main

system and considered every other entities as unbound guest. We define periodic

here as an entity whose cluster expansion still lead to a single entity in the list of

connected components. Our approach is very robust because it can effectively be

used to remove guest molecules from all common porous systems such as Zeolites,

Covalent-organic frameworks (COFs) and MOFs.
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S-1.3-3 Systems with overlapping atoms

Errors occurring from systems containing overlapping atoms are tougher to fix.

We decided to perform this by manually editing structures using the CSD Mer-

cury graphical user interface. [10] We found that in two months, we were able to

successfully edit only 600 MOFs, which was not a cost-effective strategy. For this

reason, we decided to filter out systems containing overlapping atoms by perform-

ing two basic chemistry assessments as illustrated in Fig. S3.

We started with a valence test, which ensured that no atom in the system should

have more connected neighbours than the maximum possible valency. After the

valence test, we proceeded with an inter-atomic test, which ensured that the dis-

tance between every pair of atoms should be greater than 0.9 Å except if one of the

atom is a hydrogen atom. Using this filter on MOFs systems that had previously

been curated for missing hydrogen and unbound guest molecules, we were able to

compile a new curated database containing 47,800 MOFs.
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Valence Test Interatomic
Distance Test

The total number 
of neigbouring

 atom of each atom
 should be less 
than or equal to 

their maximum valence 

No two atoms should be
within 0.9 Å apart unless

one of the atom 
is a hydrogen atom.

47,800
curate MOFs120,000

CSD MOFs

Fig. S3 Workflow to filter out systems containing errors due to multiple atoms

occupying the same symmetrical position in space.The workflow uses two funda-

mental chemistry assessments. A valence test and an inter-atomic distance test.

S-1.4 Some errors in the IUPAC names of MOFs in the CSD

While extracting organic ligands from the IUPAC names found in the CSD, we

identify a couple of errors with the names. Some of these errors include typos,

which can render name extraction difficult. Some of the common typos on the

name of the metals can be seen in table Table S1.
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Table S1 Common errors on IUPAC names of MOFs found in the CSD

Typo Correct Name Typo Correct Name

Sodmium Sodium Potaasium Potassium

Stontium Strontium Siliver Silver

Bairium Barium Zirconim Zirconium

abrium Aabrium Bismiuth Bismuth

Stannane Stannane Zirconocene Zirconocene

Zirconiun Zirconium Stannate Stannate

Zirconinum Zirconium Ytterbum Ytterbium

Neodmium Neodymium Zirconiuum Zirconium

Siler Silver Lathanum Lanthanum

Cadmiu Cadmium Dypsrosium Dysprosium

Laed Lead Stontium Strontium

Germanium Germanium Magneium Magnesium

Terbium Terbium Praseodimium Praseodymium

S-2 Deconstruction of MOFs

To obtain the unique building units, topology and prospective machine learning

descriptors, we implemented a robust MOF deconstruction module called mof-

structure. The module uses two main procedures to deconstruct MOFs into their

building units as illustrated in Fig. S4.
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Fig. S4 Illustration of the two MOF deconstruction procedures. The first pro-

cedure deconstruct MOFs into the metal and organic secondary building units,

which encodes the topological information of the MOF. The second procedure de-

construct MOFs into metal clusters/ions and organic ligands, which encodes the

chemical information of the MOF. Both procedures provide full atom mappings of

each unique building units found in the MOF.

S-2.1 Metal and linker secondary building unit

The metal and linker secondary building units corresponds to lego-like building

units that can be used to represent MOFs as graphs or for building the struc-

ture of MOFs using packages such as AuToGraFS. [11] To effectively deconstruct

MOFs into SBUs, we implemented a rule that recognises carboxylates, sulphates,

phosphates, phosphides, sulfides and many other functional groups. Once each

of these functional groups are identified in a MOF, we searched for all the atoms

within these functional groups that are connected to the metal and break the bond

between the α and the β-atoms related to the aforementioned atoms as illustrated

in Fig. S5a. When these functional groups are not identified, we use other rigorous
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rules to search for breaking points that ensures the most efficient deconstruction.

For instance, if an atom connected to the metal is a nitrogen atom as illustrated

in Fig. S5b, we break the nitrogen-metal bond but also ensure that this nitrogen

atom and the metal are not part of a porphyrin internal ring.

(a) cutting at (b) largest cavity diameter

Fig. S5 Illustration of bonds that are broken during the MOF deconstruction

process. The red bond indicates the bonds, which are broken. X represents all

atoms that are connected to the metal. M represents metal atoms that are not

part of a porphyrin or ferrocene group. α represents atoms that are immediately

connected to the atom that is bonded to the metal while β represents the atom

that bonded to the identified functional groups. R presents the entirely molecular

systems

The deconstruction is done in such a rigorous manner that we record the atom

indices of each unique SBU, meaning that we know all the instances in which

a particular building unit is presence in the MOF. Moreover, we record all the

breaking points also known as point of extensions, which provide information about

the coordination number of the SBU. Finally, we also implemented rules to identify

topological classes of the metal SBU, such as rods, paddlewheels, IRMOFs etc.
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S-2.2 Metal clusters and organic ligands

The metal clusters and organic ligands are useful because they provide a more

complete chemically sensible picture of MOFs, since the organic ligands are IU-

PAC recognised chemicals. Deconstructing MOFs into metal clusters and organic

ligands is easier. Here, we begin by finding organic ligands and then break at the

atom connected to the metal. We do this such that oxo oxygens, which often form

the metal clusters are not affected. However, when clusters are not found a list of

unique metals are returned.

