
The Appendix is organized as follows. We begin by introducing the notations and reviewing related work in Section A
and Section B. Then, we present our theoretical analysis in three steps:

• First step: Derivation of the effective Lindbladian dynamics. The main result is stated in Theorem 7,
which is a rigorous version of Theorem 4, with the proof given in Section C 1.

After deriving the Lindblad dynamics, we demonstrate that two close CPTP maps have close fixed points and
mixing times in Section D Theorem 8, which provides a useful tool for analyzing the fixed point and mixing
time of Φ.

• Second step: Fixed point error bounds for thermal and ground state preparation. The main
results are presented in Section E Theorem 9 and Theorem 10, corresponding to the thermal and ground states,
respectively, with proofs provided in Section E 1 and Section E 2. Combining the results from the first two steps,
we show that the fixed point of Φ is close to the target thermal or ground state when properly adjusting the
parameters.

• Third step: Mixing time and End-to-end efficiency analysis. We present mixing-time results for several
physically relevant models in Theorem 17, Theorem 18, Theorem 19, and Theorem 20 and derive end-to-end
runtime estimates for our state preparation algorithm in Theorem 21. The proofs of these results are collected
in Section G–Section K.

Appendix A: Notations and detailed balance condition

For a matrix A ∈ CN×N , let A∗, AT , A† be the complex conjugation, transpose, and Hermitian transpose (or

adjoint) of A, respectively. ∥A∥p = Tr
((√

A†A
)p)1/p

denotes the Schatten p-norm. The Schatten 1-norm ∥A∥1 is

also called the trace norm, the Schatten 2-norm ∥A∥2 is also called the Hilbert–Schmidt norm (or Frobenius norm for
matrices), and the Schatten ∞-norm ∥A∥∞ is the same as the operator norm ∥A∥. The trace distance between two
states ρ, σ is D(ρ, σ) := 1

2 ∥ρ− σ∥1. Given a superoperator Φ : CN×N → CN×N , we define the induced trace norm as

∥Φ∥1↔1 = sup
∥A∥1=1

∥Φ(A)∥1 .

We denote eigenstates of the Hamiltonian H by {|ψi⟩} and the corresponding eigenvalues by {λi}. Each difference
of eigenvalues λi − λj is called a Bohr frequency, and B(H) denotes the set of all Bohr frequencies. Also, given
ν ∈ B(H) and a matrix A, we define

A(ν) =
∑

λj−λi=ν

|ψj⟩ ⟨ψj |A |ψi⟩ ⟨ψi| , (A1)

where |ψi⟩ is an eigenvector of H with eigenvalue λi.
Given the thermal state σβ ∝ exp(−βH), we define the s-inner product on operator space as

⟨A,B⟩s,σβ
= Tr

(
A†σ1−s

β Bσs
β

)
for 0 < s < 1. Given a Lindbladian operator L, we say L satisfies the KMS detailed balance condition (KMS DBC) if
L† is self-adjoint under ⟨A,B⟩1/2,σβ

and L satisfies the GNS detailed balance condition (GNS DBC) if L† is self-adjoint

under ⟨A,B⟩s,σβ
for any s ̸= 1/2. We note that, if L satisfies GNS DBC, it must also satisfy KMS DBC and take a

generic form of the Davies generator. Given L satisfies GNS DBC or KMS DBC, we define the spectral gap as

Gap(L) = inf
Tr(Aσβ)=0,A̸=0

−
〈
A,L†(A)

〉
1/2,σβ

⟨A,A⟩1/2,σβ

.

We adopt the following asymptotic notations beside the usual big O one. We write f = Ω(g) if g = O(f); f = Θ(g)

if f = O(g) and g = O(f). The notations Õ, Ω̃, Θ̃ are used to suppress subdominant polylogarithmic factors. If

not specified, f = Õ(g) if f = O(g polylog(g)); f = Ω̃(g) if f = Ω(g polylog(g)); f = Θ̃(g) if f = Θ(g polylog(g)).
Note that these tilde notations do not remove or suppress dominant polylogarithmic factors. For instance, if f =

O(log g log log g), then we write f = Õ(log g) instead of f = Õ(1).
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In addition, we note that when analyzing the approximate fixed point of Φ in Section E 1 and Section E 2, we define

the limiting generator of L as L̃ after letting T → ∞, and set Φ̃ = US ◦ exp
(
L̃α2

)
◦ US . Furthermore, in the proofs

of the mixing times in Section I and Section H, we further approximate L̃ by L̂, which exactly fixes the thermal state
or ground state.

Given a quantum channel Φ, the integer mixing time of Φ describes the minimum number of iterations required so
that, starting from any initial state, the evolved state is guaranteed to be ϵ-close to the target state. In this sense, it
characterizes the worst-case convergence time over all initial states.

Definition 6. Given a CPTP map Φ with a unique fixed point ρfix(Φ) and ϵ > 0, the integer mixing time τmix,Φ(ϵ)
is defined as

τmix,Φ(ϵ) = min

{
t ∈ N

∣∣∣∣sup
ρ

∥Φt(ρ)− ρfix(Φ)∥1 ≤ ϵ

}
. (A2)

For Φ that takes the form of (2), the parameter α2 can be interpreted as the effective Lindbladian evolution time per
application, and we define the (rescaled) mixing time as

tmix,Φ(ϵ) = α2τmix,Φ(ϵ). (A3)

Besides Theorem 6, other definitions of the mixing time are also used in the literature such as

tmix;c = min

{
t ∈ N

∣∣∣∣∣ sup
ρ1 ̸=ρ2

∥Φt(ρ1)− Φt(ρ2)∥1
∥ρ1 − ρ2∥1

≤ 1

2

}
.

It is well known that tmix(ϵ) ≤ tmix;c (log2(1/ϵ) + 1), indicating that tmix(ϵ) scales logarithmically in 1/ϵ whenever
tmix;c <∞ [34].

Appendix B: Related works

In this section, we review the related works on thermal and ground state preparation, focusing on the recent
developments in Lindblad dynamics and weak-interaction dissipative systems.

Lindblad dynamics, originally developed to model the evolution of weakly coupled open quantum systems, has gar-
nered significant attention in the past two years as a protocol for preparing thermal [16–19] and ground states [20, 22],
due to its mathematical simplicity and analytical tractability. Given a Hamiltonian H, one can construct appropriate
Lindblad operators (typically of the form K =

∫∞
−∞ f(s)eiHsAe−iHs ds) along with a suitable coherent term, such that

the resulting dynamics drive any initial state toward the thermal or ground state. The convergence rate is governed
by the mixing time of the dynamics. Recently, the mixing time analysis of Lindblad dynamics has been successfully
carried out for various physically relevant Hamiltonians in both the thermal [33, 34, 36–41] and ground state [22]
regimes. Leveraging well-developed Lindbladian simulation algorithms [17, 20, 43–45], such dynamics can be effi-
ciently simulated on a fault-tolerant quantum computer. However, due to the complexity of the jump operator, most
simulation algorithms require a large number of ancilla qubits, controlled or time-reversed Hamiltonian evolutions,
and intricate quantum control logic for clock registers, making them unsuitable for near-term quantum devices. To
mitigate the cost of simulating the detailed balanced Lindblad dynamics, very recently [23] proposes a variational
compilation strategy to construct an approximation to the jump operator and to simulate the Lindblad dynamics
using local gates.

In contrast to the Lindblad dynamics, the implementation of weak-interaction dissipative systems is more straight-
forward. Once the bath and system-bath interaction are specified, the dynamics can be simulated using forward
Hamiltonian evolution followed by partial trace (or repeated interactions). Similar to our work, several concurrent
works [31, 46–50] have also proposed quantum algorithms for thermal state preparation based on system-bath in-
teraction models. While these works offer valuable insights, they do not provide rigorous end-to-end performance
guarantees, and/or may face challenges in early fault-tolerant implementation. In the following, we provide a brief
overview of these works that are more relevant to ours and highlight the differences with our approach and summarize
them in Table I:

• In [46], the authors study the weak-interaction algorithm in the regime of small α and constant f(t), and
rigorously establish its correctness and efficiency for a specific free fermion model. To the best of our knowledge,
it remains unclear whether their approach extends to a general Hamiltonian H.
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Properties
Algorithms Fixed-point Mixing time Early-fault tolerant Remarks

error bound guarantee Implementation
Lindblad dynamics based
thermal state preparation [16–18]

✓ ✓
Controlled Hamiltonian simulation;
Complex logic gates

Discrete dynamics simulating
Metropolis-type sampling [9, 25]

✓ ?
Controlled Hamiltonian simulation;
Complex logic gates

Lindblad dynamics based
ground state preparation [19, 20]

✓ ✓ ?
Time-reversed Hamiltonian
simulation

Hahn et al [23] ? ? ✓ Variational compilation
Weakly-coupled system
bath interaction

Hagan et al [31] ✓ ? ?
Haar-random system-bath coupling;
Exponential simulation time

Hahn et al [47] ✓ ? ✓ Only allow small energy transitions
Langbehn et al [48] ? ? ✓ Rotating wave approximation

Lloyd et al [49] ? ? ✓
Similar structure as [47] and
perturbative fixed-point analysis

Scandi et al [50] ✓ ? ? Gaussian bath coupling
Shtanko et al [52], Chen et al [53] ✓ ✓ ? ETH hypothesis

This work ✓ ✓ ✓
Large energy transitions;
Can prepare ground state

Table I. Comparison of recent quantum thermal and ground state preparation algorithms based on Lindblad dynamics or weakly
coupled system-bath interaction. “Fixed-point error bound” refers to whether there is a rigorous fixed-point error bound for
a general Hamiltonian H. “Mixing time guarantee” indicates whether the mixing time of the algorithm can be theoretically
established at least for certain interacting Hamiltonians (see Section F).

• In [31], the authors assume Haar-random system-bath coupling and establish a rigorous fixed-point error bound
for the thermal state. According to their theoretical results, for general systems, the algorithm may require
impractical parameter choices to resolve exponentially close eigenvalues.For instance, as discussed in [31, Section
I.A], the required coupling strength α might be exponentially small, which in turn requires the simulation time T
in each step to scale exponentially with the number of qubits. Consequently, the total simulation time becomes
exponentially long to guarantee the correctness of the fixed point.

• In [47], the authors prove a result similar to Theorem 9 for the thermal state preparation. Although their work
presents a result similar to ours in the thermal state setting, the authors do not provide theoretical guarantees
on the mixing time—an essential component for establishing the end-to-end complexity of the algorithm (see
the detailed discussion in Section G and Theorem 22). In contrast, in Section F, we prove that for commuting
local Hamiltonians and free fermion systems, the mixing time admits a well-defined limit as σ → ∞, thereby
yielding a complete fixed-point error bound for these models, as stated in Corollary 21.

• The algorithmic structure in [49] is similar to that in [47]. In both works, the bath state is initialized as
|0⟩ ⟨0|, and the interaction function f is carefully tuned so that the resulting jump operator in the approximate
Lindblad dynamics satisfies the detailed balance condition. Ref. [49] justifies the fixed-point error bound in the
perturbative regime. Although the paper does not provide a fully rigorous error bound, its numerical results
support both the efficiency of the algorithm and the validity of the perturbative analysis. We note that, unlike
the two works [47, 49], our approach employs a nontrivial initial bath state—specifically, the thermal bath state.
This choice ensures that the dissipative part of our approximate Lindbladian dynamics automatically satisfies
the detailed balance condition. Consequently, the interaction function f in our framework can be designed with a
flexibly tunable variance σ (independent of β), without the need to impose additional constraints or formulation
to maintain detailed balance. This differs from the interaction functions used in [49] and [47]. Thanks to this
flexibility, our algorithm can accommodate large energy transitions and achieve rigorous mixing times, all while
maintaining a provable bound on the fixed-point error.

• In [50], the authors prove a result similar to Theorem 4, showing that the corresponding Lindbladian dynamics
approximately satisfy the KMS detailed balance condition. This, in turn, implies Theorem 9 as a corollary. In
contrast to our result, their analysis only considers the thermal state preparation and relies on the assumption of
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a Gaussian bath. Their algorithm also requires a detailed characterization of the two-point correlation functions.

• In [48, 52–54], the authors investigate bath and system–bath interaction models similar to ours. However,
the theoretical analyses in [48, 54] are primarily limited to small-scale systems, while [52, 53] rely on the
Eigenstate Thermalization Hypothesis (ETH). In particular, under the ETH assumption, [53] demonstrates
that the repeated interaction dynamics can be effectively approximated by a Davies generator for thermal state
preparation.

• Our choice of f is inspired by [17], where the authors construct a Lindbladian dynamics using the same filter
function in the jump operators. Under this framework, they also establish a fixed-point error bound for the
thermal state similar to Theorem 9.

• Φ to Lindbladian dynamics: There is extensive literature supporting the convergence of Φ to Lindbladian
dynamics under the weak-interaction assumption. Notably, [55, 56] derive the Coarse-Grained Master Equation
(CGME) in the presence of a general bath. More recently, [17, Appendix D] rigorously shows that the resulting
Lindbladian dynamics with f(t) = 1

T 1[−T/2,T/2](t) approximately fixes the thermal state, yielding a result similar
to our Theorem 9. In contrast to the general setting of [55, 56], we provide a simple and explicit choice of bath
and coupling operators that allows the Lindbladian dynamics to be derived more easily. Moreover, our use of a
Gaussian filter f(t) leads to a better fixed-point error bound compared to the flat choice of f in [17, Appendix
D].

• In [20], the authors proposed a Lindbladian-dynamics-based algorithm for ground state preparation. As demon-
strated in [22], both theoretically and numerically, the dynamics exhibits rapid mixing for several physical
Hamiltonians. We note that the algorithm in [20] simulates the Lindbladian dynamics using a single ancilla
qubit but requires time-reversed Hamiltonian evolution. In contrast, our algorithm involves only forward Hamil-
tonian evolution, which leads to a nontrivial Lamb shift term in the dynamics that must be carefully handled
in the convergence analysis.

Appendix C: Derivation of Effective Lindblad dynamics

Recall the time evolution operator by US(t) := exp(−iHt), and the associated superoperator by US(t)[ρ] =

US(t)ρU
†
S(t). We then show that the quantum map Φ can be approximated by an effective Lindblad dynamics

in the following theorem:

Theorem 7 (Rigorous version of Theorem 4). Under the choice of HE , AS , BE , f(t), g(ω) in the main text, ρn+1 can
be expressed as

ρn+1/3 =US(T )ρnU
†
S(T ) = US(T )[ρn]

ρn+2/3 =ρn+1/3 + α2 EAS ,ω

{
−i[HLS,AS

(ω), ρn+1/3] +
1

1 + exp(βω)
DV

A
†
S

,f,T
(ω)(ρn+1/3) +

1

1 + exp(−βω)
DVAS,f,T (−ω)(ρn+1/3)

}
︸ ︷︷ ︸

:=L[ρ]

+O(α4∥AS∥4T 4∥f∥4L∞)

= exp(Lα2)ρn+1/3 +O(α4∥AS∥4T 4∥f∥4L∞)

ρn+1 =US(T )ρn+2/3U
†
S(T ) = US(T )[ρn+2/3]

,

(C1)
where γ(ω) = (g(ω) + g(−ω))/(1+ exp(βω)) when β <∞, and γ(ω) = (g(ω) + g(−ω))1ω<0 + g(0)1ω=0 when β = ∞.
Here,

HLS,AS
(ω) = −Im

(
exp(−βω)

1 + exp(−βω)
GA†

S ,f (ω) +
1

1 + exp(−βω)
GAS ,f (−ω)

)
,

with

GAS ,f (ω) =

∫ T

−T

∫ s1

−T

f(s2)f(s1)A
†
S(s2)AS(s1) exp(−iω(s1 − s2))ds2ds1 . (C2)
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We put the proof of the above theorem in Section C 1. In our work, because we assume AS is uniformly sampled
from A = {Ai,−Ai}i with the property that {(Ai)†}i = {Ai}i and ω is sampled from g, we obtain

L(ρ) = EAS

{
−i
∫ ∞

−∞
[g(ω)HLS,AS

(ω), ρn+1/3]dω +

∫ ∞

−∞

g(ω)

1 + exp(βω)
DV

A
†
S

,f,T
(ω)(ρn+1/3)dω

+

∫ ∞

−∞

g(ω)

1 + exp(−βω)
DVAS,f,T (−ω)(ρn+1/3)dω

}
=EAS

{
−i
∫ ∞

−∞
[g(ω)HLS,AS

(ω), ρn+1/3]dω +

∫ ∞

−∞

g(ω)

1 + exp(βω)
DVAS,f,T (ω)(ρn+1/3)dω

+

∫ ∞

−∞

g(ω)

1 + exp(−βω)
DVAS,f,T (−ω)(ρn+1/3)dω

}
=EAS

{
−i
∫ ∞

−∞
[g(ω)HLS,AS

(ω), ρn+1/3]dω +

∫ ∞

−∞

g(ω) + g(−ω)
1 + exp(βω)

DVAS,f,T (ω)(ρn+1/3)dω

}
,

This gives (8) in Theorem 4. According to the above theorem, another perspective on our algorithm is that it can
be viewed as a simulation method that reproduces (8) using at most two forward evolutions with a single ancilla
qubit and randomness. It is worth noting that related results on a given Lindbladian simulation (without forward
evolution) have also been obtained in [57–59]. However, we emphasize that our main contribution lies in presenting a
particularly simple choice of environment and bath, such that the resulting Lindbladian dynamics naturally generate
a jump operator in integral form. This construction eliminates the need for block encoding or explicit decomposition
of the jump operator.

