

Supplementary Materials to: Compression or Expansion? Health Surveillance Trends in Cardiovascular and Diabetes Morbidity in the United States

Alberto Arletti^{*1}, Lorenzo Schiavon¹, Mattia Stival¹, Michele Marzulli¹, Gaia Bertarelli¹, and Stefano Campostrini¹

¹Department of Statistics, Ca' Foscari University of Venice, Italy

November 2025

Model	# Parameters	Log Loss	AUC
expert large	80	0.3239	0.7699
expert mini	38	0.3243	0.7692
lasso λ_{1se}	46	0.3243	0.7696
lasso λ_{min}	69	0.3239	0.7700
full linear	97	0.3238	0.7700
stepwise n=10	72	0.3240	0.7698
stepwise n=2	83	0.3238	0.7700
random forest	87	0.3380	0.7454

Table 1: Summary of comparison of models by number of parameters, log loss, and AUC for diabetes.

Model	# Parameters	Log Loss	AUC
expert large	71	0.1831	0.7175
expert mini	57	0.1833	0.7165
lasso λ_{1se}	29	0.1843	0.7117
lasso λ_{min}	76	0.1831	0.7177
full linear	87	0.1831	0.7179
stepwise n=1	85	0.1831	0.7179
stepwise n=10	61	0.1831	0.7174
random forest	87	0.1882	0.6929

Table 2: Summary of comparison of models by number of parameters, log loss, and AUC for CVs.

Term	Estimate	Std. Error	Pr(> z)	Sig.
(Intercept)	-1.0662	0.0215	0.0000	***
age_scl	0.3851	0.0111	0.0000	***
bmi_scl	0.8121	0.0066	0.0000	***
cohort_scl	0.0047	0.0027	0.0897	.
edu: high school or less	0.1650	0.0195	0.0000	***
edu: some college	0.1111	0.0215	0.0000	***
female	-0.0926	0.0125	0.0000	***
income: no info	-0.6998	0.0264	0.0000	***
income: other	-0.6110	0.0642	0.0000	***
income: rich	-0.6347	0.0206	0.0000	***
race: hispanic	0.1119	0.0117	0.0000	***
race: other	0.0536	0.0117	0.0000	***
race: white	-0.5452	0.0075	0.0000	***
region: Northeast	0.0032	0.0082	0.6989	
region: South	0.2148	0.0070	0.0000	***
region: West	-0.0949	0.0079	0.0000	***
smoker	0.1260	0.0048	0.0000	***
$I(\text{age_scl}^2)$	-0.1088	0.0055	0.0000	***
$I(\text{bmi_scl}^2)$	-0.0956	0.0007	0.0000	***
age_scl:bmi_scl	-0.0578	0.0034	0.0000	***
age_scl:income no info	0.0996	0.0153	0.0000	***
age_scl:income other	0.1269	0.0114	0.0000	***
age_scl:income rich	0.1107	0.0119	0.0000	***
bmi_scl:income no info	0.1219	0.0081	0.0000	***
bmi_scl:income other	0.0959	0.0061	0.0000	***
bmi_scl:income rich	0.2025	0.0064	0.0000	***
bmi_scl:region Northeast	0.0169	0.0066	0.0110	*
bmi_scl:region South	-0.0481	0.0056	0.0000	***
bmi_scl:region West	0.0205	0.0064	0.0014	**
edu: high school or less \times income no info	0.3598	0.0272	0.0000	***
edu: some college \times income no info	0.2123	0.0304	0.0000	***
edu: high school or less \times income other	0.1465	0.0644	0.0229	*
edu: some college \times income other	0.1224	0.0650	0.0594	.
edu: high school or less \times income rich	0.0291	0.0939	0.7564	
edu: some college \times income rich	0.1249	0.0245	0.0000	***
female \times income no info	-0.0599	0.0197	0.0023	**
female \times income other	-0.1065	0.0144	0.0000	***
female \times income rich	-0.2011	0.0152	0.0000	***

Table 3: Logistic regression coefficients for the selected expert mini model for diabetes with standard errors, z values, p-values, and significance codes (p-value < 0.001 ‘***’, < 0.01 ‘**’, < 0.05 ‘*’, < 0.1 ‘.’)