To facilitate further computational analysis, we implemented a wrapper function

that unwraps systems around lattice coordinates, making them easily convert-

ible into XYZ format. Additionally, cheminformatic descriptors such as SMILES

strings, InChI, and InChIKey are computed for each building unit. We also con-

nected it to the PubChem API to extract the IUPAC name of each unique ligand

within a MOF. The deconstruction code is freely available and can be accessed from

https://github.com/bafgreat/mofstructure.git. The documentation of the

code is also available https://bafgreat.github.io/mofstructure.

S-2.3 Classification of metal secondary building units

mofstructure was observed to be very robust and is able to successfully decon-

struct MOFs with rodlike topologies like MOF-74, which most existing packages

failed to deconstruct. Moreover, our code is capable of identifying common metal

secondary building units (SBUs) such as rod-like SBUs, paddlewheels, the IRMOF

series, and ferrocenes as illustrated in Fig. S6.
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Fig. S6 Illustration of the distribution of the six most common metal SBUs that

are currently identified by our MOF deconstruction method. The color code and

the number illustrates the number of MOFs containing these SBUs in our database.

As observed in Fig. S6, our code identified more than 3,000 MOFs that contain rod-

like SBUs, which are SBUs that can expand infinitely in one dimension. Anhydrous

and hydrated paddlewheel SBUs (which contain either one or two water molecules

at the pillar side) were the second and third most common SBUs. MOFs with pad-

dlewheel SBUs were found in more than 1,500 MOFs. Additionally, we identified

198 IRMOF series structures whose metal SBUs are similar to that of MOF-5, as

illustrated in Fig. S4. These are commonly known to form the isoreticular series

(IRMOF series). Finally, we were also able to classify 156 MOFs containing the

Zr-cluster, similar to UIO-66 and 50 ferrocene-containing MOFs.

We are constantly improving mofstructure, therefore, if a reader is interested
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in compiling a dataset for any particular building unit that we have not yet iden-

tified, please feel free to contact us. We will implement an identification scheme

and provide you with all MOFs containing the specified SBU.

S-2.4 Integration of Data in NOMAD

As part of our mission to establish a FAIR database for MOFs, we integrated

the tools implemented in this study into NOMAD. We called it the Porosity Nor-

maliser, which automatically identifies porous systems uploaded in NOMAD, re-

moves unbound guest molecules, computes their porosity, classify the systems as

MOFs, COFs, zeolites or porous systems. Systems identified as MOFs are

then deconstructed into their building units while mapping the instance of each

building units to their parent MOF.

We then uploaded the input and output of all geometry optimised systems into NO-

MAD, which enabled us to create the second USE CASE in NOMAD, which can di-

rectly be searched from this link https://nomad-lab.eu/prod/v1/gui/search/mofs.

We also plotted a periodic table that illustrates the distribution of the different

MOFs based on their elemental composition as shown in Fig. S7.

14

https://nomad-lab.eu/prod/v1/gui/search/mofs


Fig. S7 Illustration of the different atomic representation of the geometry op-

timised MOFs found in the MOF database. The elements highlighted in blue

corresponds to atoms found in the MOFs, while those highlighted in grey corre-

spond to atoms not present in the MOF database. Each element is represented

by its atomic number at the top left and the number of this atom present in the

database is found at the bottom right. This database will be continuously up-

dated, consequently always checkout updates in NOMAD.

When navigating through the MOF USE CASE in NOMAD, only 17,000 MOFs

will be seen. This is because for the sake of efficiency the Porosity Normaliser

filters out systems with more than 1000 atoms in the unit cell and systems with a

PLD below 1.86 Å.
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S-2.5 Distribution of geometric properties in FAIR-MOFs

The distribution of geometric properties computed from our python implementa-

tion of zeo++ are illustrated in Fig. S9.

16



(a) pore limiting diameter (b) largest cavity diameter

(c) solvent accessible surface area (d) accessible volume

(e) void fraction (f) number of channels

Fig. S8 Distribution of geometric properties of MOF. The histograms illustrates

the number of MOFs possessing the computed properties from a-f. The k preceding

each number corresponds to a thousand multiplied by the number.
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S-2.6 Distribution of geometric properties with respect to topologies

(a) PLD vs topology (b) LCD vs topology

(c) ASA vs tolopogy (d) AV vs topology

(e) Void fraction vs topology (f) Strain vs topology

Fig. S9 Distribution of geometric properties with the 20 most common topolo-

gies.
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S-3 Computational Details

The atomic positions in our curated MOF databased were relaxed by performing a

geometry optimisation of all the systems at their fixed experimental lattice coordi-

nates. We used the GFN-xTB, which is an efficient approximation of the Density

Functional Theory (DFT) and designed to produce reasonable Geometries, Fre-

quencies, and Non-covalent interactions for diverse chemical systems consisting of

elements from the periodic table, Z ≤ 86. [12] This method was recently shown to

be a powerful method for computing different properties of MOFs and was recently

recommended as a suitable method for screening of hypothetical MOFs. [13, 14]

