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I. Supplementary Methods
Patient population
In the present study, consecutive patient datasets were retrospectively collected from two independent clinical institutions. After rigorous application of predefined inclusion and exclusion criteria, a total of 732 cases were ultimately enrolled in the analysis.

The inclusion criteria were specified as: (1) Histopathologically confirmed diagnosis of breast cancer; (2) Performance of axillary lymph node (ALN) biopsy and/or ALN dissection; (3) Completion of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) prior to any therapeutic intervention.

Conversely, the exclusion criteria comprised: (1) A prior history of primary breast cancer or presence of distant metastatic lesions; (2) Suboptimal DCE-MRI image quality or regions of interest (ROIs) with fewer than 64 voxels; (3) Diagnosis of bilateral breast cancer; (4) Incomplete clinical, radiological, or pathological documentation.
Clinical pathological data collection

Clinical and pathological variables pertinent to this research were extracted from the hospital’s electronic medical record (EMR) system, covering patient age, tumor histological subtype and differentiation grade, molecular classification, MRI-assessed axillary lymph node (ALN) status, Breast Imaging Reporting and Data System (BI-RADS) category, lesion dimension, and pathological lymph node status. Specifically, the expression profiles of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), progesterone receptor (PR), as well as the proliferation index Ki-67, were documented in detail.

Breast cancer was categorized into four molecular subtypes in accordance with the 2013 St. Gallen International Breast Cancer Conference consensus on molecular staging [1]: 
(1) Luminal A: ER and/or PR positive, HER2 negative, and Ki-67 index &lt; 14%;

(2) Luminal B: ER and/or PR positive, HER2 negative with Ki-67 index ≥ 14%, or ER and/or PR positive with HER2 positivity (regardless of Ki-67 level);

(3) HER2-overexpressing: ER and PR negative, with HER2 positivity;

(4) Triple-negative breast cancer (TNBC): Negative for ER, PR, and HER2 expression.

Pathological ALN positivity was defined as the presence of macrometastasis or micrometastasis in lymph nodes. Radiologically, MRI-reported ALN positivity was identified based on the following characteristic manifestations: (1) irregular morphological features; (2) increased nodal size (maximum diameter > 1 cm); (3) prominent enhancement on dynamic contrast-enhanced MRI (DCE-MRI); and (4) morphological alterations of the lymph node hilum, including compression, deformation, displacement, or absence. The maximum dimension of the breast lesion was measured on the second phase of DCE-MRI imaging, which is recognized as the optimal phase for lesion characterization.
MRI images acquisition
Centre 1 (The Third Affiliated Hospital of Zhengzhou University): Using the GE Signa Pioneer 3.0-T MR scanning system, 8-channel dedicated surface coil for breast cancer conventional and enhanced scan. Patients in prone position, bilateral breast naturally overhang in the coil. For DCE-MRI, transverse axial scan: repetition time (TR) 4.5ms, echo time (TE) 2.1ms, reverse angle 15°, thickness 1.2mm, gap 0mm, matrix 340×340, field of view (FOV) 36cm×36cm. Gadopentetate dimeglumine injection (Gd-DTPA) 0.2 mmol/kg was used as contrast agent. Immediately after the start of high-pressure syringe injection scan, 5 consecutive scans were performed.
Centre 2 (The First Affiliated Hospital of Zhengzhou University): Using the GE DISCOVERY MR750 3.0-T MR scanning system, 8-channel dedicated surface coil for breast cancer conventional and enhanced scan. Patients in prone position, bilateral breast naturally overhang in the coil. For DCE-MRI, transverse axial scan: repetition time (TR) 3.9ms, echo time (TE) 1.7ms, reverse angle 5°, thickness 1.4mm, gap 0mm, matrix 320×320, field of view (FOV) 36cm×36cm. Gadopentetate dimeglumine injection (Gd-DTPA) 0.2 mmol/kg was used as contrast agent. Immediately after the start of high-pressure syringe injection scan, 5 consecutive scans were performed.
Radiomics features extraction