The significance tests reported are unadjusted for multiple comparisons.

The coefficients of the selected model for diabetes are presented in Table 3. In the table, ‘‘scl’’ indicates the scaled version of the continuous variable, with mean 0 and standard deviation equal 1. Individuals with higher BMI show the strongest positive association with diabetes risk (0.8121, $p < 0.0001$), followed by older age (0.3851, $p < 0.0001$). Having only a high school degree or less (0.1650, $p < 0.0001$) or some college education (0.1111, $p < 0.0001$) is also linked with higher odds compared to higher educational attainment. Belonging to a Hispanic racial group (0.1119, $p < 0.0001$) or the ‘‘other’’ racial groups (0.0536, $p < 0.0001$) is associated with increased diabetes risk compared to the reference category. Living in Southern states (0.2148, $p < 0.0001$) also increases risk, as does being a smoker (0.1260, $p < 0.0001$). Some income-related interaction effects are strong positive predictors. For example, age interacting with no info on income (0.0996, $p < 0.0001$), age \times other income (0.1269, $p < 0.0001$), and age \times rich income (0.1107, $p < 0.0001$) all increase diabetes risk with age. Similarly, BMI \times income no info (0.1219, $p < 0.0001$), BMI \times income other (0.0959, $p < 0.0001$), and BMI \times income rich (0.2025, $p < 0.0001$) indicate that higher BMI amplifies risk across income groups. There are also education-income interactions, including high school or less \times no income info (0.3598, $p < 0.0001$), some college \times

no income info (0.2123, $p < 0.0001$), high school or less \times other income (0.1465, $p = 0.0229$), and some college \times rich income (0.1249, $p < 0.0001$), which all increase diabetes risk. A smaller but significant positive effect is seen for BMI \times Northeast states (0.0169, $p = 0.0110$) and BMI \times West states (0.0205, $p = 0.0014$). On the other hand, several variables show negative or protective associations. Being female is associated with a lower risk (-0.0926, $p < 0.0001$). Individuals reporting no income information (-0.6998, $p < 0.0001$), other income categories (-0.6110, $p < 0.0001$), or rich income (-0.6347, $p < 0.0001$) also have significantly lower baseline risk compared to the reference income group (income < 25.000\$). Belonging to the white racial group reduces risk (-0.5452, $p < 0.0001$), and living in the Western states similarly shows a protective effect (-0.0949, $p < 0.0001$). There are also significant negative quadratic terms, indicating non-linear relationships: age^2 (-0.1088, $p < 0.0001$) and BMI^2 (-0.0956, $p < 0.0001$), suggesting that risk increases at lower to moderate levels but plateaus or declines at extreme values. The $age \times BMI$ interaction is negative (-0.0578, $p < 0.0001$), meaning the combined effect of older age and higher BMI is somewhat attenuated compared to their individual effects. Additionally, BMI \times living in Southern states shows a negative interaction (-0.0481, $p < 0.0001$). Finally, several interactions involving sex and income categories are protective: female \times no income info (-0.0599, $p = 0.0023$), female \times other income (-0.1065, $p < 0.0001$), and female \times rich income (-0.2011, $p < 0.0001$), indicating that women in these income groups have lower diabetes risk relative to men. A few variables show weak or non-significant effects. Cohort (scaled) is marginally positive (0.0047, $p = 0.0897$), while region Northeast has no significant effect (0.0032, $p = 0.699$). Education \times rich income for those with high school or less is also non-significant (0.0291, $p = 0.756$).