1. Proof of Theorem 7

In this section, we prove Theorem 7.

Proof of Theorem 7. Define ρini = ρn ⊗ ρE , ρ(T ) = Uα(T )ρiniU
α(T )† and G(t) = f(t)

(
AS ⊗BE +A†

S ⊗B†
E

)
. We

first expand Uα(t) := T exp
(
−i
∫ t

−T
Hα(s) ds

)
into Dyson series:

Uα(t) = U0(t;−T )− iαU1(t;−T ) + (−iα)2U2(t;−T ) + (−iα)3U3(t;−T ) +O
(
α4T 4∥f∥4L∞ (∥AS∥∥BE∥)4

)
.

Here U0(t;−T ) = exp(−i(H + HE)(t − (−T )). Let G(t) = U†
0 (t;−T )G(t)U0(t;−T ), which is the evolution of G(t)

under the Heisenberg picture. Then,

Un(t;−T ) = U0(t;−T )
∫ t

−T

∫ s1

−T

· · ·
∫ sn−1

−T

G(s1)G(s2) . . .G(sn)dsndsn−1 . . . ds1 .

According to the above expansion, it is straightforward to see that

ρ(T ) =U0(T ;−T )ρiniU†
0 (T ;−T )− iα

(
U1(T ;−T )ρiniU†

0 (T ;−T )− U0(T ;−T )ρiniU†
1 (T ;−T )

)
︸ ︷︷ ︸

E(·)=0

+ α2
(
−U0(T ;−T )ρiniU†

2 (T ;−T )− U2(T ;−T )ρiniU†
0 (T ;−T ) + U1(T ;−T )ρiniU†

1 (T ;−T )
)

+ α3 (· · · )︸ ︷︷ ︸
E(·)=0

+O
(
α4T 4∥f∥4L∞ (∥AS∥∥BE∥)4

) ,

Here, for the first order and third order term, we have expectation equals to zero because E(G(t)) = 0.

Now, we only care about the second order term. Let ρ̂(T ) = U0(T ;−T )ρiniU†
0 (T ;−T ). Then,

U0(T ;−T )ρiniU†
2 (T ;−T ) = ρ̂(T )U0(T ;−T )

∫ T

−T

∫ s1

−T

G(s2)G(s1)ds2ds1U†
0 (T ;−T )

=ρ̂(T )U0(T ;−T )
1

2

∫ T

−T

∫ T

−T

G(s2)G(s1)ds2ds1U†
0 (T ;−T ) + ρ̂(T )U0(T ;−T )

1

2

∫ T

−T

∫ s1

−T

[G(s2),G(s1)]ds2ds1U†
0 (T ;−T ) ,



15

where we use
∫ T

−T

∫ s1
−T

G(s1)G(s2)ds2ds1 =
∫ T

−T

∫ T

s1
G(s2)G(s1)ds2ds1 in the last equality. Similarly,

U2(T ;−T )ρiniU†
0 (T ;−T ) = U0(T ;−T )

∫ T

−T

∫ s1

−T

G(s1)G(s2)ds2ds1U†
0 (T ;−T )ρ̂(T )

=U0(T ;−T )
1

2

∫ T

−T

∫ T

−T

G(s1)G(s2)ds2ds1U†
0 (T ;−T )ρ̂(T ) + U0(T ;−T )

1

2

∫ T

−T

∫ s1

−T

[G(s1),G(s2)]ds2ds1U†
0 (T ;−T )ρ̂(T ) ,

and

U1(T ;−T )ρiniU†
1 (T ;−T ) =

U0(T ;−T )
∫ T

−T

G(s1)ds1︸ ︷︷ ︸
:=V

U†
0 (T ;−T )

 ρ̂(T )

(
U0(T ;−T )

∫ T

−T

G(s2)ds2U†
0 (T ;−T )

)†

.

Combining the above three equalities and noticing U†
0 (T ;−T )ρ̂(T )U0(T ;−T ) = ρini, this implies

ρ(T ) = U0(T ;−T )ρiniU†
0 (T ;−T )

+ α2U0(T ;−T )

V ρiniV † − 1

2

{
V †V, ρini

}
︸ ︷︷ ︸

:=Term I

−i

[
i

2

∫ T

−T

∫ s1

−T

[G(s2),G(s1)]ds2ds1, ρini

]
︸ ︷︷ ︸

:=Term II

U†
0 (T ;−T ) +O

(
α4T 4∥f∥4L∞∥AS∥4

)
.

(C3)

Here the expectation is taken over AS and ω. We notice that ρn+1 = E (TrE (ρ(T ))). Let ρn+2/3 = U†
S(T )ρn+1US(T )

and ρn+1/3 = US(T )ρnU
†
S(T ) as defined in Eq. (C1). Applying U†

0 (0;−T )[·]U0(0;−T ) on both sides of the above
equality, tracing out the ancilla qubits, and taking the expectation over AS , ω, we have

ρn+2/3 = ρn+1/3

+ α2E

TrE

U0(0;−T )

V ρiniV † − 1

2

{
V †V, ρini

}
︸ ︷︷ ︸

:=Term I

−i

[
i

2

∫ T

−T

∫ s1

−T

[G(s2),G(s1)]ds2ds1, ρini

]
︸ ︷︷ ︸

:=Term II

U†
0 (0;−T )




+O
(
α4T 4∥f∥4L∞∥AS∥4

)
.

(C4)
Here, we note U0(0;−T ) = exp(−i(H +HE)T ).
Now, we deal with two terms separately:

• For the first term, we have

V =

∫ T

−T

f(t) exp(iω(t− (−T )) (AS(t;−T )⊗ |1⟩ ⟨0|) dt

+

∫ T

−T

f(t) exp(−iω(t− (−T ))
(
A†

S(t;−T )⊗ |0⟩ ⟨1|
)
dt

where

AS(t;−T ) = exp(iH(t+ T ))AS exp(−iH(t+ T )) ,

Let AS,f (ω) =
∫ T

−T
f(t)AS(t;−T ) exp(iω(t+ T ))dt. We have

V = AS,f (ω)⊗ |1⟩ ⟨0|+A†
S,f (ω)⊗ |0⟩ ⟨1| .

This implies that

TrE

(
V ρiniV

† − 1

2

{
V †V, ρini

})
=

exp(−βω)
1 + exp(−βω)

(
A†

S,f (ω)ρnAS,f (ω)−
1

2

{
AS,f (ω)A

†
S,f (ω), ρn

})
+

1

1 + exp(−βω)

(
AS,f (ω)ρnA

†
S,f (ω)−

1

2

{
A†

S,f (ω)AS,f (ω), ρn

}) .
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Recall ρn+1/3 = US(T )ρnU
†
S(T ) and ρini = ρn ⊗ ρE . We can rewrite the above equality as

TrE

(
U0(0;−T )

(
V ρiniV

† − 1

2

{
V †V, ρini

})
U†
0 (0;−T )

)
=TrE

((
U0(0;−T )V U0(0;−T )†

)
U0(0;−T )ρiniU†

0 (0;−T )
(
U0(0;−T )V †U0(0;−T )†

)
−1

2
U0(0;−T )

{
V †V, ρini

}
U0(0;−T )†U†

0 (0;−T )
)

=
exp(−βω)

1 + exp(−βω)

(
V †
AS ,f (ω)ρn+1/3VAS ,f (ω)−

1

2

{
VAS ,f (ω)V

†
AS ,f (ω), ρn+1/3

})
+

1

1 + exp(−βω)

(
VAS ,f (ω)ρn+1/3V

†
AS ,f (ω)−

1

2

{
V †
AS ,f (ω)VAS ,f (ω), ρn+1/3

})
,

Here, VAS ,f (ω) =
∫ T

−T
f(t)AS(t; 0) exp(iωt)dt. This gives the Lindbladian operators in (C1).

• For the second term: We first notice∫ T

−T

∫ s1

−T

G(s2)G(s1)ds2ds1

=

∫ T

−T

∫ s1

−T

(f(s2)f(s1) exp(iω(s2 − s1))
(
AS(s2;−T )A†

S(s1;−T )⊗ |1⟩ ⟨1|
)
ds2ds1

+

∫ T

−T

∫ s1

−T

(f(s2)f(s1) exp(−iω(s2 − s1))
(
A†

S(s2;−T )AS(s1;−T )⊗ |0⟩ ⟨0|
)
ds2ds1

We notice that

AS(s2;−T ) = exp(iH(s2 + T ))AS exp(−iH(s2 + T )), A†
S(s1;−T ) = exp(iH(s1 + T ))A†

S exp(−iH(s1 + T )) .

This implies

AS(s2;−T )A†
S(s1;−T ) = exp(iH(s2 + T ))AS exp(−iH(s2)) exp(iH(s1))A

†
S exp(−iH(s1 + T ))

= exp(iHT )AS(s2; 0)A
†
S(s1; 0) exp(−iHT ) .

Recall U0(0;−T ) = exp(−i(H +HE)T ). Therefore, we have

U0(0;−T )
(
AS(s2;−T )A†

S(s1;−T )⊗ |1⟩ ⟨1|
)
U†
0 (0;−T ) = AS(s2; 0)A

†
S(s1; 0)⊗ |1⟩ ⟨1|

and

U0(0;−T )
(
A†

S(s2;−T )AS(s1;−T )⊗ |0⟩ ⟨0|
)
U†
0 (0;−T ) = A†

S(s2; 0)AS(s1; 0)⊗ |0⟩ ⟨0|

Define

GAS ,f (ω) =

∫ T

−T

∫ s1

−T

f(s2)f(s1)A
†
S(s2; 0)AS(s1; 0) exp(iω(s2 − s1))ds2ds1 .

We then have

U0(0;−T )
∫ T

−T

∫ s1

−T

G(s2)G(s1)ds2ds1U†
0 (0;−T )

=

∫ T

−T

∫ s1

−T

(f(s2)f(s1) exp(iω(s2 − s1))
(
AS(s2; 0)A

†
S(s1; 0)⊗ |1⟩ ⟨1|

)
ds2ds1

+

∫ T

−T

∫ s1

−T

(f(s2)f(s1) exp(−iω(s2 − s1))
(
A†

S(s2; 0)AS(s1; 0)⊗ |0⟩ ⟨0|
)
ds2ds1

=GA†
S ,f (ω)⊗ |1⟩ ⟨1|+ GAS ,f (−ω)⊗ |0⟩ ⟨0| .
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Because G(s) is a Hermitian matrix, we have We then have

U0(0;−T )
∫ T

−T

∫ s1

−T

G(s1)G(s2)ds2ds1U†
0 (0;−T ) =

(
U0(0;−T )

∫ T

−T

∫ s1

−T

G(s2)G(s1)ds2ds1U†
0 (0;−T )

)†

=G†
A†

S ,f
(ω)⊗ |1⟩ ⟨1|+ G†

AS ,f (−ω)⊗ |0⟩ ⟨0| .

The above calculation gives

TrE

(
U0(0;−T ) (Term II)U†

0 (0;−T )
)

=− i

[
i

2

exp(−βω)
1 + exp(−βω)

(
GA†

S ,f (ω)− G†
A†

S ,f
(ω)
)
+

1

1 + exp(−βω)

(
GAS ,f (−ω)− G†

AS ,f (−ω)
)
, ρn+1/3

]
=− i

[
i

2

(
exp(−βω)

1 + exp(−βω)
GA†

S ,f (ω) +
1

1 + exp(−βω)
GAS ,f (−ω)− (. . . )

†
)
, ρn+1/3

]
=− i

[
−Im

(
exp(−βω)

1 + exp(−βω)
GA†

S ,f (ω) +
1

1 + exp(−βω)
GAS ,f (−ω)

)
, ρn+1/3

]
.

This gives the formula of HLS,AS
in the theorem.

Appendix D: Approximate CPTP map has close fixed point and mixing time

In this section, we show that the closeness of two CPTP maps Φ1 and Φ2 implies the closeness of their fixed points
and mixing times. This provides a crucial link between the fixed point and mixing time of the Lindbladian dynamics
in Theorem 4 and those of Φ. The result is summarized in the following:

Theorem 8. Given two CPTP maps Φ1,Φ2 with unique fixed points ρ1, ρ2. Let τ1,mix(ϵ), τ2,mix(ϵ) be the mixing time
of Φ1,Φ2 respectively, defined as Theorem 6. Then

• ρ1, ρ2 are close if the maps themselves are close: For any ϵ > 0,

∥ρ1 − ρ2∥1 ≤ ϵ+ τ1,mix(ϵ)∥Φ1 − Φ2∥1↔1 . (D1)

• ρ1, ρ2 are close if Φ1(ρ2) is close to ρ2: For any ϵ > 0,

∥ρ1 − ρ2∥1 ≤ ϵ+ τ1,mix(ϵ)∥Φ1(ρ2)− ρ2∥1 . (D2)

• Φ2 has comparable mixing time with Φ1 if Φ2 is close to Φ1: Given any ϵ > 0, if τ1,mix(ϵ/2)∥Φ1−Φ2∥1↔1 ≤ ϵ/2,
then

τ2,mix(2ϵ) ≤ τ1,mix(ϵ/2). (D3)

Importantly, Eq. (D2) makes no reference to the map Φ2, and applies for an arbitrary state ρ2. Perturbation bounds
for quantum channels and their fixed points have been studied previously in the literature, e.g., in [60]. However,
in Theorem 8, we rely only on the mixing time of the quantum channel, which is a weaker assumption than the standard
contraction conditions typically used in the literature, such as [60, Theorem 4]. For completeness, we provide a full
proof of the theorem below.

Proof of Theorem 8. To prove Eq. (D1), we notice that

∥ρ1 − ρ2∥1 =
∥∥∥ρ1 − Φ

τ1,mix(ϵ)
2 (ρ2)

∥∥∥
1

≤
∥∥∥ρ1 − Φ

τ1,mix(ϵ)
1 (ρ2)

∥∥∥
1
+
∥∥∥Φτ1,mix(ϵ)

1 (ρ2)− Φ
τ1,mix(ϵ)
2 (ρ2)

∥∥∥
1
≤ ϵ+ τ1,mix(ϵ)∥Φ1 − Φ2∥1↔1
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∥ρ1 − ρ2∥1 ≤
∥∥∥ρ1 − Φ

τ1,mix(ϵ)
1 (ρ2)

∥∥∥
1
+
∥∥∥Φτ1,mix(ϵ)

1 (ρ2)− ρ2

∥∥∥
1

≤
∥∥∥ρ1 − Φ

τ1,mix(ϵ)
1 (ρ2)

∥∥∥
1
+

τ1,mix(ϵ)−1∑
n=0

∥Φn+1
1 (ρ2)− Φn

1 (ρ2)∥1 ≤ ϵ+ τ1,mix(ϵ)∥Φ1(ρ2)− ρ2∥1 ,

where we use ∥Φ1∥1↔1 ≤ 1 in the last inequality.
Finally, to show the comparable mixing time, we note that for any ρ,

∥Φτ1,mix(ϵ/2)
2 (ρ)− ρ2∥1 ≤ ∥Φτ1,mix(ϵ/2)

2 (ρ)− Φ
τ1,mix(ϵ/2)
1 (ρ)∥1 + ∥Φτ1,mix(ϵ/2)

1 (ρ)− ρ1∥1 + ∥ρ1 − ρ2∥1
≤∥Φτ1,mix(ϵ/2)

2 (ρ)− Φ
τ1,mix(ϵ/2)
1 (ρ)∥1 + ∥Φτ1,mix(ϵ/2)

1 (ρ)− ρ1∥1 + τ1,mix(ϵ/2)∥Φ1 − Φ2∥1↔1 + ϵ/2

≤2τ1,mix(ϵ/2)∥Φ1 − Φ2∥1↔1 + ϵ ≤ 2ϵ

where we use (D1) in the second equality. This concludes the proof.

Appendix E: Fixed point error bounds for thermal and ground state preparation

Under of HE , AS , BE , f(t), g(ω) in the main text, the quantum channel Φ defined in Eq. (2) can be engineered to
approximately preserve the thermal or ground state of the system Hamiltonian. The integer mixing time of Φ is defined
in Theorem 6. According to Theorem 4, the mixing time of Φ should be governed by the underlying Lindbladian
operator L. The quantity tmix,Φ(ϵ) approximately captures the total Lindbladian evolution time required for mixing.
When α is sufficiently small, this mixing time does not diverge as α → 0, but instead remains bounded above by a
finite constant that depends only on properties of the Lindbladian.