All images were resampled to an isotropic voxel size of 1×1×1 mm³ with a fixed bin width of 25 to standardize voxel spacing and mitigate image noise. Radiomics features were automatically extracted using PyRadiomics (version 3.0.1; https://pyradiomics.readthedocs.io/en/latest/), an open-source Python library that adheres to the guidelines established by the Imaging Biomarker Standardization Initiative (IBSI). A total of 1197 quantitative radiomics features were derived for each patient through this extraction pipeline. These features were categorized into three major classes: (I) geometric features, (II) intensity-based features, and (III) texture features. For texture feature extraction, multiple established matrix-based methods were implemented, including the gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), and neighborhood gray-tone difference matrix (NGTDM).
Multi-instance learning and feature aggregation
Multi-instance learning (MIL) was employed to aggregate predictive information across multiple image slices, thereby enhancing the model’s ability to make patient-level predictions. The process began by treating each patient as a single “bag” which contained multiple “instances” corresponding to the nine 2.5D image slices. Each slice was individually processed by the pre-trained ResNet101 model to obtain instance-level prediction probabilities (Patch_prob) and predicted class labels (Patch_pred).

Two distinct feature aggregation strategies were then applied to these instance-level predictions to derive bag-level features:

Histogram Feature Aggregation: (1) We treated each distinct value in Patch_prob and Patch_pred as a separate “bin”.(2) The frequencies of Patch_prob and Patch_pred values falling into each respective bin were tallied to construct their histograms.(3) All histogram features were then min-max normalized to ensure they were on the same scale.(4) This process resulted in the generation of the Histo_prob and Histo_pred feature sets.

Bag of Words (BoW) Feature Aggregation: (1) Initially, a dictionary was created by identifying all unique elements within the combined set of Patch_prob and Patch_pred from the entire dataset. (2) Each patch (instance) was then represented as a frequency vector, where each entry indicated the frequency of a particular dictionary element within that patch.(3) We applied Term Frequency-Inverse Document Frequency (TF-IDF) transformation to these frequency vectors, emphasizing the importance of less frequent but potentially more informative features.(4) This resulted in a weighted BoW feature representation for each patch.(5) The final BoW features, denoted as TF-IDF_prob and TF-IDF_pred, offered a comprehensive and weighted representation of the instances.

Finally, we employed two concatenation strategies, symbolized by⨁, to fuse the MIL features, and obtained two corresponding types of MIL features, namely MIL-histogram and MIL-TF-IDF, respectively. The specific formula for this concatenation is as follows:

MIL_histogram=Histo_prob⊕Histo_pred (1);
MIL_TF-IDF=TF-IDF_prob⊕TF-IDF_pred (2).
II. Supplementary Figures
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Figure. S1 Deep learning (DL) and radiomics features after LASSO regression. Weight visualization of MIL_TF-IDF (A), MIL_histogram (B), two-dimensional (2D) DL features (C), and radiomics features (D) after LASSO selection.
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Figure. S2 ROC analysis of different classifiers based on radiomics (A), 2D DL (B), MIL_histogram (C), and MIL_TF-IDF (D) feature sets in the internal validation set. LR, logistic regression; MLP, multi-layer perceptron; SVM, support vector machine; MIL, multi-instance learning; TF-IDF, Term Frequency-Inverse Document Frequency; DL, deep learning; 2D, two dimensional; AUC, area under the curve.
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Figure. S3 DCA curves of the different predictive models in the training set (A), internal validation set (B) and external validation set (C). MIL, multi-instance learning; TF-IDF, Term Frequency-Inverse Document Frequency; 2D, two dimensional; DL, deep learning.
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Figure. S4 Grad-CAM visualization for model interpretation. This figure presents the Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations for an axillary lymph node (ALN)-negative breast cancer case, generated by the 2.5-dimensional deep learning (2.5D DL) model. The activation maps are displayed across multiple image slices in three anatomical planes: Axial (AX) Plane: Shows the activation maps for slices n-2, n, and n+2, where n likely represents the central slice of the tumor. Sagittal (SAG) Plane: Shows the activation maps for the corresponding slices (n-2, n, n+2) from the sagittal view. Coronal (COR) Plane: Shows the activation maps for the corresponding slices (n-2, n, n+2) from the coronal view. The heatmaps overlay the original MR images, highlighting the regions (in red/yellow) that the model identified as most significant for its prediction of the ALN-negative status. This multi-planar visualization demonstrates the features learned by the model across different perspectives of the tumor.
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Figure. S5 Grad-CAM visualization for model interpretation. This figure presents the Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations for an axillary lymph node (ALN)-positive breast cancer case, generated by the 2.5-dimensional deep learning (2.5D DL) model. The activation maps are displayed across multiple image slices in three anatomical planes: Axial (AX) Plane: Shows the activation maps for slices n-2, n, and n+2, where n likely represents the central slice of the tumor. Sagittal (SAG) Plane: Shows the activation maps for the corresponding slices (n-2, n, n+2) from the sagittal view. Coronal (COR) Plane: Shows the activation maps for the corresponding slices (n-2, n, n+2) from the coronal view. The heatmaps overlay the original MR images, highlighting the regions (in red/yellow) that the model identified as most significant for its prediction of the ALN-positive status. This multi-planar visualization demonstrates the features learned by the model across different perspectives of the tumor.
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Figure. S6 Comparisons of the receiver-operating characteristic (ROC) curves of the predictive models in patients with different ages (>50 years vs. ≤50 years) in internal validation set and external validation set. AUC, area under the curve; MIL, multi-instance learning; TF-IDF, Term Frequency-Inverse Document Frequency; DL, deep learning; 2D, two dimensional; P value was calculated using the Delong test.
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Figure. S7 Comparisons of the receiver-operating characteristic (ROC) curves of the predictive models in patients with different BI-RADS category (BI-RADS 4 vs. BI-RADS 5) in internal validation set and external validation set. AUC, area under the curve; MIL, Multi-instance learning; TF-IDF, Term Frequency-Inverse Document Frequency; DL, deep learning; 2D, two dimensional; P value was calculated using the Delong test.
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Figure. S8 Comparisons of the receiver-operating characteristic (ROC) curves of the predictive models in patients with different tumor grade (≤Grade 2 vs. >Grade 2) in internal validation set and external validation set. AUC, area under the curve; MIL, Multi-instance learning; TF-IDF, Term Frequency-Inverse Document Frequency; DL, deep learning; 2D, two dimensional; P value was calculated using the Delong test.
[image: image12.png]Sensitivity