However, there were 600 MOFs in our curated database that had one or more atoms

with Z ≫ 86. For these systems, the geometry optimisation was performed using

Grimme3 dispersion corrected [15] generalised gradient corrected Perdew, Kieron

and Burke exchange-correlation functional PBE-D3, [16] alongside the doubly po-

larised triple-zeta, TZ2P, basis set. [17] The PBE-D3/TZ2P level of theory was

used because it provides a good comprise between computational accuracy and

time, [18–20] thus it can consequently be used to compute reasonably correct ge-

ometries of large periodic systems like MOFs. All computations were perform using

the GFN-xTB and PBE-D3/TZ2P implementation in the Amsterdam Modelling

Suits (AMS) package version ADF2019.305. [21]

S-4 Experimental synthetic conditions

S-4.1 Synthesis paragraphs

A machine learning model was implemented to predict the paragraphs in text files

that describe experimental synthetic procedure. The module was implemented

such that when any HTML file or plain text is parsed, it returns a list of synthesis
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paragraphs identified in the text.

To enable the implementation of this machine learning model, we randomly se-

lected 500 HTML files corresponding to 500 journal articles. We then split the

content of these files into list of paragraphs and then literally read through each

of these paragraphs. We encoded paragraphs describing synthesis conditions with

a value of 1 and 0 for all other paragraphs. This data was then used to perform a

sentiment analysis for predicting synthetic paragraphs.

The sentiment analysis was performed using bag of words classification. In this

approach a huge sparse matrix is created, which stores the counts of each word

found in all the 500 journal articles. We used both the Count Vectorizer and

the term frequencies inverse document frequency (TF-IDF) in creating the

sparse matrix. We then used a 5 fold Stratified KFold cross-validation for training

and validation due to the unbalanced nature of the data given that only 3.5 %

of the 44,232 paragraphs corresponded to synthetic paragraphs. Finally we im-

plemented six ML models, Logistic regression, Multinomial naive bayes, Support

vector machine, Decision tree, Random forest and Neural network, to perform

the paragraph classification. Each of these models were combined with either the

Count Vectorizer or TF-IDF from which the best model was use for predicting

synthetic paragraphs.

S-4.2 Evaluation of model for predicting synthesis paragraphs
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Table S2 Performance of supervised machine-learning models for syn-

thesis paragraph classification. Comparison of six classifiers trained using

TF-IDF or count-vector (CV) encodings. Accuracy, ROC-AUC, F-score, recall,

and precision are reported for each model. The neural network (NN) trained with

TF-IDF achieved the highest overall performance.

Model Vectorizer Accuracy ROC-AUC F-score Recall Precision

LR TF-IDF 0.990 0.892 0.842 1.00 0.788

LR CV 0.989 0.902 0.839 1.00 0.808

NB TF-IDF 0.966 0.511 0.043 1.00 0.022

NB CV 0.983 0.912 0.779 1.00 0.836

SVM TF-IDF 0.990 0.906 0.855 1.00 0.814

SVM CV 0.988 0.906 0.832 1.00 0.818

DT TF-IDF 0.985 0.883 0.787 1.00 0.773

DT CV 0.986 0.886 0.794 1.00 0.779

RF TF-IDF 0.990 0.882 0.845 1.00 0.766

RF CV 0.990 0.886 0.851 1.00 0.773

NN TF-IDF 0.991 0.912 0.863 1.00 0.830

NN CV 0.989 0.907 0.844 1.00 0.819

S-4.3 Synthetic condition

We successfully text mined 30,711 set of unique synthetic conditions where each

set of conditions was composed of the metal salts, organic reagent, solvent, the

concentration of each chemical used, reaction time, crystallisation time, stability

temperature, crystallisation temperature, synthesis method, stability time, MOF
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LR/TF-IDF LR/CV

NB/TF-IDF NB/CV

SVM/TF-IDF SVM/CV

Fig. S10 Confusion matrices for classification of synthesis paragraphs using six

machine-learning algorithms with two vectorization schemes (TF-IDF and CV).

Panels show the classification performance of logistic regression (LR), naive Bayes

(NB), support vector machine (SVM), decision tree (DT), random forest (RF), and

a neural network (NN), using TF-IDF or CV encodings. All models demonstrate

relatively good recall for identifying synthesis paragraphs.
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DT/TF-IDF DT/CV

RF/TF-IDF RF/CV

NN/TF-IDF NN/CV

Fig. S10 Confusion matrices (continued).
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name and warnings if reported. We then successfully mapped the unique set of

experimental synthetic conditions of 4,161 crystal structures.

To achieve this task, we began by identifying articles that reported a single MOF,

whose crystal structure was uploaded in the CSD. We then checked that the or-

ganic ligands matched the linker in the MOF structure and that the metal salt

corresponded to the central metal ions. The most tricky process was to match

structures in journals that reported several MOFs and especially those where a

single metal salt was used with varying organic ligands and vice versa. To achieve

this, the previous process was performed with also inspecting their IUPAC to

check for solvents used. We also checked if a name was reported for the MOF in

the paragraph and whether this name matched the Alias of the MOF reported in

the CSD. It is also important to note that not every MOF in the CSD have an

Alias, which is the common naming convention generally known for the MOF like

MOF-5. On the other hand, it was impossible to blindly match structures where

the same ligands and metal salts were used with variation of concentrations or

temperature.