The following theorem shows that by properly choosing the parameters σ, T, α related to the mixing time, the fixed
point of Φ is approximately the thermal state. We also omit some dependence on ∥H∥ and ∥AS∥ for simplicity. The
general version of Theorem 9 is stated in Section E 1 as Theorem 12, followed by the proof of both theorems.

Theorem 9 (Thermal state, informal). Assume 0 ≤ β <∞ and g(ω) = 1
ωmax

1[0,ωmax]. Then, for any ϵ > 0, if

σ = Ω̃
(
βω−1

maxϵ
−1tmix,Φ(ϵ)

)
, T = Ω(σ log(σ/ϵ)) ,

and α = O
(
σT−2ϵ1/2t

−1/2
mix,Φ(ϵ)

)
, then

∥ρfix(Φ)− ρβ∥1 < ϵ .

Theorem 9 shows that if we set σ = Θ̃
(
ω−1
maxβϵ

−1tmix,Φ(ϵ)
)
, we ensure that the fixed point is ϵ-close to the thermal

state by choosing

T = Θ̃
(
ω−1
maxβϵ

−1tmix,Φ(ϵ)
)
, α = Θ̃

(
ωmaxβ

−1t
−3/2
mix,Φϵ

3/2
)
.

Analogously, we can establish a corresponding result for the ground state as follows.

Theorem 10 (Ground state, informal). Assume H has a spectral gap ∆ and let |ψ0⟩ be the ground state of H. Then,
for any ϵ > 0, if

σ = Ω̃
(
∆−1 log(∥H∥/ϵ)

)
, T = Ω(σ log(σ/ϵ)) ,

and α = O
(
σT−2ϵ1/2t

−1/2
mix,Φ(ϵ)

)
, then

∥ρfix(Φ)− |ψ0⟩ ⟨ψ0| ∥1 < ϵ.

Theorem 10 shows that if we set σ = Θ̃
(
∆−1

)
, it suffices to choose

T = Θ̃(∆−1), α = Θ̃
(
∆ϵ1/2t

−1/2
mix,Φ(ϵ)

)
.
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The rigorous version of Theorem 10 is given in Appendix E 2 as Theorem 16. Theorem 10 shows that if we set

σ = Θ̃
(
∆−1

)
, it suffices to choose

T = Θ̃(∆−1), α = Θ̃
(
∆ϵ1/2t

−1/2
mix,Φ(ϵ)

)
.

The result of Theorem 9 applies to all values of β and does not require ∆ = poly(N−1) for efficient state preparation,
whereas Theorem 10 does rely on this assumption to ensure efficient preparation. On the other hand, the dependence
on β in Theorem 9 may not be sharp, particularly in the large-β regime. For instance, at very low temperatures, where
β = Ω(poly(N, 1/∆, 1/ϵ)), preparing the ϵ-approximate thermal state effectively reduces to preparing the ground state.
In such cases, one may directly adopt the parameter choices in Theorem 10 rather than those in Theorem 9.

According to the approximation-error bounds in Theorem 9 and Theorem 10, once the effective mixing time tmix,Φα

is upper bounded, an appropriate choice of parameters guarantees that the fixed point ρfix(Φ) can be made arbitrarily
close to the target state. However, as discussed in the main text, the main difficulty is that tmix,Φα

itself depends on
the parameters σ and α used in the construction of Φ. Consequently, it may happen that as σ or α−1 tends to +∞,
the mixing time tmix,Φα

also diverges, causing the conditions in Theorem 10 and Theorem 9 to become unsatisfiable
(see Section G and Theorem 22). To circumvent this issue, we carefully design the dissipative protocol that allows
large energy transition between eigenvectors, which further ensures that, once σ is sufficiently large, the mixing time
tmix,Φα

becomes independent of σ. In Section G–Section K, we rigorously prove that for certain classes of physical
models such as free-fermion systems, and local commuting Hamiltonians, the mixing time does not blow up with σ
and can be upper bounded by a quantity that scales polynomially with the number of qubits.

To prove Theorem 9, according to Theorem 8 in Section D, it suffices to bound ∥Φ(ρβ) − ρβ∥1 . This consists of
two main steps:

1. Approximate the map Φ by choosing α≪ 1.

2. Show that the limiting map approximately fixes the thermal or ground state when σ, T ≫ 1.

In the first step, using the result of Theorem 4, we have

∥Φ(ρβ)− ρβ∥1 ≈
∥∥α2L(ρβ)

∥∥
1
, α≪ 1

with the approximation error quantified in (7). Thus, it suffices to show the Lindblad dynamics approximately fix the
thermal/ground state. This constitutes the most technical part of the proof. For thermal states, it has been shown
that the dissipative part of the Lindbladian L in (8) is approximately detailed-balanced [17] when {(Ai)†}i = {Ai}i,
and therefore approximately fixes the thermal state (see Section E 1 Lemma 14). When σ ≫ 1, we show that the
Lamb shift Hamiltonian HLS,AS

(ω) approximately commutes with the thermal state (see Section E 1 Lemma 13).
These two properties together imply that ∥L(ρβ)∥1 ≈ 0.
Note that, in order to ensure a small error ϵ, Theorem 9 requires that the parameters defining our algorithm satisfy

conditions that depend on the mixing time tmix,Φ. The mixing time enters the proof because the relationship between
∥ρfix(Φ)− ρβ∥1 and ∥Φ(ρβ)− ρβ∥1 involves the mixing time, as shown in Section D.
The proof of Theorem 10 is similar; however, under the spectral gap assumption, the ground state case allows a

direct upper bound on ∥L(ρβ)∥1, and the fixed-point error bound is independent of the choice of g. Specifically, the
γ-dependent term in L(ρβ) takes the form

∫
γ(ω)E(ω) dω for some error operator E(ω), which by normalization of

γ satisfies
∫
γ(ω) ∥E(ω)∥1 dω ≤ supω∈supp(γ) ∥E(ω)∥1. This last term can be bounded directly (see Theorem 16),

allowing γ (and g) to be optimized to reduce tmix. In contrast, for thermal state preparation, the Lamb shift term
cannot be uniformly bounded for all ω; instead, one must estimate the integral itself to show that it approximately
commutes with the thermal state (see Lemma 13).

1. Approximate fixed point – Thermal state

In this section, we provide a rigorous version of Theorem 9 in Theorem 12 and provide the proof. We consider (2)

with f(t) = 1
(2π)1/4σ1/2 exp

(
− t2

4σ2

)
. First, we can rewrite L in Eq. (8) as

L(ρ) = EAS

(∫ ∞

−∞
−i [g(ω)HLS,AS

(ω), ρ] + γ(ω)DVAS,f (ω)(ρ)dω

)
, (E1)

where γ(ω) = (g(ω) + g(−ω))/(1 + exp(βω)). In the case when β = ∞, γ(ω) = (g(ω) + g(−ω))1ω<0 + g(0)1ω=0.
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Before presenting the rigorous version of Theorem 9, we first consider a simplified CPTP map Φ̃ defined as follows:

Φ̃ = US(T ) ◦ exp
(
L̃α2

)
◦ US(T ) . (E2)

Compared to Φ in Eq. (2), we omit the error terms in Theorem 4 and take the limit T → ∞ in L. Specifically, as
mentioned in Section A,

L̃(ρ) = −i
[
H̃LS, ρ

]
+ EAS

(∫ ∞

−∞
γ(ω)DṼAS,f (ω)(ρ)dω

)
, (E3)

where

H̃LS = −EAS

(
Im

(∫ ∞

−∞
γ(ω)G̃AS ,f (−ω)dω

))
, ṼAS ,f (ω) =

∫ ∞

−∞
f(t)AS(t) exp(−iωt)dt ,

with

G̃A,f (ω) =

∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1)A

†(s2)A(s1) exp(−iω(s1 − s2))ds2ds1 . (E4)

In the formula of H̃LS, we use the fact that {(Ai)†}i = {Ai}i and G̃Ai,f = G̃−Ai,f .

The distance between Φ and Φ̃ can be controlled in the following lemma:

Lemma 11. When T > σ, we have∥∥∥Φ− Φ̃
∥∥∥
1↔1

= O
(
α2σ exp

(
−T 2/(4σ2)

)
E(∥AS∥2) + α4T 4σ−2E

(
∥AS∥4

))
Proof of Lemma 11. According to Theorem 7 and ∥γ(ω)∥L1 = 1, we have∥∥∥Φ− Φ̃

∥∥∥
1↔1

≤ α2∥L − L̃∥1↔1 +O
(
α4T 4σ−2E

(
∥AS∥4

))
=O

α2 sup
ω

∥GAS ,f (ω)− G̃AS ,f (ω)∥+ ∥VAS ,f (ω)− ṼAS ,f (ω)∥ ∥VAS ,f (ω)∥︸ ︷︷ ︸
=O(σ1/2∥AS∥)




+O
(
α4T 4σ−2E

(
∥AS∥4

))
.

Thus, it suffices to consider ∥VAS ,f (ω)− ṼAS ,f (ω)∥ and ∥GAS ,f (ω)− G̃AS ,f (ω)∥. For the first term, we have

∥VAS ,f (ω)− ṼAS ,f (ω)∥ ≤ ∥AS∥
∫
|t|>T

f(t)dt = O
(
(σ3/2/T ) exp(−T 2/(4σ2))∥AS∥

)
=O

(
σ1/2 exp(−T 2/(4σ2))∥AS∥

)
,

where we use T > σ in the second equality. For the second term, we have

∥GAS ,f (ω)− G̃AS ,f (ω)∥ ≤ ∥AS∥2
(∫

|s1|≥T

∫ s1

−∞
+

∫ T

−T

∫ −T

−∞
f(s2)f(s1)ds2ds1

)
= O

(
σ exp(−T 2/(4σ2))∥AS∥2

)
.

Combining these two bounds, we conclude the proof.

Using Φ̃, we are ready to state the rigorous version of Theorem 9 and provide the proof:

Theorem 12. Define

R :=

∫ ∞

0

∣∣∣∣∫ ∞

−∞
γ(ω) exp(iωσq)dω

∣∣∣∣ exp(−q2/8)dq . (E5)

When T > σ > β, we have

∥ρfix(Φ)− ρβ∥1

≤
(
EAS

(∥∥∥∥[ρβ ,∫ γ(ω)G̃AS ,f (−ω) dω
]∥∥∥∥

1

+

∥∥∥∥[ρβ ,∫ γ(ω)
(
G̃AS ,f (−ω)

)†
dω

]∥∥∥∥
1

+

∥∥∥∥∫ ∞

−∞
γ(ω)DṼAS,f (ω)(ρβ)

∥∥∥∥
1

dω

))
=Õ

(((
R+ ∥γ(ω)∥∞

1

σ

√
log(σ/β)

)
βE
(
∥AS∥2

)
+ σ exp

(
−T 2/(4σ2)

)
E(∥AS∥2) + α2T 4σ−2E

(
∥AS∥4

))
α2τmix,Φ(ϵ) + ϵ

)
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According to Theorem 12, to ensure a small fixed-point error, we require R to vanish as σ → ∞. This, in turn,
imposes a constraint on the choice of γ(ω) (and hence g(ω)). We prove below that it suffices to choose g to be a uniform
distribution. We emphasize that this constraint arises from the need to control the fixed-point error associated with

the Lamb shift term in Lemma 13. Specifically, we cannot directly prove that each term in the ω-expansion of H̃LS

commutes with the thermal state. Instead, we prove that the entire term approximately commutes with the thermal
state after integrating over ω.

Before proving Theorem 12, we first use it to prove Theorem 9.

Proof of Theorem 9. When g(ω) = 1
ωmax

1ω∈[0,ωmax] with ωmax = Ω(1). In this case, we have γ(ω) =
1

ωmax(1+exp(βω))1ω∈[−ωmax,ωmax]. Thus, ∥γ∥∞ = 1
ωmax

and

R =

∫ (σωmax)
−1

0

∣∣∣∣∫ ∞

−∞
γ(ω) exp(iωσq)dω

∣∣∣∣ exp(−q2/8)dq︸ ︷︷ ︸
=O((σωmax)−1)

+

∫ ∞

(σωmax)−1

∣∣∣∣∫ ∞

−∞
γ(ω) exp(iωσq)dω

∣∣∣∣ exp(−q2/8)dq
For the second term, we have∣∣∣∣∫ ∞

−∞
γ(ω) exp(iωσq)dω

∣∣∣∣ = ∣∣∣∣ 1

iσωmaxq

∫ ωmax

−ωmax

1

1 + exp(βω)
d (exp(iωσq))

∣∣∣∣
≤ 2

ωmaxσq
+

1

ωmaxσq

∣∣∣∣∫ ωmax

−ωmax

β exp(βω)

(1 + exp(βω))2
exp(iωσq)dω

∣∣∣∣ = O
(

1

ωmaxσq

)
Here, we note

∣∣∣∫ ωmax

−ωmax

β exp(βω)
(1+exp(βω))2 exp(iωσq)dω

∣∣∣ ≤ ∣∣∣∫∞
−∞

exp(u)
(1+exp(u))2 du

∣∣∣ = O(1). Plugging this back into the expression

for R, we obtain

R = O
(

1

σωmax
log(σωmax)

)
.

Combining this, Theorem 12, and ∥AS∥ ≤ 1, we have

∥ρfix(Φ)− ρβ∥1

=Õ

( β

ωmaxσ

(√
log(σ/β) + log(σωmax)

)
E(∥AS∥2) + σ exp

(
−T 2/(4σ2)

)
E(∥AS∥2) + α2T 4σ−2E

(
∥AS∥4

))
α2τmix,Φ(ϵ)︸ ︷︷ ︸

=tmix,Φ

+ϵ

 .

Now, to achieve ϵ-precision, we first need(
β

ωmaxσ

(√
log(σ/β) + log(σωmax)

)
+ σ exp

(
−T 2/(4σ2)

))
E(∥AS∥2)tmix,Φ = O(ϵ) ,

which implies

σ = Õ
(
βE(∥AS∥2)ω−1

maxtmix,Φϵ
−1
)
, T = Ω̃ (σ) .

In addition, we also require

α2T 4σ−2E
(
∥AS∥4

)
tmix,Φ = O(ϵ) ,

which implies

α = O
(
σT−2t

−1/2
mix,ΦE

−1/2
(
∥AS∥4

)
ϵ1/2

)
.

Plugging in σ = Θ̃
(
βE(∥AS∥2)ω−1

maxtmix,Φϵ
−1
)
, we conclude that

σ = Θ̃
(
βE(∥AS∥2)ω−1

maxtmix,Φϵ
−1
)
, T = Θ̃

(
βE(∥AS∥2)ω−1

maxtmix,Φϵ
−1
)
,

and

α = Θ̃
(
σ−1t

−1/2
mix,ΦE

−1/2
(
∥AS∥4

)
ϵ1/2

)
= Θ̃

(
β−1ωmaxt

−3/2
mix,Φϵ

3/2E−1
(
∥AS∥2

)
E−1/2

(
∥AS∥4

))
.

This concludes Theorem 9.
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Next, we prove Theorem 12. According to Theorem 8 Eq. (D2), we need to show the upper bound of ∥Φ(ρβ)−ρβ∥1.
According to Lemma 11 and

∥Φ(ρβ)− ρβ∥1 ≤
∥∥∥Φ− Φ̃

∥∥∥
1↔1

+ ∥Φ̃(ρβ)− ρβ∥1 , (E6)

it suffices to show
∥∥∥Φ̃(ρβ)− ρβ

∥∥∥
1
is small. Let d be the dimension of H and H have an eigendecomposition

{(λi, |ψi⟩)}d−1
i=0 with λ0 ≤ λ1 ≤ . . . , λd−1. Because the unitary evolution US(T ) preserves the thermal state, we

have ∥∥∥Φ̃ (ρβ)− ρβ

∥∥∥
1
≤ α2

∥∥∥L̃ (ρβ)
∥∥∥
1
, (E7)

where L̃ is defined in (E3). In L̃, we consider the Lamb shift term and dissipative term separately. For the Lamb
shift term, we have the following lemma:

Lemma 13. When T > σ, we have∥∥∥[H̃LS, ρβ

]∥∥∥
1
≤ EAS

(∥∥∥∥[ρβ ,∫ γ(ω)G̃AS ,f (−ω) dω
]∥∥∥∥

1

+

∥∥∥∥[ρβ ,∫ γ(ω)
(
G̃AS ,f (−ω)

)†
dω

]∥∥∥∥
1

)
= O

(
RβE(∥AS∥2)

)
For the dissipative term, we have the following lemma:

Lemma 14. When T > σ > β, we have∥∥∥∥EAS

(∫ ∞

−∞
γ(ω)DṼAS,f (ω)(ρβ)dω

)∥∥∥∥
1

≤ EAS

(∥∥∥∥∫ ∞

−∞
γ(ω)DṼAS,f (ω)(ρβ)dω

∥∥∥∥
1

)
= O

(
∥γ(ω)∥∞E

(
∥AS∥2

) β
σ

√
log(σ/β)

)
We put the proof of the above lemmas in the end of this section. Now, we are ready to prove Theorem 12.