Term	Estimate	Std. Error	Pr(> z)	Sig.
(Intercept)	-2.9352	0.0733	0.0000	***
age_scl	0.0298	0.0333	0.3713	
bmi_scl	0.2273	0.0121	0.0000	***
cohort_scl	-0.1197	0.0244	0.0000	***
edu: high school or less	0.1781	0.0395	0.0000	***
edu: some college	0.1378	0.0429	0.0013	**
female	-0.0584	0.0436	0.1798	
income: no info	-0.7246	0.0918	0.0000	***
income: other	-0.8060	0.1367	0.0000	***
income: rich	-0.7797	0.0812	0.0000	***
race: hispanic	0.0209	0.1208	0.8626	
race: other	0.5398	0.0850	0.0000	***
race: white	0.3240	0.0613	0.0000	***
region: Northeast	-0.1103	0.0727	0.1293	
region: South	-0.1092	0.0503	0.0299	*
region: West	0.0363	0.0995	0.7154	
smoker	0.6990	0.0122	0.0000	***
$I(bmi_scl^2)$	-0.0317	0.0028	0.0000	***
age_scl:income no info	0.2789	0.0557	0.0000	***
age_scl:income other	0.2077	0.0398	0.0000	***
age_scl:income rich	0.4191	0.0463	0.0000	***
bmi_scl:income no info	0.1038	0.0197	0.0000	***
bmi_scl:income other	0.0621	0.0138	0.0000	***
bmi_scl:income rich	0.1663	0.0170	0.0000	***
cohort_scl:income no info	0.1172	0.0400	0.0034	**
cohort_scl:income other	-0.0347	0.0291	0.2329	
cohort_scl:income rich	0.0036	0.0340	0.9145	
edu: high school or less \times income no info	0.4405	0.0581	0.0000	***
edu: some college \times income no info	0.2796	0.0633	0.0000	***
edu: high school or less \times income other	0.3819	0.1264	0.0025	**
edu: some college \times income other	0.3116	0.1274	0.0145	*
edu: some college \times income rich	0.2633	0.1215	0.0302	*
female \times income no info	-0.2742	0.0419	0.0000	***
female \times income other	-0.3851	0.0307	0.0000	***
female \times income rich	-0.6127	0.0375	0.0000	***
income no info \times race hispanic	-0.0933	0.1126	0.4070	

Term	Estimate	Std. Error	Pr(> z)	Sig.
income other \times race hispanic	-0.1525	0.0815	0.0613	.
income rich \times race hispanic	-0.1075	0.1194	0.3679	
income no info \times race other	-0.1832	0.0968	0.0584	.
income other \times race other	-0.1258	0.0691	0.0688	.
income rich \times race other	-0.0691	0.0890	0.4372	
income no info \times race white	-0.4089	0.0665	0.0000	***
income other \times race white	-0.2913	0.0483	0.0000	***
income rich \times race white	-0.3940	0.0657	0.0000	***
female \times race hispanic	-0.2316	0.0713	0.0012	**
female \times race other	-0.1559	0.0583	0.0075	**
female \times race white	-0.4952	0.0408	0.0000	***
race hispanic \times region Northeast	0.2042	0.1350	0.1304	
race other \times region Northeast	-0.0233	0.1065	0.8269	
race white \times region Northeast	0.0863	0.0750	0.2501	
race hispanic \times region South	0.1053	0.1184	0.3739	
race other \times region South	0.3200	0.0780	0.0000	***
race white \times region South	0.3694	0.0527	0.0000	***
race hispanic \times region West	-0.1175	0.1422	0.4088	
race other \times region West	-0.3950	0.1157	0.0006	***
race white \times region West	-0.1519	0.1012	0.1334	

Table 4: Logistic regression coefficients for the selected expert mini model for CVDs with standard errors, z values, p-values, and significance codes (p-value < 0.001 ‘***’, < 0.01 ‘**’, < 0.05 ‘*’, < 0.1 ‘.’).

The significance tests reported are unadjusted for multiple comparisons.

The coefficients of the selected model for cardiovascular diseases (CVDs) are reported in Table 4. Similar to the diabetes model, all continuous predictors (with suffix “_scl”) are standardized to mean 0 and standard deviation 1. BMI shows a strong positive association with CVD risk (0.2273, $p < 0.0001$), confirming its relevance as a key metabolic determinant. Smoking is also one of the strongest predictors (0.6990, $p < 0.0001$). Education and income remain significant, with lower educational attainment, high school or less (0.1781, $p < 0.0001$) and some college (0.1378, $p = 0.0013$), associated with higher risk compared to college graduates. Individuals with incomplete or missing income information (-0.7246, $p < 0.0001$), other income categories (-0.8060, $p < 0.0001$), and rich income (-0.7797, $p < 0.0001$) exhibit lower baseline risk relative to the lowest income group. Cohort effects are negative and significant (-0.1197, $p < 0.0001$), suggesting a modest morbidity compression for younger generations once other covariates are controlled.