Finally, it is worth noting that our main assumption was based each experimental

paragraph described a separate synthesis. Therefore each set of synthetic condi-

tions represent the conditions extracted from a given paragraph.

Distributions of top-5 organic linkers, metal salts and solvents are illustrated in

Fig. S11.
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Fig. S11 Illustration of the distribution of the top 10 most frequently occurring

organic ligands (a), metal salts (b) and solvents (c). To ensure consistent represen-

tation, all metal salts were converted to their chemical formulae, and ligands and

solvents to InChIKeys. This approach was necessary because chemical names are

not canonical, meaning a single compound may be referred to by multiple names.

In contrast, each compound has a unique InChIKey.
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S-4.4 Effect of synthetic method on geometric properties

(a) Number of occurance of synthetic

method

(b) Effect of synthetic method on PLD

(c) Effect of synthetic method on LCD (d) Effect of synthetic method on ASA

(e) Effect of synthetic method on AV (f) Effect of synthetic method on number

of channels

Fig. S12 Effect of different synthetic methods on various goemetric properties.
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S-4.5 Metal salts

The most challenging aspect in analysing metal salts results from the varied and

non-standardised ways in which different authors choose to refer to the same metal

salts. For instance, certain authors refer to CuCl as either Copper (I) chloride,

Cuprous chloride, Copper (i) chloride, or Copper [i] chloride. While all these names

refer to the same compound, they introduce variability that complicates feature

extraction for data analysis and for implementing machine learning models for

prediction of synthetic conditions. For this reason, we implement a module that

maps various names of metal salts to their chemical formulas. This enables a more

standardised naming convention. Moreover, we would like to encourage authors

to use the chemical formulas of metal salts when writing the synthetic sections of

their papers.

Another challenging aspect in analysing metal salts result from the way in which

some authors choose to report hydration. Many authors use vague statements like

we used hydrated copper sulphate. It is important to note that accounting for the

number of hydrated water molecules is important to ensure reproducibility.

Nonetheless, we were able to successfully text mine 35,875 metal salts correspond-

ing to 793 standardised unique salts. A plot of the 5 most common salts used for

the 6 most common metals is shown in Fig. S13.
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Fig. S13 Illustration of the 5 most used metal salts for the synthesis of MOFs.

The plot represents the salts used in the 6 most common metals, which are all

represented in different colours.

It can be observed from Fig. S13 that most MOFs are commonly made from zinc,

cadmium, copper, cobalt, nickel and manganese salts. Moreover, it can be observed

that hydrated nitrates are the most common salts, which shows a direct relation-

ship between reticular chemistry and coordination chemistry wherein hydrated

nitrates provides a source of metal ions that can coordinate with organic linkers

to form stable frameworks with the water molecules sometimes participating to

enhance stability and functionality of the resulting of the resulting MOFs. [22]

To further explore the importance of the type of metal salts used in the syn-

thesis of MOFs, we investigated various metal salts used in the synthesis of MOFs

with rod-like SBUs and paddlewheels. From the 4,161 synthetic conditions which

we correctly mapped to their crystal structures, we compiled 131 synthetic condi-

tions for MOFs with rod-like SBUs and 52 conditions for MOFs with paddlewheel
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SBUs. We then plotted the eight most common types of metal salts used in the

synthesis of these MOFs as illustrated in Fig. S14. It can be observed from Fig. S14

that most MOFs with rod-like SBUs are made from hydrated sulphates and ni-

trates of Co, Cd, and Mn. Meanwhile, majority of MOFs with paddlewheel SBU

were mostly made from different hydrated metal nitrates, which further highlights

the importance of hydrated nitrates in MOF chemistry. Consequently, we believe

that a future experimental study should be carried out to investigate how different

hydrates of a given metal salt affects the crystal structure, morphology and prop-

erties of the resulting MOF. Such a study would provide an invaluable insight in

understanding one of the many multidimensional experimental factors that affects

synthetic outcomes.

(a) Synthesis of rod MOFs (b) Synthesis of MOF with paddlewheel

metal SBUs

Fig. S14 Representation of the 8 most commonly used metal salts used in the

synthesis of MOFs with rodlike SBUs (a) and MOFs with a paddlewheel SBUs (b)
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S-4.6 Organic reagents

We text-mined 22,805 organic ligands, corresponding to 4,398 unique organic lig-

ands, from their respective journal articles. However, extracting organic reagents

proved to be more challenging compared to other reagents, primarily due to the

ambiguous manner in which most scientists have become accustomed to writing.

For instance, in many articles, the chemical names of organic reagents are not

explicitly written. Instead, the reagents are drawn and given a label L, which is

later used in the chemical formula of the MOF and referred to as H2L throughout

the text. In other cases, there are several inconsistencies in abbreviations. For ex-

ample, 4,4'-bipyridine is often inconsistently abbreviated as 4,4'-bpy or 4',4'-bipy.