Proof of Theorem 12. Combining Lemma 13 and Lemma 14, we have∥∥∥L̃ (ρβ)
∥∥∥
1
= O

((
R+ ∥γ(ω)∥∞

1

σ

√
log(σ/β)

)
βE
(
∥AS∥2

))
Plugging this into Eq. (E7) and using Lemma 11 and Theorem 8 with (E6), we conclude the proof.

Finally, we complete the proof of Lemma 13 and Lemma 14.

Proof of Lemma 13. Recall that

H̃LS = −EAS

(
Im

(∫ ∞

−∞
γ(ω)G̃AS ,f (−ω)dω

))
=
−1

2i
EAS

(∫ ∞

−∞
γ(ω)G̃AS ,f (−ω)dω −

∫ ∞

−∞
γ(ω)

(
G̃AS ,f (−ω)

)†
dω

) .
This implies

∥[ρβ , H̃LS]∥1 ≤ 1

2
EAS

(∥∥∥∥[ρβ ,∫ γ(ω)G̃AS ,f (−ω) dω
]∥∥∥∥

1

+

∥∥∥∥[ρβ ,∫ γ(ω)
(
G̃AS ,f (−ω)

)†
dω

]∥∥∥∥
1

)
Thus, to show that ∥[ρβ , H̃LS]∥1 is small, it suffices to bound∥∥∥∥[ρβ ,∫ γ(ω)G̃AS ,f (−ω) dω

]∥∥∥∥
1

and

∥∥∥∥[ρβ ,∫ γ(ω)
(
G̃AS ,f (−ω)

)†
dω

]∥∥∥∥
1

(E8)

for all ∥AS∥ ≤ 1. The argument proceeds in two steps. First, we show that both[
H,

∫
γ(ω)G̃AS ,f (−ω) dω

]
and

[
H,

∫
γ(ω)

(
G̃AS ,f (−ω)

)†
dω

]
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are small (we omit the proof of the latter as it is analogous), which implies that [H, H̃LS] is small. Then, we expand ρβ
as a polynomial in H and express the commutators ∥[ρβ , ·]∥1 as sums of nested commutators, from which we establish
the smallness of (E8).

We first calculate ∥[H, H̃LS]∥. For simplicity, we only consider G̃AS ,f (ω). The calculation with
(
G̃AS ,f (ω)

)†
should

be quite similar. Using change of variable p = (s1 + s2)/σ and q = (s1 − s2)/σ,we have

G̃AS ,f (ω)

=
σ2

2

∫ ∞

−∞
dp

∫ +∞

0

dqf

(
σ(p+ q)

2

)
f

(
σ(p− q)

2

)
A†

S

(
σ(p− q)

2

)
AS

(
σ(p+ q)

2

)
exp(−iωσq)

Notice that [
H,A†

S

(
σ(p− q)

2

)
AS

(
σ(p+ q)

2

)]
=

−2i

σ

d

dp

(
A†

S

(
σ(p− q)

2

)
AS

(
σ(p+ q)

2

))
.

Thus,

[H, G̃AS ,f (ω)] =
−iσ
2
√
2π

∫ ∞

−∞

∫ ∞

0

exp(−p2/8) exp(−q2/8)

· 2
σ

d

dp

(
A†

S

(
σ(p− q)

2

)
AS

(
σ(p+ q)

2

))
exp(−iωσq)dqdp

=
−i√
2π

∫ ∞

−∞

∫ ∞

0

p

4
exp(−p2/8) exp(−q2/8)

·A†
S

(
σ(p− q)

2

)
AS

(
σ(p+ q)

2

)
exp(−iωσq)dqdp

We notice that ∥∥∥A†
S(σ(p− q)/2)AS(σ(p+ q)/2)

∥∥∥ ≤ ∥AS∥2 .

thus, ∥∥∥∥[H,∫ γ(ω)G̃AS ,f (−ω) dω
]∥∥∥∥ = O

(
RE(∥AS∥2)

)
.

This implies that ∥∥∥[H, H̃LS

]∥∥∥ = O
(
RE(∥AS∥2)

)
.

Next, we notice that

∥[ρβ , H̃LS]∥1 ≤ ∥ρβ∥1 ∥ρ
−1
β H̃LSρβ − H̃LS∥ = ∥ρ−1

β H̃LSρβ − H̃LS∥

=EAS

∥∥∥∥Im(∫ ∞

−∞
γ(ω)

(
ρ−1
β G̃AS ,f (ω)ρβ − G̃AS ,f (ω)

)
dω

)∥∥∥∥ .
We can use the BCH formula to expand the term ρ−1

β G̃AS ,f (ω)ρβ as a series.

ρ−1
β G̃AS ,f (ω)ρβ − G̃AS ,f (ω) = eβH G̃AS ,f (ω)e

−βH − G̃AS ,f (ω)

= β[H, G̃AS ,f (ω)] +
β2

2
[H, [H, G̃AS ,f (ω)]] + . . .

βn

n!
[

nH′s︷ ︸︸ ︷
H, [H, . . . [H, G̃AS ,f (ω)]..] + . . . .
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Using change of variable p = (s1 + s2)/σ and q = (s1 − s2)/σ, similar to the previous calculation[
H, G̃AS ,f (ω)

]
=

σ

2
√
2π

−2i

σ

∫ ∞

−∞
dp

∫ +∞

0

dq exp(−p2/8) exp(−q2/8)

· exp(−iωσq) d

dp

(
A†

S

(
σ(p− q)

2

)
AS

(
σ(p+ q)

2

))
=

σ

2
√
2π

2i

σ

∫ ∞

−∞
dp

∫ +∞

0

dq
d

dp
exp(−p2/8) exp(−q2/8)

· exp(−iωσq)A†
S

(
σ(p− q)

2

)
AS

(
σ(p+ q)

2

)
.

Applying this iteratively, we have the commutator form:

[

nH′s︷ ︸︸ ︷
H, [H, . . . [H, G̃AS ,f (ω)]..] =

σ

2
√
2π

(
2i

σ

)n ∫ ∞

−∞
dp

∫ +∞

0

dq
dn

dpn
exp(−p2/8) exp(−q2/8)

· exp(−iωσq)A†
S

(
σ(p− q)

2

)
AS

(
σ(p+ q)

2

) .

Notice that: ∣∣∣∣ dndpn
exp(−p2/8)

∣∣∣∣ < 2
√
n!2−n exp(−p2/16) .

As a result, following the proof of the previous lemma, the n-th term of the series can be bounded by∥∥∥∥∥∥∥
∫ ∞

−∞
γ(ω)dω

βn

n!
[

nH′s︷ ︸︸ ︷
H, [H, . . . [H, G̃AS ,f (ω)]..]

∥∥∥∥∥∥∥ = O
(

σ

2
√
2π

(
2β

σ

)n
1√
n!
2−nR∥AS∥2

)

= O
(

βn−1

σn−1
√
n!
Rβ∥AS∥2

)
Summing all terms still gives∥∥∥∥∫ ∞

−∞
γ(ω)

(
ρ−1
β G̃Ai,f (ω)ρβ − G̃Ai,f (ω)

)
dω

∥∥∥∥ = O
(
Rβ∥AS∥2

)
Similar result can be proved for

(
G̃AS ,f (ω)

)†
. We conclude the proof.

Proof of Lemma 14. Let B be a Lindbladian, define

K(ρβ ,B) = ρ
−1/4
β B[ρ1/4β · ρ1/4β ]ρ

−1/4
β

with

(K(ρβ ,B))† = ρ
1/4
β B†[ρ

−1/4
β · ρ−1/4

β ]ρ
1/4
β .

We note that if K(ρβ ,B) = (K(ρβ ,B))†, we have

ρ
−1/4
β B[ρβ ]ρ−1/4

β = K(ρβ ,B)[
√
ρβ ] = (K(ρβ ,B))†[

√
ρβ ] = ρ

1/4
β B†[I]ρ

1/4
β = 0 .

This implies B fixes the thermal state ρβ . Furthermore,∥∥∥K(ρβ ,B)− (K(ρβ ,B))†
∥∥∥
2↔2

=
∥∥∥K(ρβ ,B)− (K(ρβ ,B))†

∥∥∥
2↔2

∥√ρβ∥2

≥
∥∥∥K(ρβ ,B)[

√
ρβ ]− (K(ρβ ,B))† [

√
ρβ ]
∥∥∥
2
=
∥∥∥ρ−1/4

β B[ρβ ]ρ−1/4
β

∥∥∥
2

=
∥∥∥ρ−1/4

β B[ρβ ]ρ−1/4
β

∥∥∥
2
∥ρ1/4β ∥24 ≥ ∥B[ρβ ]∥1

. (E9)



25

Here ∥ · ∥p is the Schattern-p norm defined in Section A. In the last inequality, we use Hölder’s inequality ∥BAB∥1 ≤
∥B∥24∥A∥2. This inequality implies that, if K(ρβ ,B) is approximately self-adjoint, B can also approximately preserve
the thermal state.

The rest of the proof follows a similar procedure as the proof of [17, Theorem I.3] to show that ∥D[ρβ ]∥1 is small.

Let D = EAS

(∫∞
−∞ γ(ω)DṼAS,f (−ω)(ρβ)dω

)
. In the proof of [17, Theorem I.3], the authors first approximate D with

secular version Dsec (See [17, Lemma A.2]). The secular approximation is an artificial cutoff in frequency space on
the transition energies induced by Lindblad jump operators, which causes only a small error when σ is sufficiently
large. Following the proof of [17, Theorem I.3],we have

∥Dsec −D∥1↔1 +
∥∥∥K(ρβ ,Dsec)(ρβ)− (K(ρβ ,Dsec)(ρβ))

†
∥∥∥
2↔2

= O
(
∥γ(ω)∥∞E

(
∥AS∥2

) β
σ

√
log(σ/β)

)
.

This implies that

∥D(ρβ)∥1 ≤ ∥Dsec −D∥1↔1 + ∥Dsec(ρβ)∥1

≤∥Dsec −D∥1↔1 +
∥∥∥K(ρβ ,Dsec)(ρβ)− (K(ρβ ,Dsec)(ρβ))

†
∥∥∥
2↔2

= O
(
∥γ(ω)∥∞E

(
∥AS∥2

) β
σ

√
log(σ/β)

)
.

In the second inequality, we use (E9).

2. Approximate fixed point – Ground state

In this section, we provide a rigorous version of Theorem 10 in Theorem 16 and provide the proof. We consider (2)

with β = ∞ and f(t) = 1
(2π)1/4σ1/2 exp

(
− t2

4σ2

)
. Similar to the thermal state case, we first consider a simplified CPTP

map by removing the error terms in Theorem 4 and take the limit T → ∞, as mentioned in Section A,

Φ̃ = US(T ) ◦ exp
(
L̃α2

)
◦ US(T ) . (E10)

Here

L̃(ρ) = EAS

(
−i
[
H̃LS,AS

, ρ
]
+

∫ 0

−∞
(g(ω) + g(−ω))DṼAS,f (ω)(ρ)dω

)
, (E11)

where

H̃LS,AS
= −Im

(∫ 0

−∞
g(ω)G̃A†

S ,f (ω)dω +

∫ ∞

0

g(ω)G̃AS ,f (−ω)dω
)
, ṼAS ,f (ω) =

∫ ∞

−∞
f(t)AS(t) exp(−iωt)dt ,

with

G̃AS ,f (ω) =

∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1)A

†
S(s2)AS(s1) exp(iω(s2 − s1))ds2ds1 .

Same as Lemma 11, the error between Φ and Φ̃ can be controlled in the following lemma:

Lemma 15. When T > σ, We have∥∥∥Φ− Φ̃
∥∥∥
1↔1

= O
(
α2σ exp

(
−T 2/(4σ2)

)
E(∥AS∥2) + α4T 4σ−2E

(
∥AS∥4

))
The proof of Lemma 15 is almost the same as the proof of Lemma 11. Thus, we omit it. Using Φ̃, we are ready to

state the rigorous version of Theorem 10 and provide the proof:

Theorem 16. Assume H has a spectral gap ∆ and T > σ. Then, for any ϵ > 0,

∥ρfix(Φ)− |ψ0⟩ ⟨ψ0|∥1

=O
((

∥H∥1/2σ3/2 exp
(
−σ2∆2/8

)
E(∥AS∥2) + σ exp

(
−T 2/(4σ2)

)
E(∥AS∥2) + α2T 4σ−2E

(
∥AS∥4

))
α2τmix,Φ(ϵ) + ϵ

)
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The proof of this theorem follows a similar approach to that of Theorem 12, where we demonstrate that both
the Lamb shift term and the dissipative term approximately preserve the ground state. Although the overall proof
strategy is similar, we adopt a different technique in the proof below. Specifically, using the spectral gap ∆, we
directly establish a small fixed-point error when the number of Bohr frequencies is constant. In the general case,
where the number of Bohr frequencies cannot be bounded, we approximate the Hamiltonian by a rounded version
with a controllable number of eigenvalues, inspired by the secular approximation idea in [18]. The errors introduced in
the Lamb shift and dissipative terms due to this rounding can also be controlled by exploiting the Gaussian structure of
f . Furthermore, when handling the Lamb shift term, the rounding technique and the spectral gap assumption allow

us to establish a uniform fixed-point error bound for
∥∥∥[|ψ0⟩ ⟨ψ0|, G̃AS ,f (−ω)

]∥∥∥
1
+

∥∥∥∥[|ψ0⟩ ⟨ψ0|,
(
G̃AS ,f (−ω)

)†]∥∥∥∥
1

+∥∥∥DṼAS,f (ω)(|ψ0⟩ ⟨ψ0|)
∥∥∥
1
in ω prior to taking the expectation over ω. This enables the use of an arbitrary distribution

g in the theorem above.

Proof of Theorem 16. Similar to the proof of Theorem 12, it suffices to show
∥∥∥Φ̃(|ψ0⟩ ⟨ψ0|)− |ψ0⟩ ⟨ψ0|

∥∥∥
1
is small.

Because the unitary evolution US(T ) preserves the ground state, we have∥∥∥Φ̃ (|ψ0⟩ ⟨ψ0|)− |ψ0⟩ ⟨ψ0|
∥∥∥
1
≤ α2

∥∥∥L̃ (|ψ0⟩ ⟨ψ0|)
∥∥∥
1
, (E12)

where L̃ is defined in Eq. (E11).
Now, we consider the Lamb shift term and dissipative term separately. For simplicity, we consider a fixed AS in

the following calculation. Recall that

AS(ν) =
∑

λj−λi=ν

|ψj⟩ ⟨ψj |AS |ψi⟩ ⟨ψi| , A†
S(ν) =

∑
λj−λi=ν

|ψj⟩ ⟨ψj |A†
S |ψi⟩ ⟨ψi| .

• Lamb shift term: Recall the definition of G̃AS ,f :

G̃AS ,f (−ω) =
∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1)A

†
S(s2)AS(s1) exp(−iω(s2 − s1))ds2ds1 .

Using change of variable p = (s1 + s2)/σ and q = (s1 − s2)/σ,∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1)A

†
S(s2)AS(s1) exp(−iω(s2 − s1))ds2ds1

=
∑

ν1,ν2∈B(H)

A†
S(ν2)AS(ν1)

∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1) exp(iν2s2) exp(iν1s1) exp(−iω(s2 − s1))ds2ds1

=
σ

2
√
2π

∑
ν1,ν2∈B(H)

A†
S(ν2)AS(ν1)

·
∫ ∞

−∞
exp

(
i
σp

2
(ν1 + ν2)

)
exp

(
−p

2

8

)
dp︸ ︷︷ ︸

=O(exp(−σ2(ν1+ν2)2/2))

∫ ∞

0

exp

(
−q

2

8

)
exp

(
i
σq

2
(ν1 − ν2)

)
exp(iσωq)dq︸ ︷︷ ︸

=O(1)

where B(H) is the set of Bohr frequencies.