Interaction terms reveal several important patterns. Age interacts positively with income, with stronger effects for higher-income respondents, indicating that socioeconomic advantage amplifies age-related CVD risk. BMI interacts positively with income categories as well, reinforcing that the impact of adiposity on CVD risk is more pronounced in wealthier groups. Educational level and income combinations, such as high school or less \times no income info (0.4405, $p < 0.0001$) and some college \times no income info (0.2796, $p < 0.0001$), also increase risk. Sex and income interactions show consistently negative signs, implying that women in all income groups have lower CVD risk than men (female \times income rich = -0.6127, $p < 0.0001$). Ethnic and regional interactions reveal additional heterogeneity: being of “other” race in Southern states (0.3200, $p < 0.0001$) or being White in the South (0.3694, $p < 0.0001$) significantly increases risk, while residing in Western regions mitigates it (race other \times West = -0.3950, $p = 0.0006$). The quadratic term for BMI (-0.0317, $p < 0.0001$) indicates a nonlinear pattern where risk rises with BMI but plateaus at higher levels. Overall, the CVD model confirms that both behavioral (smoking, BMI) and socioeconomic factors (education, income, region) remain central to explaining cardiovascular morbidity across U.S. cohorts.

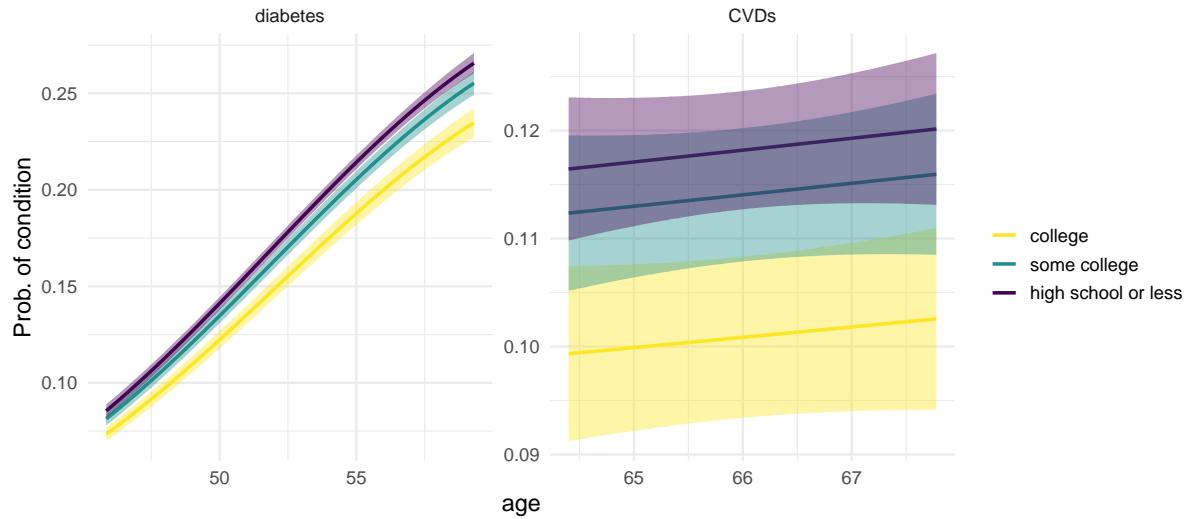


Figure 1: Estimated probability of diabetes and cardiovascular disease by age and education. Shaded areas show 95% confidence intervals based on the logistic model. Reference individual: living in south, in poverty, female, born in 1952, white, education: some college, BMI of 28.