On the other hand, some authors prefer to use empirical formulas while others pre-

fer chemical names. A typical example of this inconsistency is oxalic acid, which

is often written as H2C2O42H2O. An illustration of this ambiguity is represented

in Fig. S15a, where we plotted the 13 most occuring organic reagents extracted

from journal articles.
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(a) Extracted from journal articles (b) Extracted from IUPAC names

Fig. S15 Illustration of top 13 most commonly used organic ligands used in the

synthesis of MOFs. (a) represents the organic reagents that were extracted directly

from journal articles and (b) represents journals that were derived from IUPAC

names of the MOFs.

These ambiguities make it impossible to utilise this data for any future data anal-

ysis or machine learning implementation. Therefore to circumvent this problem,

we decided to seek an alternative approach for obtaining a more standardised rep-

resentation of organic reagents. While studying the IUPAC names of all the MOFs

uploaded in the CSD, we observed that deriving organic ligands directly from the

IUPAC names would be more effective since the names of the organic ligands

are often preserved in the IUPAC naming convention of coordination compounds

except with only minor changes in their suffixes.
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Fig. S16 Structure of the IUPAC name of a metal organic framework extracted

from the CSD

From the IUPAC naming convention for MOFs, as illustrated in the example in

Fig. S16, the names of MOFs often begin with the prefix catena, implying a poly-

meric system. This is often followed by the name of the complex ion or coordination

entity, which typically ends with the name of the central metal ions. After the

space, everything that follows is not directly bound to the coordination entity.

Hence, the name of the ligand can be directly extracted from the coordination

entity because in coordination chemistry, the name of the ligand often precedes

the central metal ion.

In the example in Fig. S16, the organic ligand is benzene-1,4-dicarboxylato, which

corresponds to benzene-1,4-dicarboxylate derived from benzene-1,4-dicarboxylic

acid. Consequently, we implemented a Python code that reads every IUPAC

name and returns the names of the exact organic ligands. We were able to de-

rive the exact organic ligands for all the hundreds of thousands of MOFs found in

the CSD. We plotted the 13 most occurring organic ligands derived from IUPAC

names as represented in Fig. S15b. It can be observed from Fig. S15b that the

names of the reagents are more standardised. Consequently, we also computed

the InChIKeys for all these organic reagents using OPSIN and PubChem Python

APIs to avoid ambiguities that often results from using common names and IU-

PAC names. [23–26]
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However during this process, we also identified several errors in the IUPAC names

of MOFs uploaded in the CSD. A compiled list of some of these errors are found

section S-1.4.

Unfortunately, this approach also proved unrealistic because numerous minor ty-

pographical inconsistencies in the reported IUPAC names prevented reliable con-

version to SMILES strings for name standardisation. Consequently, we adopted an

alternative strategy using our MOF deconstruction algorithm, mofstructure, to ex-

tract chemical names directly from the crystal structure. In this workflow, we iso-

late the molecular fragment, compute its InChIKey and SMILES strings, and then

query the PubChem API to retrieve the corresponding IUPAC name. This method

proved both more accurate and substantially faster than text-mining‚Äìbased ap-

proaches.

S-4.7 Solvents

Text mining solvents was one of the most straightforward approach. We did this

by compiling a list of all possible solvents that are commonly used in synthetic

chemistry as well as their chemical formulas. We then implemented regex patterns

to match these solvents and their quantities. Finally, we mapped all abbreviated

solvents to their chemical names. The list of the 20 most occurring solvents are

illustrated in Fig. S17.
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(a) All extracted solvents (b) Rod MOF synthesis

Fig. S17 Illustration of top 20 most commonly used solvents used in the synthesis

of MOFs. (a) Represents the 20 most occurring solvents in our database and (b)

represents the 20 most occurring solvents used in the synthesis of MOFs with

rodlike SBUs.

It can be observed from Fig. S17a that the 7 most occurring solvents used in the

synthesis of MOFs with occurrence exceeding 1000 are : water, methanol, sodium

hydroxide, n,n-dimethylformamide, ethanol, acetonitrile and dichloromethane re-

spectively. Interestingly, these solvents are all highly polar characterised by high

dielectric constants and dipole moments. Their high polarity is necessary to sig-

nificantly contribute to their effectiveness in dissolving majority of the organic

ligands and metal salts that are often used in the synthesis of MOFs.

We were also intrigued to know the solvents that are predominantly used in the

synthesis of MOFs with rodlike topologies, since these MOFs are well known for

their stability. As illustrated in figure Fig. S17b, it can be observed that the 7

most common solvents in the synthesis of MOFs with rodlike SBUs are: water,

n,n-dimethylformamide, sodium hydroxide, methanol, ethanol, acetonitrile and n-
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pentane. These solvents are also highly polar apart from n-pentane. Notably, all

these solvents, except for n-pentane, are highly polar. It is also worth noting that

most polar solvents act as ligands themselves by forming a coordination bond with

the central metal ion, which could be advantageous or disadvantageous depending

on the application.