We note that [
|ψ0⟩ ⟨ψ0| , A†

S(ν2)AS(ν1)
]
= 0

when |ν2 + ν1| < ∆. We show this using the proof by contradiction: When
[
|ψ0⟩ ⟨ψ0| , A†

S(ν2)AS(ν1)
]
̸= 0, we

must have |ψ0⟩ ⟨ψ0|A†
S(ν2)AS(ν1) ̸= 0 or A†

S(ν2)AS(ν1) |ψ0⟩ ⟨ψ0| ̸= 0. We consider these two cases separately:

– In the first case, we have
(
A†

S(ν2)
)†

|ψ0⟩ = AS(−ν2) |ψ0⟩ ̸= 0, which implies ν2 ≤ 0. Now, since |ν2 + ν1| <

∆ and |ψ0⟩ ⟨ψ0|A†
S(ν2)AS(ν1) ̸= 0, we have ν1 = −ν2. This implies

[
|ψ0⟩ ⟨ψ0| , A†

S(ν2)AS(ν1)
]
= 0.
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– In the second case, we have AS(ν1) |ψ0⟩ ̸= 0, which implies ν1 ≥ 0. Now, since |ν2 + ν1| < ∆ and

A†
S(ν2)AS(ν1) |ψ0⟩ ̸= 0, we have ν1 = −ν2. This implies

[
|ψ0⟩ ⟨ψ0| , A†

S(ν2)AS(ν1)
]
= 0.

These two cases give a contradiction. This implies[
|ψ0⟩ ⟨ψ0| , G̃AS ,f (−ω)

]
=

∑
|ν2+ν1|≥∆

F (ν1, ν2)︸ ︷︷ ︸
|F (ν1,ν2)|=O(σ exp(−σ2∆2/2))

[
|ψ0⟩ ⟨ψ0| , A†

S(ν2)AS(ν1)
]
. (E13)

Now, we are ready to show (E13) is small. First, let us assume H has discrete eigenvalues in [−∥H∥, ∥H∥] with
uniform gap η, meaning |λi − λj | ≥ η if λi ̸= λj . This implies |B(H)| = O(∥H∥/η), where |B(H)| means the
number of elements in B(H). Then,∥∥∥∥∥∥

∑
ν2≤0,ν1≥0

(. . . )

∥∥∥∥∥∥ = O
(
∥AS∥2|B(H)|σ exp

(
−σ2∆2/2

))
=O

(
∥AS∥2∥H∥σ exp

(
−σ2∆2/2

)
/η
)
.

Because every Hamiltonian can be approximated by a rounding Hamiltonian Hη such that: 1. ∥H−Hη∥ ≤ η; 2.
Hη has the same ground state; 3. Hη has discrete eigenvalues in [−∥H∥, ∥H∥] with uniform gap η. We conclude
that ∥∥∥∥∥∥

∑
ν2≤0,ν1≥0

(. . . )

∥∥∥∥∥∥
=O

(
∥AS∥2∥H∥σ exp

(
−σ2∆2/2

)
/η
)
+O

(
∥AS∥2

∫ ∞

−∞

∫ s1

−∞
f(s1)f(s2)(|s1|+ |s2|)ηds1ds2

)
=O

(
∥AS∥2 min

η

(
σ exp

(
−σ2∆2/2

)
∥H∥/η + ησ2

))
=O

(
∥AS∥2∥H∥1/2σ3/2 exp

(
−
(
σ2∆2/4

)))
(E14)

Here, the second term arises from approximating
[
|ψ0⟩ ⟨ψ0| , G̃AS ,f (−ω)

]
by replacingH withHη. This concludes

the calculation for the Lamb shift term.

• Dissipative term: When f(t) = 1
(2π)1/4σ1/2 exp(−t2/(4σ2)),

ṼAS ,f (ω) =

∫ ∞

−∞
f(t)AS(t) exp(−iωt)dt = 23/4π1/4

√
σ
∑

ν∈B(H)

exp(−(ν − ω)2σ2)AS(ν) .

Define the component of V that preserves the ground state as V +:

V +
AS ,f (ω) =


23/4π1/4

√
σ

∑
ν∈B(H),ν<0

exp(−(ν − ω)2σ2)A(ν), ω < −∆

2

23/4π1/4
√
σ

∑
If i = 0 or j = 0, then i + j = 0

exp(−(λi − λj − ω)2σ2) ⟨ψi|A |ψj⟩ |ψi⟩ ⟨ψj | , −∆

2
≤ ω < 0

Here, |ψi⟩ is the eigenvector of H with eigenvalue λi with λ0, |ψ0⟩ being the ground state energy and ground
state. Recall (E11):

L̃(ρ) = EAS

(
−i
[
H̃LS,AS

, ρ
]
+

∫ 0

−∞
(g(ω) + g(−ω))DṼAS,f (ω)(ρ)dω

)
.

We will show that the choice of V +
AS ,f (ω) ensures that: 1. |ψ0⟩ ⟨ψ0| ∈ Ker

(
DV +

AS,f (ω)

)
for any ω < 0; 2. ṼAS ,f (ω)

is close to V +
AS ,f (ω). Consider two cases:
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– When ω < −∆/2, |ψ0⟩ ⟨ψ0| ∈ Ker
(
DV +

AS,f (ω)

)
is straightforward because V +

AS ,f (ω) |ψ0⟩ = 0. To show that

ṼAS ,f (ω) is close to V +
AS ,f (ω), we use the rounding Hamiltonian technique similar to the calculation for

the Lamb shift term. First, let us assume H has discrete eigenvalues in [−∥H∥, ∥H∥] with uniform gap η,
meaning |λi − λj | = η if λi ̸= λj . This implies |B(H)| = O(∥H∥/η). Then, for ω ≥ 0,∥∥∥ṼAS ,f (ω)− V +

AS ,f (ω)
∥∥∥ = O

(
∥AS∥|B(H)|

√
σ exp

(
−σ2∆2/4

))
= O

(
∥AS∥∥H∥

√
σ exp

(
−σ2∆2/4

)
/η
)
. (E15)

Similar to the Lamb shift term, we approximated the Hamiltonian by the rounding Hamiltonian Hη such
that ∥H − Hη∥ ≤ η and Hη has discrete eigenvalues in [−∥H∥, ∥H∥] with uniform gap η. We conclude
that, for general H,

∥∥∥ṼAS ,f (ω)− V +
AS ,f (ω)

∥∥∥ = O

min
η

∥AS∥∥H∥
√
σ exp

(
−σ2∆2/4

)
/η + ∥AS∥η ∥tf(t)∥L1︸ ︷︷ ︸

=O(σ3/2)




=O
(
∥AS∥∥H∥1/2σ exp(−σ2∆2/8)

) . (E16)

– When −∆/2 < ω ≤ 0, we can rewrite

V +
AS ,f (ω) = (. . . ) |ψ0⟩ ⟨ψ0|+

∑
i,j ̸=0

(. . . ) |ψi⟩ ⟨ψj | .

This ensures that [V +
AS ,f (ω), |ψ0⟩ ⟨ψ0|] and thus |ψ0⟩ ⟨ψ0| ∈ Ker

(
DV +

AS,f (ω)

)
. Next, to show ṼAS ,f (ω) is

close to V +
AS ,f (ω), we note that

VAS ,f (ω) =V
+
AS ,f (ω) + 23/4π1/4σ1/2

∑
i̸=0

exp(−(λi − λ0 − ω)2σ2) ⟨ψi|A |ψ0⟩ |ψi⟩ ⟨ψ0|

+ 23/4π1/4σ1/2
∑
i̸=0

exp(−(λ0 − λi − ω)2σ2) ⟨ψ0|A |ψi⟩ |ψ0⟩ ⟨ψi| .

In the above summation, since i ̸= 0 andH has spectral gap ∆, we have |λi−λ0| ≥ ∆ and |λi−λ0−ω| ≥ ∆/2
when −∆/2 < ω ≤ 0. This guarantees that each term in the summation can be upper bounded, meaning∥∥∥∥∥23/4π1/4σ1/2

∑
λi=λ

exp(−(λ0 − λi − ω)2σ2) ⟨ψ0|A |ψi⟩ |ψ0⟩ ⟨ψi|

∥∥∥∥∥ = O
(
∥AS∥

√
σ exp

(
−σ2∆2/4

))
for each eigenvalue λ. Thus, similar to the first case, we also have (E15) and (E16).

Because both cases satisfy (E16), we have∥∥∥LṼAS,f (ω) (|ψ0⟩ ⟨ψ0|)
∥∥∥
1
= O

(∥∥∥LṼAS,f (ω) − LV +
AS,f (ω)

∥∥∥
1↔1

)
= O

(∥∥∥ṼAS ,f (ω)− V +
AS ,f (ω)

∥∥∥∥∥∥ṼAS ,f (ω)
∥∥∥)

=O
(
∥AS∥2∥H∥1/2σ3/2 exp(−σ2∆2/8)

)
.

(E17)

Combining (E14) and (E17), we have∥∥∥L̃ (|ψ0⟩ ⟨ψ0|)
∥∥∥
1
= O

(
∥AS∥2∥H∥1/2σ3/2 exp(−σ2∆2/8)

)
Plugging this into (E12),∥∥∥Φ̃ (|ψ0⟩ ⟨ψ0|)− |ψ0⟩ ⟨ψ0|

∥∥∥
1
= O

(
α2σ3/2 exp(−σ2∆2/8)∥AS∥2∥H∥1/2

)
This concludes the proof.
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Appendix F: Mixing time and End-to-end efficiency analysis

As concrete examples to guarantee fast mixing, in this section, we choose A to be the set of all single-qubit Pauli
operators (and their negatives) for qubit systems, and the set of creation and annihilation operators (and their
negatives) for fermionic systems. For the functions g and f , we set

g(ω) =
1

ωmax
1[0,ωmax], f(t) =

1

(2π)1/4σ1/2
exp

(
− t2

4σ2

)
.

The parameters ωmax are selected so that the system-bath interaction can induce energy transitions effectively. The
choice of ωmax can be system-dependent and should generally be at least as large as the largest eigenvalue gap,
and typically does not grow with system size. The parameter σ in the filter function f(t) is typically chosen to be
sufficiently large to ensure that the Lamb shift term in Theorem 4 approximately commutes with the thermal or
ground state, as discussed in Section E.

According to Theorem 9 and Theorem 10, to establish end-to-end efficiency, it suffices to provide an upper bound
on tmix,Φ. However, we emphasize that in Theorem 9 and Theorem 10, the mixing time tmix,Φ and the parameter σ
are not independent of each other. The bath Hamiltonian HB , the coupling operator BE , and the filter function f(t)
must be carefully designed to ensure that the conditions required for the theorems are meaningfully satisfied.

In this section, we provide the result of upper bounding the mixing time of the map Φ defined in Eq. (2) and a
complete end-to-end efficiency analysis for preparing both the thermal state and the ground state. Specifically, we
consider three examples of physical systems: a single qubit example (as a toy model), free fermionic systems, and
commuting local Hamiltonians. In all three cases, we show that the mixing time of Φ can be upper bounded by
a constant independent of σ, provided that σ is sufficiently large. This enables us to achieve an arbitrarily small
fixed-point error by appropriately choosing a large σ and a small α. For clarity, we first state the results, and defer
all proofs to later sections.

1. Single qubit example

We first consider a toy model to illustrate the key ideas. Assume the system Hamiltonian H = −Z. In Eq. (2), we
set A = {X,−X} and g(ω) = 1

31[0,3](ω) (ωmax = 3). Then, we have the following result:

Theorem 17. For thermal state preparation, given any β, ϵ > 0, there exists a constant C = poly(β, 1/ϵ) such that

if σ > C, T = Ω̃(σ), and α < σ−1C−1, we have

tmix,Φ(ϵ) = O(log(1/ϵ)).

For ground state preparation (β = ∞), given ϵ > 0, there exists a constant C = polylog(1/ϵ) such that if σ > C,

T = Ω̃(σ), and α < σ−1ϵ1/2C−1, we have

tmix,Φ(ϵ) = O(log(1/ϵ)).

Although this is a toy model, it highlights a key mechanism underlying the efficiency of our protocol when σ ≫ 1:
the design of the jump operator VAS ,f,T (ω) should support a wide range of nondegenerate energy transitions. In
the present setting, it suffices to have nondegenerate jumps between |0⟩ and |1⟩; see Eqs. (G1) and (G3). Even for
this simplified model, achieving this property requires a careful choice of both the function f(t) and the bath. A
contrasting example that fails to meet this condition is discussed in Section G, Theorem 22.

The proof of Theorem 17 is given in Section G. We emphasize that, in this theorem, when σ is sufficiently large,
the mixing time tmix,Φ(ϵ) becomes independent of σ. Plugging this bound into Theorem 9 and Theorem 10 yields a
result demonstrating the end-to-end efficiency of our protocol; see Theorem 21.

2. Free fermionic systems

Consider a local fermionic Hamiltonian H defined on a D-dimensional lattice of fermionic systems, Λ = [0, L]D,
given by

H =

N∑
i,j=1

hi,jc
†
i cj . (F1)
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where N = (L + 1)D is the number of fermionic modes, (hi,j) is a Hermitian matrix, and c†j and cj are the creation

and annihilation operators at site j. We also assume that the coefficient matrix h satisfies ∥h∥ = O(1). Note that
the operator norm of the Hamiltonian ∥H∥ can still increase with respect to the system size N . We choose AS to be

uniformly sampled from the set of all single fermionic operators {±c†i ,±ci}ni=1.
The mixing time analysis for ground state preparation is simpler, so we present it first. The rigorous version

of Theorem 18 appears in Section H as Theorem 23.

Theorem 18 (Ground state of quadratic fermionic Hamiltonian, informal). Assume H has a spectral gap ∆. Let

g(ω) = 1
ωmax

1[0,ωmax] with ωmax = 2∥h∥. Given any ϵ > 0, if σ = Θ̃(∆−1), T = Θ̃(∆−1), and α = Õ(ϵ1/2∆N−1/2),
we have

tmix,Φ(ϵ) = O (N log(N/ϵ)) .

Here, Θ̃ suppresses logarithmic dependencies on ∆−1, 1/ϵ, and N .

To prove this result, we adopt the strategy from [22, Section IV], which analyzes the Heisenberg evolution of the
number operator. Following the argument in [22, Section IV], the convergence of the Lindblad dynamics to the
ground state can be established by showing that the expectation of the number operator converges to zero. Moreover,
since the unitary evolution commutes with the number operator, it does not affect this convergence. Finally, the
convergence of the number operator can be directly related to the trace distance between the current state and the
ground state using the Fuchs–van de Graaf inequality; see Section H for details.

For thermal state preparation, we have an analogous result.

Theorem 19 (Thermal state of quadratic fermionic Hamiltonian at constant temperature, informal). For any constant

temperature β−1, with a proper choice of g(ω), let σ = Θ̃(ϵ−1N2), T = Θ̃(ϵ−1N2), α = Θ̃(ϵ3/2N−3), we have

tmix,Φ(ϵ) = O
(
N2 log(N/ϵ)

)
.

Here, the notation Θ̃ suppresses logarithmic dependencies on 1/ϵ, and N .

The rigorous version of Theorem 19 is presented in Section J as Theorem 29. Compared to the ground state result,

the additional N factor in tmix mainly arises from the initial dependence of the norm ∥ρ−1/4
β [·]ρ−1/4

β ∥2; see the detailed
discussion at the end of Section J. It is worth noting that the choice of g(ω) in Theorem 29 is chosen to simplify the
analysis, and can be suboptimal at large β [41, Section VII].

In Theorem 19, it may be possible to further reduce the dependence of tmix,Φ to linear in N by employing advanced
mixing time analysis techniques, such as the modified logarithmic Sobolev inequality or the oscillator norm method [22,
34, 36, 37, 39, 40]. However, due to the additional analytical challenges introduced by the Lamb-shift term, pursuing
this improvement lies beyond the current scope of this work. On the other hand, we believe that the linear N
dependence of tmix,Φ in Theorems 18 and 19 is intrinsic, since the algorithm samples only one jump operator per
iteration. This situation closely parallels that of Lindbladian-dynamics-based algorithms: while rapid mixing can, in
principle, be achieved when employing O(N) jump operators, the total end-to-end simulation cost still scales linearly
with N [43–45].

3. Commuting local Hamiltonians

Let H =
∑

i hi be a commuting local Hamiltonian defined on a D-dimensional lattice, where each local term hi
commutes with all others and is supported on a ball of constant radius. Furthermore, each qubit j is acted upon by
only a constant number of terms hi. Let Ij denote the set of indices i such that hi acts non-trivially on qubit j, and
define Hj =

∑
i∈Ij

hi. Let ∆λ = maxj,k (λk+1(Hj)− λk(Hj)) be the maximal nearby eigenvalue difference among all

Hj . We note that for local commuting Hamiltonians, ∆λ is often a constant independent of the system size.
We choose AS to be randomly sampled from all local Pauli operators {±Xi,±Yi,±Zi}ni=1. We have the following

result:

Theorem 20 (Commuting local Hamiltonian at high temperature, informal). Let H be a commuting local Hamiltonian
defined on a D-dimensional lattice and g(ω) = 1

ωmax
1[0,ωmax] with ωmax = 2∆λ. There exists a constant βc dependent

on the Hamiltonian H such that for every β ≤ βc and any ϵ > 0, if σ = Θ̃(ϵ−1N2), T = Θ̃(ϵ−1N2), α = Θ̃(ϵ3/2N−3),
we have

tmix,Φ(ϵ) = O
(
N2 log(1/ϵ)

)
.