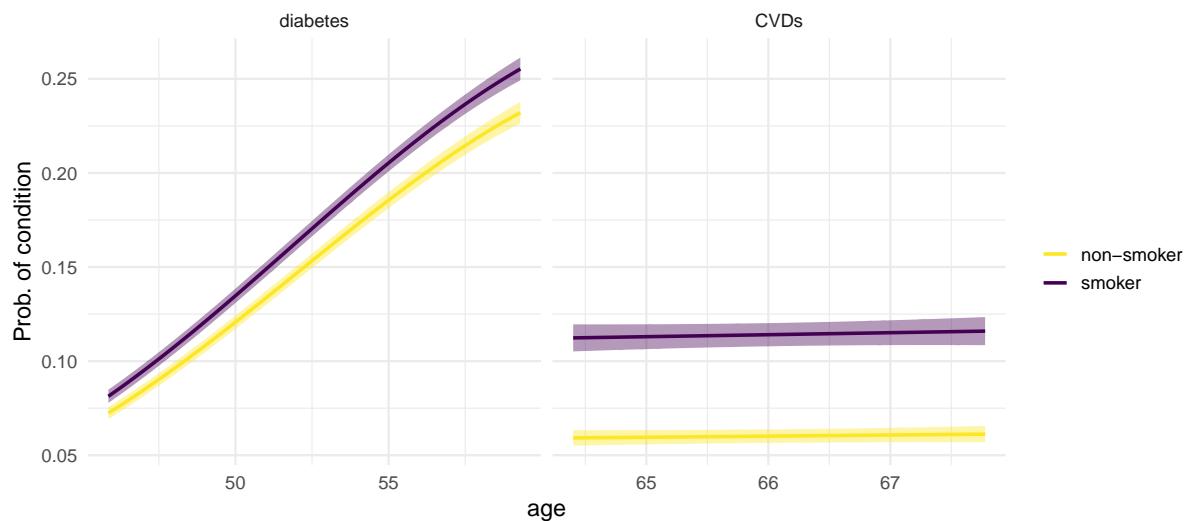


Figure 2: Estimated probability of diabetes and cardiovascular disease by age and smoking. Shaded areas show 95% confidence intervals based on the logistic model. Reference individual: living in south, smoker, female, born in 1952, white, in poverty, BMI of 28.

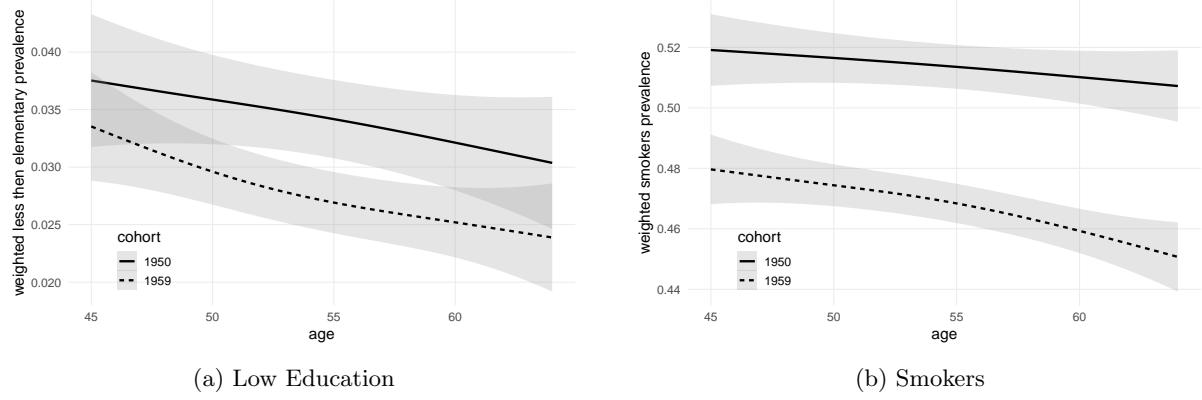


Figure 3: Smoothed weighted prevalence curves for low education (attained less than elementary) and smokers (smoking or ever smoked 100 cigarettes). Shaded areas represent smoothing standard deviation.