S-4.8 Synthetic methods

S-4.8 Extracting the different synthetic methods used in the synthesis of MOFs was

another straightforward approach. We started by compiling a list of all synthetic

methods commonly used in reticular chemistry. Then we implement regex patterns

to match this patterns in each synthetic paragraph. However, in most cases the

names of the synthetic methods are not explicitly written. In such cases, we

checked whether there was any heating mentioned in the paragraph and whether

water was present as solvent or not. In paragraphs where heating was mentioned in

the presence of water, our module returned the synthetic method as hydrothermal

and those where heating was mention in the absence of water but in the presence

of other solvents, the method was reported as solvothermal. We also looked out

for how the synthesis was performed. For instance synthesis carried out in the

presence of a microwave was reported as microwave assisted method.

S-4.9 Time and ambiguity in reporting time

We implemented a method to find crystallization time, stability time and reaction

time from each synthetic paragraph where time was reported. We then converted

this time to hours since they are sometimes reported in days, weeks and hours.

The reaction time generally include all the time spent performing the reaction

including the time of mixing. On the other hand the stability time refers to how

long the structure was stable either in solvent or during thermal analysis. And fi-
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nally, the crystallisation time corresponded to the time after which crystal started

forming. These quantities were not always collected from all paragraphs because

several authors do not always report each of these time.

However, the most challenging aspect of text mining and processing time resulted

from the ambiguous and imprecise way in which most authors report time in the

literature. These imprecisions are illustrated in Fig. S18. As shown in Fig. S18a,

some authors use terms like overnight or several days to report the duration of

their synthesis, while others use several days or a few days to report the time of

crystallisation. We strongly encourage authors to be more precise when reporting

time, as time is crucial for controlling the synthesis and properties of MOFs.

(a) Ambiguity in

reporting reaction time

(b) Ambiguity in

reporting crystallisation

time

(c) Ambiguity in

reporting stability time

Fig. S18 Illustration of the imprecise manner in which several authors report

time in journal articles. Each plot shows the number of occurrence of each of

these terms. (a) Represents some of the imprecise ways in which reaction time is

reported (b) Represents some of the imprecise ways in which crystallisation time

is reported and (c) Represents some of the imprecise ways in which stability of the

MOF is reported
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To gain a clearer understanding of how different people interpret these impre-

cise terms, we conducted a survey where we asked participants to assign specific

durations to these terms.

S-4.10 Temperature, reaction quantities and warning

We also text mine temperatures from each synthetic paragraphs. The tempera-

ture extracted were the crystallisation temperature, drying temperature, melting

temperature, stability temperature and reaction temperature. These temperatures

were extracted by checking their units and also looking what the words used in

the sentences in which these temperatures were referred. For instance if a temper-

ature is found in a sentence and the word crystallisation precedes or proceeds the

value, the temperature will be considered as crystallisation temperature. We also

converted the values of all temperatures to Kelvin.

However, authors frequently report temperature simply as room temperature.

Although this may appear logically acceptable, it is scientifically imprecise and

physically inaccurate, as room temperature varies substantially with weather con-

ditions, season, and geographic location. For instance, in humid coastal cities such

as Douala or Limbe in Cameroon, room temperature can range from 30–35 ◦C dur-

ing the dry season and 25–30 ◦C during the rainy season, which will be markedly

different from those in cities in Germany or the United Kingdom. This variability

highlights the need for explicit temperature reporting to ensure reproducibility in

synthesis.

In addition to text mining temperatures, we also text mined the quantities of all

the reagents used in the synthesis. We implemented a robust model to find chem-

icals and extract both their quantities and the units of the quantity used in the
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synthesis. We then converted all these quantities to their SI units to standardised

the values for future data analysis and implementation of machine learning models.

Finally, we text mine all warnings about experimental synthetic conditions when

reported in the experimental paragraph. For instance we extracted full sentences

like:

CAUTION ! Though while working with the perchlorate compounds described here

we have not met with any incident, care should be taken in handling them as per-

chlorates are potentially explosive. These should not be prepared and stored in

large amounts.

This provides a careful warning about dangerous chemicals as well as provide

information on hazards measures.

S-5 Graph Dataset

To assess the structural diversity and topological complexity of the dataset, we

computed several statistics across the 4,161 graph instances. As summarised in

Table S3, the number of nodes per graph ranges from 13 to over 5,000, with an

average of 232.84±234.83, reflecting the broad variability in MOF sizes-from small

molecular fragments to large extended frameworks. The number of edges follows a

similar trend, with a mean of 273.36±277.42 and a range spanning from 14 to 5,664.

Each node encodes a 4-dimensional feature vector capturing atomic-level descrip-

tors, while the average node degree across all graphs is 2.36±0.24, consistent with

the sparsity typically observed in molecular and crystalline structures. Notably,
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node degree values vary between 1.88 and 4.86, suggesting heterogeneous connec-

tivity patterns within and across MOFs.

In addition to size and connectivity, we computed the average shortest path length

within the largest connected component of each graph. This metric quantifies the

typical topological distance between pairs of atoms and provides insight into the

compactness of the graph structure. On average, MOF graphs exhibit an internal

path length of 8.74± 3.53, with a minimum of 2.06 and a maximum exceeding 50,

indicating the presence of both compact and highly extended topologies.

Table S3 Summary statistics of the graph-based MOF representations used for

machine learning.