Here, Θ̃ suppresses logarithmic dependencies on 1/ϵ, and N .
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A more general version of Theorem 20 is given in Section K Theorem 31. Here we use the result of [35] stating that
for commuting local Hamiltonians, there exists a critical inverse temperature βc such that, when β ≤ βc, the spectral
gap of the Davies generator is bounded below; see Theorem 32.

Although the mixing time bounds in Theorem 19 and Theorem 20 appear similar, their proof strategies differ
substantially. For the thermal state case, the main idea is to show that the dissipative part of the Lindbladian
approximately satisfies the detailed balance condition, while the Lamb shift term approximately commutes with the
thermal state when σ ≫ 1. However, the Lindbladian with the Lamb shift term does not satisfy the quantum detailed
balance condition. Therefore existing techniques using the contraction of χ2-distance, relative entropy [34], or local
oscillator norm [22, 40] are not directly applicable.

Instead, we follow the approach of [17, Appendix E.3.a, Proposition II.2], which analyzes the spectral gap of the
dissipative part of the generator after a similarity transformation, as introduced in [17, Appendix E.2]. In particular,

we prove contraction under the weighted Hilbert-Schmidt norm ∥ρ−1/4
β [·]ρ−1/4

β ∥2. This contraction still holds in the

presence of the unitary evolution in Eq. (7), and therefore also holds for the map Φ. Further details are given in
Section I, in particular Theorem 25 and Theorem 26.

4. End-to-end efficiency analysis

In the previous section, we have established that the fixed-point approximation error and the upper bound on the
mixing time are independent of σ, when σ is sufficiently large. This property is crucial for ensuring the validity of the
fixed-point error bound in Section E.

Combining the result in Section E, we obtain the following corollary:

Corollary 21. For the single-qubit, free-fermion, and (high-temperature) local commuting Hamiltonian problems
above, for any ϵ > 0, it suffices to choose σ, T, α−1 = poly(N, 1/ϵ) to ensure that

∥ρfix(Φ)− ρβ∥1 < ϵ,

τmix,Φ(ϵ) =
tmix,Φ(ϵ)

α2
= poly(N, 1/ϵ) .

For the single qubit and gapped free fermionic systems above, for any ϵ > 0, it suffices to choose σ, T, α−1 =
poly(N, 1/ϵ) to ensure that

∥ρfix(Φ)− |ψ0⟩ ⟨ψ0| ∥1 < ϵ,

τmix,Φ(ϵ) =
tmix,Φ(ϵ)

α2
= poly(N, 1/ϵ) .

In the above corollary, τmix,Φ(ϵ) denotes the number of times the map Φ defined in (2) should be applied to achieve
ϵ-mixing.

To establish end-to-end efficiency, it remains to analyze the simulation complexity of Φ, which follows from a
standard analysis of Trotter errors (see e.g. [61]). Recall the quantum channel Φapprox

α in (4). We have ∥Φapprox
α −

Φ∥1↔1 = O
(
αT (∥H∥+ ωmax)

2∥AS∥τ2/σ1/2
)
, where τ is the Trotter step size. Since ∥AS∥ ≤ 1, to achieve η-accuracy

in each application of Φ, the number of Trotter steps per iteration is M = Θ
(
α1/2T 3/2(∥H∥+ ωmax) η

−1/2σ−1/4
)
.

Given a mixing time of τmix,Φ(ϵ), we set η = ϵ/τmix,Φ to ensure the total quantum channel error is bounded by ϵ in
1 ↔ 1 norm. This leads to the total number of steps is Mtotal = M · τmix,Φ(ϵ) = poly(N, 1/ϵ). Each step involves a
short-time (τ) simulation of the system Hamiltonian, a single Z rotation, and one simulation step for the system-bath
interaction term whose gate complexity depends on the choice of AS . We note that, in Theorem 21, the dependence
of τmix,Φ and Mtotal on N , β, and 1/ϵ could potentially be further improved, not only by establishing a tighter upper
bound on the mixing time, but also by allowing more relaxed choices of α and σ. For instance, although this work
focuses on the weak-interaction regime—where α

√
σ is small—there is currently no evidence that this is the only

regime that is valid (see [54] for example). Relaxing this assumption represents an interesting direction for future
research.

Appendix G: Mixing analysis of thermal and ground state preparation for the single qubit example

In this section, we consider a toy modelH = −Z. In Eq. (2), we set A = {X,−X} and g(ω) = 1
31[0,3](ω) (ωmax = 3).

To prove Theorem 17, it suffices to show that, for both thermal state and ground state preparation, the mixing time
of Φ is independent of σ when σ is sufficiently large.



32

Similar to Section E 1 and Section E 2, we first consider a simplified CPTP map defined as follows:

Φ̃ = US(T ) ◦ exp
(
L̃α2

)
◦ US(T ) .

Here L̃ omits the error in Theorem 4 and take the limit T → ∞. Specifically,

L̃(ρ) = −i
[
H̃LS, ρ

]
+

∫ ∞

−∞
γ(ω)DṼX,f (ω)(ρ)dω ,

where

H̃LS = −Im

(∫ ∞

−∞
γ(ω)G̃X,f (−ω)dω

)
, ṼX,f (ω) =

∫ ∞

−∞
f(t)X(t) exp(−iωt)dt ,

with

G̃X,f (ω) =

∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1)X(s2)X(s1) exp(iω(s2 − s1))ds2ds1 .

According to Lemma 11 or Lemma 15, for thermal and ground state preparation, respectively, we first have∥∥∥Φ− Φ̃
∥∥∥
1↔1

= O
(
α2σ exp

(
−T 2/(4σ2)

)
+ α4T 4σ−2

)
.

According to Theorem 8, when α is sufficiently small and T is sufficiently large, it suffices to consider the mixing time

of Φ̃. In this case, we can compute Ṽ and H̃LS explicitly. Noticing,

ṼX,f (ω) =

∫ ∞

−∞
f(t)X(t)e−iωt dt = 23/4σ1/2π1/4

(
exp

(
−σ2(ω − 2)2

)
|1⟩ ⟨0|+ exp

(
−σ2(ω + 2)2

)
|0⟩ ⟨1|

)
,

and

G̃X,f (ω) =
∑

ν1,ν2∈B(H)

X(ν2)X(ν1)

∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1) exp(iν2s2) exp(iν1s1) exp(iω(s2 − s1))dudv

= C0,σ(ω) |0⟩ ⟨0|+ C1,σ(ω) |1⟩ ⟨1|

where C0,σ(ω) and C1,σ(ω) are functions of ω that depend on σ. Because the Lamb shift term does not effect the
proof later, we do not specify the form of C0 and C1.
Now, we consider the thermal state and ground state separately:

• Thermal state: We notice that∫ ∞

−∞
γ(ω)DVX,f,T (ω)(ρ) dω

=23/2π1/2

∫ ∞

−∞
γ(ω)σ exp(−2σ2(ω − 2)2)dωD|1⟩⟨0|(ρ) + 23/2π1/2

∫ ∞

−∞
γ(ω)σ exp(−2σ2(ω + 2)2)dωD|0⟩⟨1|(ρ) +O

(
exp(−8σ2)

)
=2π

(
γ(2)D|1⟩⟨0|(ρ) + γ(−2)D|0⟩⟨1|(ρ)

)
+O

(
β

σ

)
,

and

H̃LS = C0,β,σ |0⟩ ⟨0|+ C1,β,σ |1⟩ ⟨1| ,

where C0,β,σ and C1,β,σ are constants that depend on σ. Define

L̂β = −i
[
H̃LS, ρ

]
+ 2π

(
γ(2)D|1⟩⟨0| + γ(−2)D|0⟩⟨1|

)
(G1)

and Φ̂β = US(T ) ◦ exp
(
L̂βα

2
)
◦ US(T ). Then, we have

∥∥∥Φ− Φ̂β

∥∥∥
1↔1

= O
(
α2σ exp

(
−T 2/(4σ2)

)
+ α4T 4σ−2 +

β

σ

)
. (G2)
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In the case when σ is sufficiently large, according to Theorem 8, we only need to consider the mixing time of

Φ̂β . Since this result follows from a more general theorem in Theorem 31, it is sufficient to demonstrate that
the mixing time is independent of σ.

We express ρn in the computational basis as ρn =
∑1

a,b=0 ca,b,n |a⟩ ⟨b|, where ca,b,n are the corresponding

coefficients. To show convergence, it suffices to verify that c0,0,n and c1,1,n converge to exp(2β)
1+exp(2β) and 1

1+exp(2β) ,

respectively, while |c0,1,n|2 and |c1,0,n|2 converge to zero. It is straightforward to check that the Lamb shift

Hamiltonian H̃LS and the unitary dynamics do not affect the evolution of c0,0,n, c1,1,n, or |c0,1,n|2, |c1,0,n|2.
After plugging ρn into (G1), an ordinary differential equation (ODE) is obtained for the evolution of c0,0,n,
c1,1,n, c0,1,n, and c1,0,n. A direct calculation verifies that the solution converges to the desired fixed point. Since

the evolution is independent of σ, it follows that the mixing time of Φ̂β is also independent of σ. Combing this
mixing time and (G2) with Theorem 8, we conclude the proof for the thermal state part.

• Ground state: ∫ ∞

−∞
γ(ω)DVX,f,T (ω)(ρ) dω = C∞,σD|0⟩⟨1| +O

(
σ exp(−4σ2)

)
,

where C∞,σ is a constant that depends on σ. We note that, there exists a uniform constant C∞ such that
C∞,σ ≥ C∞ for σ ≥ 1.

H̃LS = C0,∞,σ |0⟩ ⟨0|+ C1,∞,σ |1⟩ ⟨1| ,

where C0,∞,σ and C1,∞,σ that only depends on σ.

Define

L̂∞ = −i
[
H̃LS, ρ

]
+ C∞,σD|0⟩⟨1| (G3)

and Φ̂∞ = US(T ) ◦ exp
(
L̂∞α

2
)
◦ US(T ). Then, we have∥∥∥Φ− Φ̂∞

∥∥∥
1↔1

= O
(
α2σ exp

(
−T 2/(4σ2)

)
+ α4T 4σ−2 + σ exp(−4σ2)

)
. (G4)

Finally, we consider the mixing time of Φ̂∞. Similar to the thermal state case, we express ρn in the computational
basis as ρn =

∑1
a,b=0 ca,b,n |a⟩ ⟨b|, where ca,b,n are the corresponding coefficients. To show convergence, it suffices

to verify that c0,0,n and c1,1,n converge to 1 and 0, respectively, while |c0,1,n|2 and |c1,0,n|2 converge to zero. Same

as before, the Lamb shift Hamiltonian H̃LS and the unitary dynamics do not affect the evolution of c0,0,n, c1,1,n,

or |c0,1,n|2, |c1,0,n|2. Similar to before, a direct calculation verifies that the dissipative part of L̂∞ converges

and is independent of σ, which implies that the mixing time of Φ̂∞ is independent of σ. Combining this mixing
time and (G4) with Theorem 8, we conclude the proof for the ground state part.

Remark 22. Different from our setting, [47, Section III] considers the filter function

f(t) =

√
2

πσ2
exp

(
− 2

σ2

(
t− iβ

4

)2
)

(G5)

Under this choice, the corresponding jump operator in the Lindblad dynamics is

LAS
=

∑
ω∈B(H)

exp(−βω/4) exp
(
− (σω)2

8

)
AS(ω) .

As σ → ∞, the support of LAS
effectively shrinks to a narrow energy window of width O(1/σ):

LAS
=

∑
|ω|≤1/2

exp(−βω/4) exp
(
− (σω)2

8

)
AS(ω)︸ ︷︷ ︸

=AS(0)

+
∑

|ω|≥1/2

exp(−βω/4) exp
(
− (σω)2

8

)
AS(ω)︸ ︷︷ ︸

=O(exp(−σ2))

,
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where we use B(H) = {2, 0,−2} in the above equality. This implies that when σ ≫ 1, transitions between eigenvectors
corresponding to different eigenvalues are strongly suppressed. For instance, when AS = X, we have AS(0) = 0 and
∥LAS

∥ = O(exp(−σ2)), so the dissipative term becomes exponentially weak. This leads to a mixing time scaling as
tmix = Ω(exp(σ2)). Substituting this into the fixed-point error bound in Theorem 9 yields a vacuous upper bound on
the error.

In our algorithm, since the bath is initialized in the thermal state of HE, we do not need to choose an interaction
function f that simultaneously depends on both β and σ to satisfy an approximate detailed balance condition. This
avoids the restriction—present in Eq. (G5)—that energy transitions must remain near 0 when σ is large. This key
distinction prevents the mixing time from degrading in the large-σ regime and enables substantially faster mixing.

Appendix H: Rigorous version of Theorem 18

Recall H =
∑N

j,k hj,kc
†
jck, where c†j , ck are creation and annihilation operators, respectively. Because h is a

Hermitian matrix, there exists an unitary matrix U such that Λ = U†hU is diagonal. Specifically,

H =

N∑
k=1

λk

∑
j

(U†)k,jcj

†∑
j

(U†)k,jcj

 :=

N∑
k=1

λkb
†
kbk ,

where b†k =
(∑

j(U
†)k,jcj

)†
, bk =

∑
j(U

†)k,jcj formulate a new set of creation and annihilation operators after the

unitary transformation. Then, the spectral gap ∆ = mini |λi|.
Now, we are ready to introduce the rigorous version of Theorem 18:

Theorem 23. Let g(ω) = 1
ωmax

1[0,ωmax] with ωmax = 2∥h∥. Given any ϵ > 0, when(
N∥h∥
α2

log(N/ϵ)

)(
α2σ exp

(
−T 2/(4σ2)

)
+ α2σ

√
N exp(−∆2σ2) + α4T 4σ−2

)
= O(ϵ) ,

we have

tmix,Φ(ϵ) = O (∥h∥N log(N/ϵ)) .

Proof of Theorem 23. First, according to Theorem 8 Eq. (D3) and Lemma 15, it suffices to prove the mixing time of

Φ̃ defined in (E10). Recall

Φ̃ = US(T ) ◦ exp
(
L̃α2

)
◦ US(T ) .

Here

L̃(ρ) = EAS

(
−i
[
H̃LS,AS

, ρ
]
+

∫ 0

−∞
(g(ω) + g(−ω))DṼAS,f (ω)(ρ)dω

)
,

where

H̃LS,AS
= −Im

(∫ 0

−∞
g(ω)G̃A†

S ,f (ω)dω +

∫ ∞

0

g(ω)G̃AS ,f (−ω)dω
)
, ṼAS ,f (ω) =

∫ ∞

−∞
f(t)AS(t) exp(−iωt)dt ,

with

G̃AS ,f (ω) =

∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1)A

†
S(s2)AS(s1) exp(iω(s2 − s1))ds2ds1 .

Define the number operator:

N̂ =
∑
λk>0

b†kbk +
∑
λk<0

bkb
†
k .
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Let H has eigendecomposition {(λi, |ψi⟩)}d−1
i=0 with λ0 ≤ λ1 ≤ . . . , λd−1. We note that 1−⟨ψ0| ρ |ψ0⟩ ≤ Tr(ρN̂). Using

the Fuchs-van de Graaf inequality, we obtain

∥ρ− |ψ0⟩ ⟨ψ0| ∥1 ≤ 2
√

(1− ⟨ψ0| ρ |ψ0⟩) ≤ 2

√
Tr(ρN̂).

we can show the decaying of Tr
(
Φ̃[ρ]N̂

)
, compared with Tr

(
ρN̂
)
. Furthermore, because N̂ commutes with H, the

unitary evolution part US does not effect the expectation. Thus, if we can show

Tr
(
exp

(
L̃α2

)
[ρ]N̂

)
≤ (1− δ)Tr(ρN̂)

for some 0 < δ < 1 and any ρ, then we have

Tr
(
Φ̃K

α [ρ]N̂
)
= Tr

(
exp

(
L̃α2

)
◦ Φ̃K−1

α [ρ]N̂
)
≤ (1− δ)Tr

(
Φ̃K−1

α [ρ]N̂
)
≤ (1− δ)KTr(ρN̂) .

for any K > 0 and ρ. This implies the fast decaying of Tr(ρKN̂).