Internal validation set

Sensitivity

Sensitivity

External validation set

Sensitivity

100

80

60

80

60

20

100

80

@
1=

5

N
=

Stacking

Sensitivity

P=0.900
—— Size<20mm(AUC=0.865)
—— Size>20mm(AUC=0.874)

P=0.334
—— Size<20mm(AUC=0.773)
ze>20mm(AUG=0.855)

0 20 40 60 80

100-Specificity

2D DL

Sensitivity

P=0.580
—— Size<20mm(AUC=0.764)
— Size>20mm(AUC=0.712)

0 20 40 60 80 100

100-Specificity

Radiomics

— Size>20mm(AUC=0.720)

0 20 40 60 80

100-Specificity

Stacking

Sensitivity

P=0.805
—— Size<20mm(AUC=0.840)
—— Size>20mm(AUC=0.858)

0 20 40 60 80 100

100-Specificity

MIL_histogram

P=0.282
—— Size£20mm(AUC=0.732)
— Size>20mm(AUC=0.839)

0 20 40 60 80

100-Specificity

2D DL

@
1=

Sensitivity
3

P=0.262
—— Size<20mm(AUC=0.797)
—— Size>20mm(AUC=0.690)

0 20 40 60 80 100

100-Specificity

Radiomics

N
=

e<20mm(AUC=0.562)
—— Size>20mm(AUC=0.663)

0 20 40 60 80

100-Specifici

0 20 40 60 80 100
100-Specificity

Sensitivity

MIL_TF-IDF

P=0.143
—— Size<20mm(AUC=0.738)
—— Size>20mm(AUC=0.864)

Sensitivity

0 20 40 60 80 100

100-Specificity

MIL_TF-IDF

P=0.252
—— Size<20mm(AUC=0.736)
— Size>20mm(AUC=0.853)

0 20 40 60 80 100

100-Specificity





Figure. S9 Comparisons of the receiver-operating characteristic (ROC) curves of the predictive models in patients with different tumor size (≤20 mm vs. >20 mm) in internal validation set and external validation set. AUC, area under the curve; MIL, Multi-instance learning; TF-IDF, Term Frequency-Inverse Document Frequency; DL, deep learning; 2D, two dimensional; P value was calculated using the Delong test.
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