Metric Mean ± Std Min Max

Number of nodes per graph 232.84± 234.83 13 5136

Number of edges per graph 273.36± 277.42 14 5664

Average node degree 2.36± 0.24 1.88 4.86

Node feature dimension 4 - -

Average shortest path length 8.74± 3.53 2.06 52.03

Fig. S19 complements Table S3 by visualising the distribution of key structural

properties across the dataset. The left panel shows the distribution of node counts

per graph, highlighting that the majority of MOFs contain fewer than 1,000 atoms,

although a small number of large frameworks account for the long tail. The right

panel displays the distribution of average shortest path lengths, revealing that most

graphs have values between 5 and 15, indicative of moderately compact structures,

while a few exhibit much higher values due to sparse or extended topologies.

.
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Fig. S19 Left: Distribution of the number of nodes per MOF graph, illustrating

the structural diversity of the dataset. Right: Distribution of average shortest path

lengths, reflecting the compactness and topological spread of the MOF structures.

S-6 Model prediction of synthesis condition

The predicted synthesis parameters obtained from the fairmofsyncondition model

for both the original qmof-6031bc0 structure and the brominated analogue syn-

thesised experimentally are presented in and respectively. Each report contains

information on thermodynamic stability, crystal symmetry, predicted metal salts,

solvents, and organic ligands, along with their associated probabilities. These pre-

dictions were used to guide the experimental synthesis described in the manuscript.

S-6.1 Prediction for qmof-6031bc0

Predicted Synthetic Data Report

For: qmof-6031bc0

================================================================================

Space group number: 1

Crystal system: triclinic
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================================================================================

Thermodynamic Stability: -793.8344422866076 kJ/mol

Organic Ligands

--------------------------------------------------------------------------------

InChIKey SMILES IUPAC Name

--------------------------------------------------------------------------------

LMOSYFZLPBHEOW-UHFFFAOYSA-N C1=C(C(=CC(=C1Cl)C(=O)O)Cl)C(=O)O 2,5-dichloroterephthalic acid

Top 3 Predicted Metal Salts

--------------------------------------------------------------------------------

Metal Salt Probability

--------------------------------------------------------------------------------

ZrOCl2.8H2O 0.4881

Cd(NO3)2.4H2O 0.2421

CdCl2.6H2O 0.0862

================================================================================

Percentage probability of solvents

--------------------------------------------------------------------------------

Organic ligands

--------------------------------------------------------------------------------

Ligands : 2,5-dichloroterephthalic acid

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

H2O 83.33 %

C2H5OH 16.67 %

================================================================================
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Metal Salts

--------------------------------------------------------------------------------

Metal Salts: ZrOCl2.8H2O

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

AcOH 33.33 %

CH3OH 33.33 %

DMF 33.33 %

--------------------------------------------------------------------------------

Metal Salts: Cd(NO3)2.4H2O

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

H2O 34.69 %

DMF 14.29 %

CH3OH 12.7 %

--------------------------------------------------------------------------------

Metal Salts: CdCl2.6H2O

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

H2O 50.0 %

DMF 25.0 %

C2H5OH 12.5 %

================================================================================

Report generated by fairmofsyncondition
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Authors: Dinga Wonanke \& Antonio Longa

================================================================================

S-6.2 Prediction for Brominated Variant

Predicted Synthetic Data Report

For: dibromoterephthalate_Zr

================================================================================

Space group number: 1

Crystal system: triclinic

================================================================================

Thermodynamic Stability: -895.4167197843163 kJ/mol

Organic Ligands

--------------------------------------------------------------------------------

InChIKey SMILES IUPAC Name

--------------------------------------------------------------------------------

VUTICWRXMKBOSF-UHFFFAOYSA-N C1=C(C(=CC(=C1Br)C(=O)O)Br)C(=O)O 2,5-dibromoterephthalic acid

Top 3 Predicted Metal Salts

--------------------------------------------------------------------------------

Metal Salt Probability

--------------------------------------------------------------------------------

ZrOCl2.8H2O 0.8075

BiCl3 0.1151

CaCl2 0.0344

================================================================================

Percentage probability of solvents
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--------------------------------------------------------------------------------

Organic ligands

--------------------------------------------------------------------------------

Ligands : 2,5-dibromoterephthalic acid

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

CH3OH 50.0 %

H2O 25.0 %

TEA 25.0 %

================================================================================

Metal Salts

--------------------------------------------------------------------------------

Metal Salts: ZrOCl2.8H2O

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

AcOH 33.33 %

CH3OH 33.33 %

DMF 33.33 %

--------------------------------------------------------------------------------

Metal Salts: BiCl3

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

THF 42.86 %

H2O 28.57 %
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C2H5OH 14.29 %

--------------------------------------------------------------------------------

Metal Salts: CaCl2

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

H2O 38.46 %

CH3OH 23.08 %

C2H5OH 15.38 %

================================================================================

Report generated by fairmofsyncondition

Authors: Dinga Wonanke \& Antonio Longa

================================================================================

S-6.3 Prediction for qmof-835565b

Predicted Synthetic Data Report

For: qmof-835565b

================================================================================

Space group number: 1

Crystal system: triclinic

================================================================================

Thermodynamic Stability: -386.75146094210396 kJ/mol

Organic Ligands

--------------------------------------------------------------------------------

InChIKey SMILES IUPAC Name

--------------------------------------------------------------------------------
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NEQFBGHQPUXOFH-UHFFFAOYSA-N C1=CC(=CC=C1C2=CC=C(C=C2)C(=O)O)C(=O)O 4-(4-carboxyphenyl)benzoic acid