However, because L̃ does not exactly preserve the ground state, it is difficult to directly show the exponential decay

of Tr
(
exp

(
L̃α2

)
[ρ]N̂

)
in the above form. Instead, we will construct a new Lindbladian operator L̂ in the proof so

that such that
∥∥∥L̂ − L̃

∥∥∥
1↔1

is bounded, L̂ exactly fixes the ground state, and L̂ satisfies a decay property, namely,

Tr
(
exp

(
L̂α2

)
[ρ]N̂

)
≤ (1− δ) Tr(ρN̂). (H1)

Recall that AS is uniformly sampled from {±c†k,±ck}Nk=1. We first deal with the dissipative part and define L̂. We
note that

exp(iHt)bj exp(−iHt) = exp(−iλjt)bj , exp(iHt)b†j exp(−iHt) = exp(iλjt)b
†
j . (H2)

When AS = c†k =
(∑

j Uk,jbj

)†
, we have

AS(t) = exp(iHt)AS exp(−iHt) =
∑
j

Uk,j exp(iλjt)b
†
j .

Because the integral in Ṽ is restricted to the regime ω ≤ 0, we have

Ṽk(ω) := ṼAS ,f (ω) =

∫ ∞

−∞
f(t)AS(t) exp(−iωt)dt =

∑
j

Uk,j f̂(−ω + λj)b
†
j

=
∑
λj<0

Uk,j f̂(−ω + λj)b
†
j + O

(√
σN exp(−∆2σ2)

)
︸ ︷︷ ︸
contains the part with λj ≥ 0

when ω ≤ 0. We note that the Lindbladian with jump operator V̂k =
∑

λj<0 Uk,j f̂(−ω + λj)b
†
j preserves the ground

state, since V̂k |ψ0⟩ = 0. In addition, for ω ≤ 0, we note∥∥∥Ṽk(ω)− V̂k(ω)
∥∥∥ = O

(√
σN exp(−∆2σ2)

)
. (H3)

Now, defining L̂ with V̂k and the same Lamb shift term H̃LS, we obtain∥∥∥L̂ − L̃
∥∥∥
1↔1

= O
(
sup
k

∥∥∥Ṽk(ω)− V̂k(ω)
∥∥∥ ∥∥∥Ṽk(ω)∥∥∥) = O

(
σ
√
N exp(−∆2σ2)

)
(H4)

Define Φ̂ with L̂ similar to Eq. (E10). We have∥∥∥Φ̂− Φ̃
∥∥∥
1↔1

= O
(
α2σ

√
N exp(−∆2σ2)

)
. (H5)
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Combining (H5) and Lemma 15, we have∥∥∥Φ− Φ̃
∥∥∥
1↔1

= O
(
α2σ exp

(
−T 2/(4σ2)

)
+ α2σ

√
N exp(−∆2σ2) + α4T 4σ−2

)
. (H6)

Now, given an observable O = b†i bi with λi > 0, we notice [bj , O] = δijbi, [b†j , O] = −δijb†j . Then, we have

L†
V̂k
(O) =

1

2

(
[V̂ †

k , O]V̂k − V̂ †
k [V̂k, O]

)
= 0

Given an observable O = bib
†
i with λi < 0, we notice [bj , O] = −δijbi, [b†j , O] = δijb

†
i . Then, we have

L†
V̂k
(O) =

1

2

(
[V̂ †

k , O]V̂k − V̂ †
k [V̂k, O]

)
=
1

2

((
−Uk,if̂(−ω + λi)bi

)
V̂k − V̂ †

k

(
Uk,if̂(−ω + λi)b

†
i

))
=− 1

2

∑
λj<0

Uk,iUk,j f̂(−ω + λi)f̂(−ω + λj)bib
†
j −

1

2

∑
λj<0

Uk,iUk,j f̂(−ω + λi)f̂(−ω + λj)bjb
†
i

.

Because
∑

k Uk,iUk,j = δi,j , this implies∑
k

(∑
λi>0

L†
V̂k
(b†i bi) +

∑
λi<0

L†
V̂k
(bib

†
i )

)
= −

∑
λi<0

∣∣∣f̂(−ω + λi)
∣∣∣2 bib†i (H7)

Similarly, when AS = ck, we can also define V̂k that preserves the ground state and satisfies (H3) to (H6). Further
more, similar to (H7), we have∑

k

(∑
λi>0

L†
V̂k
(b†i bi) +

∑
λi<0

L†
V̂k
(bib

†
i )

)
= −

∑
λi>0

∣∣∣f̂(−ω − λi)
∣∣∣2 b†i bi

Because g(ω) = 1
2∥h∥1[0,2∥h∥], we have Eω|f̂(−ω − sign(λi)λi)|2 = Ω(∥h∥−1). Thus,

L̂†(N̂) ≤ − C

∥h∥N
N̂ , (H8)

with a uniform constant C. Here, N comes from the expectation of Vk, which gives an 1
N factor before the summation

of k.

Next, for the Lamb shift term, when AS = c†k =
(∑

j Uk,jbj

)†
, we have

G̃AS ,f (−ω) =
∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1)A

†
S(s2)AS(s1) exp(−iω(s2 − s1))ds2ds1

=
N∑

ν1,ν2=1

Uk,ν2
Uk,ν1

bν2
b†ν1

∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1) exp(−iλν2

s2) exp(iλν1
s1) exp(−iω(s2 − s1))dudv

.

After summing in k, the remaining terms commute with N̂ and thus, does not change Tr(ρ(t)N̂). Similarly, when AS

is chosen to be ck, we have the same commuting properties.

In conclusion, using Eq. (H8) and the commuting property of G̃AS ,f , we have

Tr
(
exp

(
L̂α2

)
[ρ]N̂

)
≤
(
1− Cα2

∥h∥N

)
Tr(ρN̂).

This implies that∥∥∥Φ̂k
α[ρ]− |ψ0⟩ ⟨ψ0|

∥∥∥
1
≤ Tr

(
Φ̂k

α[ρ]N̂
)
≤
(
1− Cα2

∥h∥N

)k

Tr(ρN̂) ≤ N

(
1− Cα2

∥h∥N

)k

.

Thus, given ϵ > 0, we have

τmix,Φ̂(ϵ) = O
(
N∥h∥
α2

log(N/ϵ)

)
Combining this, (H6), and Theorem 8, we conclude the proof.
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Appendix I: Mixing time of Φ for thermal state preparation

Before showing Theorem 19 and Theorem 20, we provide a framework for studying the mixing time of the CPTP
maps that take the form of

Φ = US(T ) ◦ exp
(
Mα2

)
◦ US(T ) ,

where M is an arbitrary Lindbladian that preserves the thermal state ρβ . This framework is inspired by [17, 18].
To start, we first introduce the detailed balance condition that allows coherent term:

Definition 24 (Detailed balance condition with unitary drift [18, 62]). For any Lindbladian M and full-rank state
ρβ, take a similarity transformation and decompose into the Hermitian and the anti-Hermitian parts

K(ρβ ,M) = ρ
−1/4
β M

[
ρ
1/4
β · ρ1/4β

]
ρ
−1/4
β = H(ρβ ,M) +A(ρβ ,M)

K(ρβ ,M)† = ρ
1/4
β M†

[
ρ
−1/4
β · ρ−1/4

β

]
ρ
1/4
β = H(ρβ ,M)−A(ρβ ,M)

We say the Lindbladian M satisfies the detailed balance with unitary drift if there exists a Hermitian operator HC

such that

A(ρβ ,M) = −iρ1/4β [HC , ρ
−1/4
β (·)ρ−1/4

β ]ρ
1/4
β .

We note that the above detailed balance condition allows a coherent term that commutes with ρβ in M. It is
straightforward to check that if M satisfies the detailed balance with unitary drift, then H(ρβ ,M)(

√
ρβ) = 0 and

M(ρβ) = 0. Furthermore, if M approximately satisfies the detailed balance with unitary drift, we have the following
result to quantify the mixing time of Φ:

Theorem 25. Assume H(ρβ ,M) = H1(ρβ ,M) +H2(ρβ ,M). If H1 is a self-adjoint operator under Hilbert-Schmidt
such that H1(ρβ ,M)(

√
ρβ) = 0 and H1(ρβ ,M) has a spectral gap λgap(H1) > ∥H2∥2↔2. Given any ρ1, ρ2, we have∥∥Φk(ρ1 − ρ2)

∥∥
1
≤ 2 exp

(
(−λgap(H1) + ∥H2∥2↔2) kα

2
) ∥∥∥ρ−1/2

β

∥∥∥ ∥ρ1 − ρ2∥1 .

Specifically, for any ϵ > 0, we have

tmix,Φ(ϵ) ≤
1

λgap(H1)− ∥H2∥2↔2

log

2
∥∥∥ρ−1/2

β

∥∥∥
ϵ

+ 1

We emphasize that Theorem 25 does not guarantee the correctness of the fixed point. However, it still provides an
upper bound on the mixing time of Φ. In the regime where H2 ≪ 1, it is possible to establish a small fixed-point
error.

Proof of Theorem 25. Given any density operator ρ1, ρ2, we define E = ρ1 − ρ2. We consider the change of∥∥∥ρ−1/4
β Eρ−1/4

β

∥∥∥
2
after applying Φ, where ∥ · ∥2 is the Schatten-2 norm (Hilbert-Schmidt norm). First, because US

commutes with ρ
−1/4
β (·)ρ−1/4

β , we have∥∥∥ρ−1/4
β US(E)ρ−1/4

β

∥∥∥
2
=
∥∥∥US

(
ρ
−1/4
β Eρ−1/4

β

)∥∥∥
2
=
∥∥∥ρ−1/4

β Eρ−1/4
β

∥∥∥
2

Thus, ∥∥∥ρ−1/4
β Φ(E)ρ−1/4

β

∥∥∥
2
=
∥∥∥ρ−1/4

β exp(Mα2)(E)ρ−1/4
β

∥∥∥
2
=
∥∥∥exp(K(ρβ ,M)α2)

[
ρ
−1/4
β Eρ−1/4

β

]∥∥∥
2

Let E(t) = exp(Mt)E . Because E(t) is traceless, we have ρ−1/4
β E(t)ρ−1/4

β is orthogonal to
√
ρβ under Hilbert Schemitz

inner product. This implies that

d

dt

∥∥∥ρ−1/4
β exp(Mt)(E)ρ−1/4

β

∥∥∥2
2
=

d

dt

∥∥∥exp(K(ρβ ,M)t)
[
ρ
−1/4
β Eρ−1/4

β

]∥∥∥2
2

=2
〈
ρ
−1/4
β Eρ−1/4

β , (H1 +H2)
[
ρ
−1/4
β E(t)ρ−1/4

β

]〉
2
≤ 2 (−λgap(H1) + ∥H2∥2↔2)

∥∥∥ρ−1/4
β E(t)ρ−1/4

β

∥∥∥2
2
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This implies that∥∥∥ρ−1/4
β Φ(E)ρ−1/4

β

∥∥∥
2
=
∥∥∥exp(K(ρβ ,M)α2)

[
ρ
−1/4
β Eρ−1/4

β

]∥∥∥
2
≤ exp

(
(−λgap(H1) + ∥H2∥2↔2)α

2
) ∥∥∥ρ−1/4

β Eρ−1/4
β

∥∥∥
2
.

In summary, we have∥∥∥ρ−1/4
β Φk(E)ρ−1/4

β

∥∥∥
2
≤ exp

(
(−λgap(H1) + ∥H2∥2↔2) kα

2
) ∥∥∥ρ−1/4

β Eρ−1/4
β

∥∥∥
2
.

Finally, using ∥BAB∥1 ≤ ∥B∥24∥A∥2, we have

∥E∥1 ≤
∥∥∥ρ1/4β

∥∥∥2
4

∥∥∥ρ−1/4
β Eρ−1/4

β

∥∥∥
2
=
∥∥∥ρ−1/4

β Eρ−1/4
β

∥∥∥
2
≤
∥∥∥ρ−1/4

β

∥∥∥2 ∥E∥2 ≤
∥∥∥ρ−1/2

β

∥∥∥ ∥E∥1 .
This implies ∥∥Φk(E)

∥∥
1
≤ 2 exp

(
(−λgap(H1) + ∥H2∥2↔2) kα

2
)
∥ρ−1/2

β ∥ ∥E∥1 .

This concludes the proof.

Let H has eigendecomposition {(λi, |ψi⟩)}2
N−1

i=0 with λ0 ≤ λ1 ≤ . . . , λ2N−1. Given a coupling operator A, for any
ω > 0, define A(ω) =

∑
λi−λj=ω |ψi⟩ ⟨ψj | ⟨ψi|A |ψj⟩. The Davies generator of a set of coupling operator A is defined

as

LD,A[ρ] =
∑
A∈A

∑
ω

A(ω)ρA(ω)† − 1

2

{
A†(ω)A(ω), ρ

}
.

A direct corollary of Theorem 25 is in the following:

Corollary 26. For M = −i[HC , ·] +LD(·), where LD is a generator that satisfies GNS detailed balance condition or
KMS detailed balance condition and has a gap λgap(LD). If∥∥∥ρ−1/4

β HCρ
1/4
β − ρ

1/4
β HCρ

−1/4
β

∥∥∥ ≤ δ < λgap(LD) .

Then, the mixing time of M is

tmix,Φ(ϵ) ≤
1

λgap(LD)− δ
log

2
∥∥∥ρ−1/2

β

∥∥∥
ϵ

+ 1

Proof of Corollary 26. Because L satisfies GNS/KMS detailed balance condition, we have

K(ρβ ,LD) = K(ρβ ,LD)† = H(ρβ ,LD), λgap(H(ρβ ,LD)) = λgap(LD) .

Thus,

H(ρβ ,M) = H(ρβ ,LD)− i

2

{
ρ
−1/4
β HCρ

1/4
β − ρ

1/4
β HCρ

−1/4
β , ρ

}
.

Noticing ∥∥∥∥ i2 {ρ−1/4
β HCρ

1/4
β − ρ

1/4
β HCρ

−1/4
β , [·]

}∥∥∥∥
2↔2

≤
∥∥∥ρ−1/4

β HCρ
1/4
β − ρ

1/4
β HCρ

−1/4
β

∥∥∥ ≤ δ ,

we conclude the proof using Theorem 25 with H1 = H(ρβ ,LD).

Next, we show that, with a proper choice of g(ω), the dissipative part of (8) approximates a Lindbladian dynamics
satisfying the KMS detailed balance condition when σ and T are sufficiently large. This can be used to show the
mixing time of the free fermions in Section J.
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Theorem 27. Given x = Ω( β
σ2 ) such that β2

σ2

1+x/
√

2x/β−1/(4σ2)

x−β/(8σ2) = O(1), we set

gx(ω) =
1

Zx
exp

− (ω + x)2

2
(

2x
β − 1

4σ2

)
 , Zx =

√
2π

(
2x

β
− 1

4σ2

)
.

Then, there exists a Lindbladian L̂KMS,x that satisfies KMS detailed balance condition and a Hermitian operator Hx

such that∥∥∥L −
(
−i[Hx, ρ] + L̂KMS,x

)∥∥∥
1↔1

= O

(
σ exp

(
−T 2/(4σ2)

)
+

1

Zx

(
β2

σ2

x+
√
2x/β − 1/(4σ2)

x− β/(8σ2)
+
β

σ

))
,

and ∥∥∥σ−1/4
β Hxσ

1/4
β − σ

1/4
β Hxσ

−1/4
β

∥∥∥ = O

(
β

σ

√
β

x− β
8σ2

+
β3

σ2

x+
√

2x/β − 1/(4σ2)

x− β/(8σ2)

)
.

Here, L̂KMS,x takes the form of

L̂KMS,x[ρ] = EAS

(
−i
[
BAS

Zx
, ρ

]
+

∫ ∞

−∞
γ̂x(ω)DVAS,f,∞(ω)(ρ)dω

)
, (I1)

with γ̂x(ω) = gx(ω) and

BAS
= −

∫ ∞

−∞
h1(t1)e

−iHt1

(∫ ∞

−∞
h2(t2)AS(t2)AS(−t2)dt2

)
eiHt1dt1 ,

where

h1(t) =
1

2σπβ
exp

(
β2

32σ2

)(
1

cosh 2πt/β
∗t sin(−βt/(4σ2)) exp

(
−t2/(2σ2)

))
,

and

h2(t) = 2

√
2x

β
− 1

4σ2
exp

((
−4t2

β
− 2it

)
x

)
.

Furthermore, when x = β
8σ2 + ωmax with ωmax = Ω(β), we have error bounds∥∥∥L −

(
−i[Hx, ρ] + L̂KMS,x

)∥∥∥
1↔1

= O
(
σ exp

(
−T 2/(4σ2)

)
+
β

σ

)
,

and ∥∥∥σ−1/4
β Hxσ

1/4
β − σ

1/4
β Hxσ

−1/4
β

∥∥∥ = O
(
β

σ

)
.

Remark 28. We notice that γ̂x satisfies [18, Eqn. (1.4)] up to a normalization factor. According to [18, Lemma II.2]

with σE = 1/(2σ), σr =
√

2x/β − σ2
E, and ωr = x, and the above choice of gx, the transition part of the Lindbladian

L̂KMS,x can be written as

T (ρ) =
∑

ν1,ν2∈B(H)

γν1,ν2Aν1ρA
†
ν2
,

where

γν1,ν2 =
1

2
√
4πx/β

exp

(
− (ν1 + ν2 + 2x)2

16x/β

)
exp

(
− (ν1 − ν2)

2σ2

2

)
.