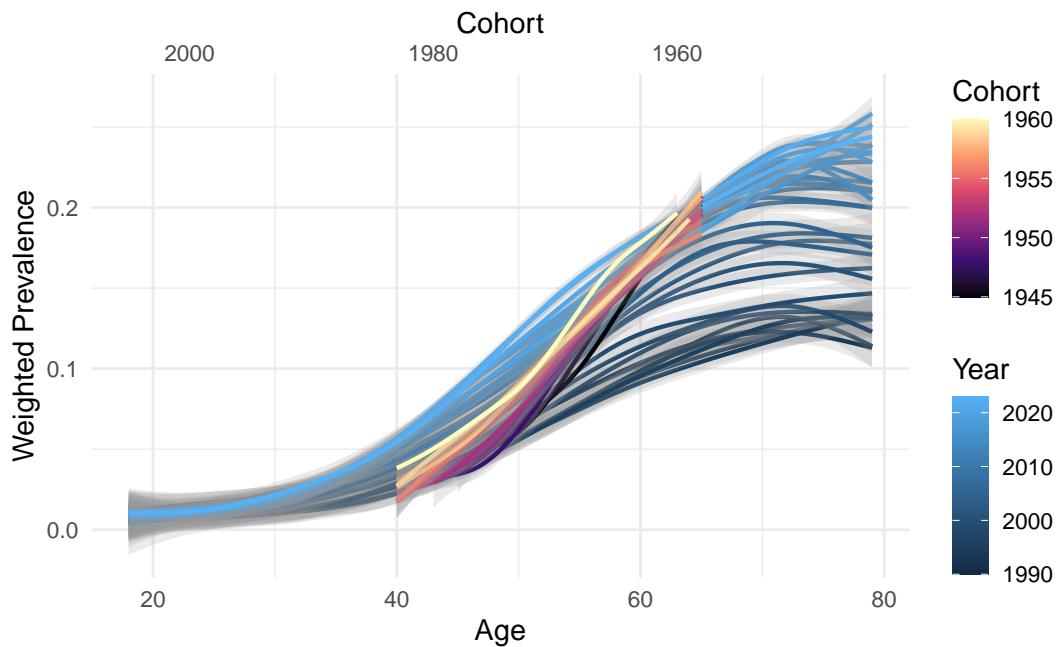


Figure 4: Diabetes prevalence curves by age under cohort (red) and survey year (blue) perspective.

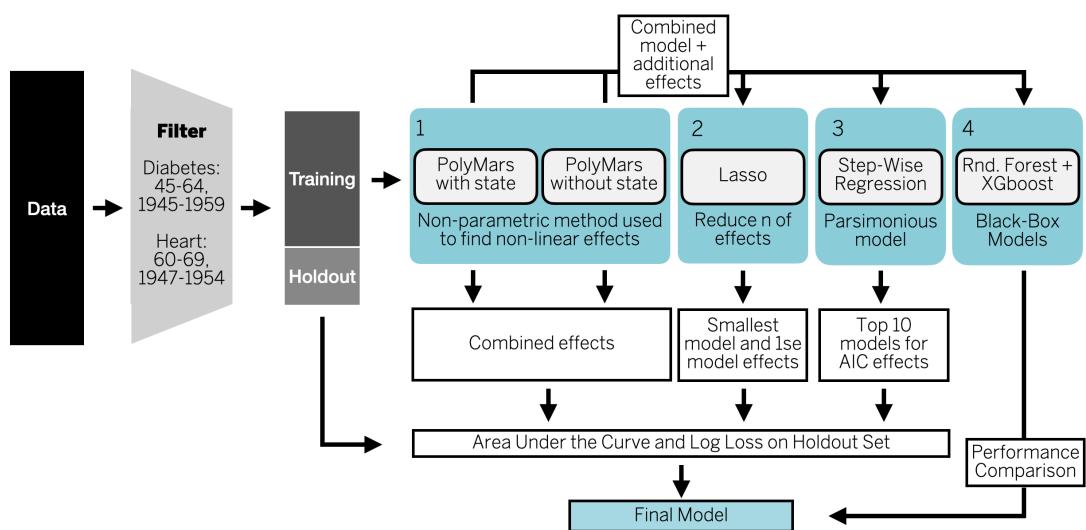


Figure 5: Schematic representation of the model selection pipeline