Top 3 Predicted Metal Salts

--------------------------------------------------------------------------------

Metal Salt Probability

--------------------------------------------------------------------------------

Zn(NO3)2.3H2O 0.9545

ZnCO3 0.0182

Zn(NO3)2.6H2O 0.0086

================================================================================

Percentage probability of solvents

--------------------------------------------------------------------------------

Organic ligands

--------------------------------------------------------------------------------

Ligands : 4-(4-carboxyphenyl)benzoic acid

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

DMF 30.43 %

H2O 26.09 %

CH3OH 10.87 %

================================================================================

Metal Salts

--------------------------------------------------------------------------------

Metal Salts: Zn(NO3)2.3H2O

--------------------------------------------------------------------------------

Solvent Predicted probability
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--------------------------------------------------------------------------------

H2O 34.83 %

DMF 19.07 %

C2H5OH 10.78 %

--------------------------------------------------------------------------------

Metal Salts: ZnCO3

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

C2H5OH 50.0 %

H2O 42.86 %

KBr 7.14 %

--------------------------------------------------------------------------------

Metal Salts: Zn(NO3)2.6H2O

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

H2O 36.11 %

DMF 25.0 %

C2H5OH 11.11 %

================================================================================

Report generated by fairmofsyncondition

Authors: Dinga Wonanke & Antonio Longa

================================================================================
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S-6.4 Prediction for qmof-3fb24cf

Predicted Synthetic Data Report

For: qmof-3fb24cf

================================================================================

Space group number: 1

Crystal system: triclinic

================================================================================

Thermodynamic Stability: -317.66544675314094 kJ/mol

Organic Ligands

--------------------------------------------------------------------------------

InChIKey SMILES IUPAC Name

--------------------------------------------------------------------------------

RXOHFPCZGPKIRD-UHFFFAOYSA-N C1=CC2=C(C=CC(=C2)C(=O)O)C=C1C(=O)O naphthalene-2,6-dicarboxylic acid

Top 3 Predicted Metal Salts

--------------------------------------------------------------------------------

Metal Salt Probability

--------------------------------------------------------------------------------

Zn(NO3)2.3H2O 0.9302

ZnCl2 0.0220

ZnI2 0.0161

================================================================================

Percentage probability of solvents

--------------------------------------------------------------------------------

Organic ligands

--------------------------------------------------------------------------------
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Ligands : naphthalene-2,6-dicarboxylic acid

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

H2O 34.62 %

DMF 21.15 %

KBr 13.46 %

================================================================================

Metal Salts

--------------------------------------------------------------------------------

Metal Salts: Zn(NO3)2.3H2O

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

H2O 34.83 %

DMF 19.07 %

C2H5OH 10.78 %

--------------------------------------------------------------------------------

Metal Salts: ZnCl2

--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

H2O 29.57 %

KBr 16.52 %

C2H5OH 13.91 %

--------------------------------------------------------------------------------

Metal Salts: ZnI2
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--------------------------------------------------------------------------------

Solvent Predicted probability

--------------------------------------------------------------------------------

H2O 63.64 %

CH3OH 18.18 %

DMF 9.09 %

================================================================================

Report generated by fairmofsyncondition

Authors: Dinga Wonanke & Antonio Longa

================================================================================

S-6.5 Explanation of Terms

• Space group number: Identifies the symmetry group of the predicted

crystal structure according to the International Tables for Crystallography.

• Crystal system: Describes the lattice symmetry (e.g., triclinic, monoclinic,

orthorhombic).

• Thermodynamic Stability (kJ/mol): The predicted formation energy

per mole, used as a proxy for the relative stability of the structure. Model

trained on GFN-xTB formation energies per formular unit of MOFs.

• Organic Ligands: Lists the predicted linker molecules with their InChIKey

(unique chemical identifier), SMILES notation, and IUPAC name.

• Top 3 Predicted Metal Salts: Lists the metal precursors most likely

to yield the MOF, ranked by their predicted probability. Each probability

represents the likelihood of successfully synthesising the target MOF using
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one specific metal salt under appropriate conditions. These values should

not be interpreted as suggesting that multiple metal salts are to be combined

in a single synthesis; rather, they indicate alternative viable precursors, each

considered independently.

• Percentage Probability of Solvents: Lists the most frequently used sol-

vents in the literature for a given reagent, derived from statistical co-usage

analysis. The reported percentage reflects how often each solvent has been

associated with that reagent across experimental records. These probabilities

should not be interpreted as suggesting that the solvents are to be combined

in a single synthesis; each solvent is considered independently as a viable op-

tion. When no co-usage data are found in the literature, the model defaults

to reporting no data found try water as a general fallback recommendation.

It is important to note that this solvent prediction is not generated by a

trained AI model but rather represents a statistical measure of historical

solvent usage frequencies.

• Report generated by fairmofsyncondition: All predictions were com-

puted using our trained retrosynthetic recommender model based on lit-

erature co-usage patterns extracted from thousands of experimental MOF

reports.
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