This implies that, when σ changes, it only affects the ν1 − ν2 term.
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Proof of Theorem 27. The formula of g gives

γx(ω) =
gx(ω) + gx(−ω)
1 + exp(βω)

= gx(ω)
1 + gx(−ω)/gx(ω)

1 + exp(βω)
= gx(ω)

1 + exp(βω) exp
(

β2ω
8xσ2−β

)
1 + exp(βω)

.

Let γ̂x(ω) = gx(ω), we then have

∥γx − γ̂x∥L∞ ≤
∥∥∥∥gx(ω) ∣∣∣∣1− exp

(
β2ω

8xσ2 − β

)∣∣∣∣∥∥∥∥
L∞

ω

=

∥∥∥∥∥∥ 1

Zx
exp

− (ω + x)2

2
(

2x
β − 1

4σ2

)
∣∣∣∣1− exp

(
β2ω

8xσ2 − β

)∣∣∣∣
∥∥∥∥∥∥
L∞

ω

=

∥∥∥∥∥∥ 1

Zx
exp

(
−u

2

2

) ∣∣∣∣∣∣1− exp

β2
(
u
√
2x/β − 1/(4σ2)− x

)
8xσ2 − β

∣∣∣∣∣∣
∥∥∥∥∥∥
L∞

u

=O

(
β2

σ2

1√
2x/β − 1/(4σ2)

√
2x/β − 1/(4σ2) + x

x− β/(8σ2)

)

=O

(
β2

σ2

1 + x/
√
2x/β − 1/(4σ2)

x− β/(8σ2)

)
.

(I2)

when β2

σ2

1+x/
√

2x/β−1/(4σ2)

x−β/(8σ2) = O(1). In the second equality, we let u = ω + x/
√

2x/β − 1/(4σ2). Similarly,

∥γx − γ̂x∥L1 ≤
∫ ∞

−∞
gx(ω)

exp(βω)

1 + exp(βω)

∣∣∣∣1− exp

(
β2ω

8xσ2 − β

)∣∣∣∣ dω
≤ 1

Zx

∫ ∞

−∞
exp

− (ω + x)2

2
(

2x
β − 1

4σ2

)
∣∣∣∣1− exp

(
β2ω

8xσ2 − β

)∣∣∣∣dω
=

1√
2π
(

2x
β − 1

4σ2

) ∫ ∞

−∞
exp

− (ω + x)2

2
(

2x
β − 1

4σ2

)
∣∣∣∣1− exp

(
β2ω

8xσ2 − β

)∣∣∣∣ dω

=
1√
2π

∫ ∞

−∞
exp

(
−u2/2

) ∣∣∣∣∣∣1− exp

β2
(
u
√
2x/β − 1/(4σ2)− x

)
8xσ2 − β

∣∣∣∣∣∣dω
=O

(
β2

σ2

x+
√
2x/β − 1/(4σ2)

x− β/(8σ2)

)
.

(I3)

Define

D̂AS ,x(ρ) =

∫ ∞

−∞
γ̂x(ω)DVAS,f,∞(ω)(ρ)dω .

Using the above estimation, we have∥∥∥∥D̂AS ,x(ρ)−
∫ ∞

−∞
γx(ω)DVAS,f,∞(ω)(ρ)dω

∥∥∥∥
1↔1

= O (∥γx − γ̂x∥L∞∥f(t)∥L2) = O

(
β2

σ2

1 + x/
√

2x/β − 1/(4σ2)

x− β/(8σ2)

)
,

where the second term is the original dissipative part with γx(ω). Here, the first equality is a result of [17, Proposition
A.1] and [17, Lemma A.1].

Next, it is straightforward to check that, γ̂x satisfies [18, Eqn. (1.4)] up to a normalization factor. According to [18,

Appendix A Corollaries A.1,A.2] with σE = 1/(2σ), σr =
√

2x/β − σ2
E , g(ω) = δ(ω − x), (I1) satisfies the KMS
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detailed balance. Furthermore, we have

∥h1∥L1 = O
(∥∥∥∥ 1

cosh 2πt/β

∥∥∥∥
L1

∥∥(σβ)−1 sin(−tβ/(4σ2)) exp
(
−t2/(2σ2)

)∥∥
L1

)
= O(β/σ), ∥h2∥L1 = O (1) ,

which implies ∥BAS
∥ ≤ ∥h1∥L1∥h2∥L1 = O(β/σ). In summary, we have∥∥∥∥∥∥∥∥∥∥

−i
[
BAS

Zx
, ρ

]
+ D̂AS ,x(ρ)︸ ︷︷ ︸

L̂KMS,x

−
∫ ∞

−∞
γx(ω)DVAS,f,∞(ω)(ρ)dω

∥∥∥∥∥∥∥∥∥∥
1↔1

= O

(
β2

σ2

1 + x/
√
2x/β − 1/(4σ2)

x− β/(8σ2)
+

β

σZx

)
.

Furthermore, we can verify that

R̂ :=

∫ ∞

0

∣∣∣∣∫ ∞

−∞
γ̂x(ω) exp(iωσq)dω

∣∣∣∣ exp(−q2/8)dq = O

 √
β

σ
√
x− β

8σ2

 ,

which implies

R :=

∫ ∞

0

∣∣∣∣∫ ∞

−∞
γx(ω) exp(iωσq)dω

∣∣∣∣ exp(−q2/8)dq = O

 √
β

σ
√
x− β

8σ2

+
β2

σ2

x+
√
2x/β − 1/(4σ2)

x− β/(8σ2)

 . (I4)

Here, R̂, R are defined according to Lemma 13 (E5). According to the proof of Lemma 11 and Lemma 13, there exists
a Hermitian matrix Hx such that

∥∥∥L −
(
−i[Hx, ρ] + L̂KMS,x

)∥∥∥
1↔1

= O

(
σ exp

(
−T 2/(4σ2)

)
+

1

Zx

(
β2

σ2

x+
√
2x/β − 1/(4σ2)

x− β/(8σ2)
+
β

σ

)
+
β

σ

)
,

and ∥∥∥σ−1/4
β Hxσ

1/4
β − σ

1/4
β Hxσ

−1/4
β

∥∥∥ = O

(
β

σ

√
β

x− β
8σ2

+
β3

σ2

x+
√

2x/β − 1/(4σ2)

x− β/(8σ2)

)
.

This concludes the proof of the first part of Theorem 27.
Now, let x = β

8σ2 + ωmax with ωmax = Ω(β). We can provide a better estimation for (I3). Let c = 2ωmax/β. Then
c = Ω(1) and

∥γx − γ̂x∥L1 ≤
∫ ∞

−∞
gx(ω)

exp(βω)

1 + exp(βω)

∣∣∣∣1− exp

(
β2ω

8xσ2 − β

)∣∣∣∣dω
≤ 1√

2πc

∫ ∞

−∞
exp

(
− (ω + x)2

2c

)
exp(βω)

1 + exp(βω)

∣∣∣∣1− exp

(
βω

4σ2c

)∣∣∣∣ dω
=

1√
2πc

∫ 0

−∞
exp

(
− (ω + x)2

2c

)
exp(βω)

1 + exp(βω)

∣∣∣∣1− exp

(
βω

4σ2c

)∣∣∣∣ dω
+

1√
2πc

∫ ∞

0

exp

(
− (ω + x)2

2c

)
exp(βω)

1 + exp(βω)

∣∣∣∣1− exp

(
βω

4σ2c

)∣∣∣∣dω
For the first term, we have

1√
2πc

∫ 0

−∞
exp

(
− (ω + x)2

2c

)
exp(βω)

1 + exp(βω)

∣∣∣∣1− exp

(
βω

4σ2c

)∣∣∣∣ dω
≤ max

ω∈(−∞,0)
exp(βω)

∣∣∣∣1− exp

(
βω

4σ2c

)∣∣∣∣ = max
ω∈(−∞,0)

exp(ω)
∣∣∣1− exp

( ω

4σ2c

)∣∣∣ = O(1/(cσ2)) .
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For the second term, we have

1√
2πc

∫ ∞

0

exp

(
− (ω + x)2

2c

)
exp(βω)

1 + exp(βω)

∣∣∣∣1− exp

(
βω

4σ2c

)∣∣∣∣dω
=

1√
2πc

∫ ∞

0

exp

(
− (ω + x)2

2c

) ∣∣∣∣1− exp

(
βω

4σ2c

)∣∣∣∣ dω
≤ 1√

2π

∫ ∞

0

exp

(
− (u+ x/

√
c)2

2

) ∣∣∣∣1− exp

(
βu

4σ2
√
c

)∣∣∣∣du
=

1√
2π

(∫ log(σ)

0

exp

(
− (u+ x/

√
c)2

2

) ∣∣∣∣1− exp

(
βu

4σ2
√
c

)∣∣∣∣du+

∫ ∞

log(σ)

exp

(
− (u+ x/

√
c)2

2

) ∣∣∣∣1− exp

(
βu

4σ2
√
c

)∣∣∣∣du
)

For the first part, we have∫ log(σ)

0

exp

(
− (u+ x/

√
c)2

2

) ∣∣∣∣1− exp

(
βu

4σ2
√
c

)∣∣∣∣du
≤ log(σ) max

u∈[0,log(σ)]
exp

(
− (u+ x/

√
c)2

2

) ∣∣∣∣1− exp

(
βu

4σ2
√
c

)∣∣∣∣
=O

(
log(σ)√

c
max

u∈[0,log(σ)]

βu

σ2
exp(−(u+ β

√
c/2)2/2

)
=O

(
log2(σ)√

c
max

u∈[0,log(σ)]

β

σ2
exp(−(u+ β

√
c/2)2/2

)
= O

(
σ−2 log2(σ)/

√
c
)

For the second part, we have∫ ∞

log(σ)

exp

(
− (u+ x/

√
c)2

2

) ∣∣∣∣1− exp

(
βu

4σ2
√
c

)∣∣∣∣ du
≤2

∫ ∞

log(σ)

exp

(
− (u+ x/

√
c)2 − βu/(2σ

√
c)

2

)
du

≤2

∫ ∞

log(σ)

exp

(
− (u+ x/

√
c)2 − u/(2

√
c)

2

)
du ≤ 2

∫ ∞

log(σ)

exp

(
−u

2/2

2

)
du = O

(
exp(− log(σ)2/4)

)
where we use u > 1/

√
c when u > log(σ). Plugging this back, we have

∥γx − γ̂x∥L1 = O
(
σ−2 log2(σ)

)
.

when σ = Ω(β). The remaining part of the calculation is very similar to the first part of the proof. Thus, we
omitted.

In the following section, we will upper bound the mixing time of free fermion in Section J using KMS DBC and the
mixing time of commuting local Hamiltonian in Section K using GNS DBC.

Appendix J: Mixing time for thermal state preparation of free fermions

In this section, we give a rigorous version of Theorem 19 and provide the proof.

Theorem 29. Assume β = Θ(1) and ∥h∥ = O(1). We set

g(ω) =
1

Zx
exp

(
− (ω + β/(8σ2) + ωmax)

2

4ωmax/β

)
, Zx =

√
4πωmax/β , (J1)

where ωmax = Θ(1). Then, if

σ = Ω̃(N2ϵ−1), T = Ω̃(σ), α = Õ(σ−1N−1ϵ1/2)

we have

tmix,Φ(ϵ) = O

N log

2
∥∥∥σ−1/2

β

∥∥∥
ϵ

= O(N(N + log(1/ϵ))) .
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Remark 30. We note that since g is not a uniform distribution, we cannot directly apply Theorem 9 to control the
fixed-point error. However, using (I4) and the assumption β = Θ(1), we obtain

R =

∫ ∞

0

∣∣∣∣∫ ∞

−∞
γ(ω) exp(iωσq)dω

∣∣∣∣ exp(−q2/8)dq = O
(
1

σ

)
.

Plugging this into Theorem 12, we obtain a fixed-point error bound that is essentially the same as in Theorem 9.
Specifically, for any ϵ > 0, if

σ = Ω̃
(
ϵ−1tmix,Φ(ϵ)

)
, T = Ω(σ log(σ/ϵ)) ,

and α = O
(
σT−2ϵ1/2t

−1/2
mix,Φ(ϵ)

)
, then

∥ρfix(Φ)− ρβ∥1 < ϵ .

The upper bound on tmix,Φ(ϵ) established in Theorem 29 then implies that Theorem 21 also holds in this setting.

Proof of Theorem 29. The proof of the theorem is based on Corollary 26 and Theorem 27. Specifically, in Theorem 27,

we choose x = β
8σ2 + ωmax and define L̂KMS,c = L̂KMS,x and Hc = Hx. According to Theorem 27, we have∥∥∥L −

(
−i[Hc, ρ] + L̂KMS,c

)∥∥∥
1↔1

= O
(
σ exp

(
−T 2/(4σ2)

)
+
β

σ

)
,

and ∥∥∥σ−1/4
β Hcσ

1/4
β − σ

1/4
β Hcσ

−1/4
β

∥∥∥ = O(β/σ) . (J2)

Thus, it suffices to study the spectral gap of L̂KMS,c defined in the above lemma. For this part, we mainly follow the
approach in [42, Section III.A].

First, given a set of creation and annihilation operators {ck, c†k}Nk=1, we define the Majorana operators as

m2j−1 = cj + c†j , m2j = i(cj − c†j), j = 1, . . . , N ,

which satisfies {mi,mj} = 2δi,j . Let m⃗ = [m1, . . . ,m2N ]T . Then, we have

H =
∑
i,j

hi,jc
†
i cj =

2N∑
i,j=1

hmi,jmimj − CI2N×2N = m⃗T · hm · m⃗− CI2N×2N .

We note that the eigenvalues of hm is a Hermitian and antisymmetric matrix with eigenvalues {λk(h)/4,−λk(h)/4}Nk=1,
and C is a constant.
Next, for each creation and annihilation operator pair (cj , c

†
j), we have[

c†j
cj

]
=

[
1/2 i/2
1/2 −i/2

] [
m2j−1

m2j

]
Define the coupling operator vector A⃗ = [c†1, c1, c

†
2, c2, . . . , c

†
N , cN ]T . Then,

A⃗ =
M√
2
m⃗ , (J3)

where M is a unitary matrix.

In L̂KMS,c, we first evaluate the coherent component B. By (J3), the coupling operator
√
2, A⃗ can be written as a

unitary transformation of m⃗. As shown in [42, Lemma III.1], the coherent part under KMS detailed balance satisfies
B = 0, meaning that the coherent contribution vanishes.

Next, we follow the proof of [42, Lemma III.2] to calculate the spectral gap of the dissipative term. We first
formulate

H0[ρ] = σ
−1/4
β · L̂†

KMS,c[σ
1/4
β (ρ)σ

1/4
β ]σ

−1/4
β .
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Because L̂KMS,c satisfies the KMS detailed balance condition, H0 is a self-adjoint operator with respect to the

HilbertSchmidt inner product. Furthermore, H0 is a similarity transformation of the Lindbladian L̂†
KMS,c, which

means that the spectral gap of H0 is the same as the spectral gap of L̂†
KMS,c.

To calculate each term in the parent Hamiltonian H0[ρ], we first note that, for each ω,

σ
−1/4
β Vc†1

(ω)σ
1/4
β

σ
−1/4
β Vc1(ω)σ

1/4
β

...

σ
−1/4
β Vc†N

(ω)σ
1/4
β

σ
−1/4
β VcN (ω)σ

1/4
β


=

M√
2
· f̂(−4hm − ω)e−βhm

· m⃗ ,

and ∑
j

σ
−1/4
β V †

c†j
(ω)Vc†j

(ω)σ
1/4
β + σ

−1/4
β V †

cj (ω)Vcj (ω)σ
1/4
β =

1

2
m⃗† ·

∣∣∣f̂(−4hm − ω)
∣∣∣2 · m⃗ .

Plugging this equality into the expression for H0[ρ],

H0[ρ]

=
1

2N

∫
γ̂(ω)

2

(
m⃗† · f̂(−4hm − ω)e−βhm

·M† · ρ ·M · f̂(−4hm − ω)e−βhm

· m⃗

− 1

2
m⃗† ·

∣∣∣f̂(−4hm − ω)
∣∣∣2 · m⃗ · ρ− ρ · 1

2
m⃗† ·

∣∣∣f̂(−4hm − ω)
∣∣∣2 · m⃗)dω .

Because β = Θ(1), ∥h∥ = O(1), and ωmax = Θ(1), it is straightforward to check that(∫
γ̂(ω)

∣∣∣f̂(−4hm − ω)
∣∣∣2 dω) exp(−βhm) ≥ C ,

where C is a constant independent of σ, meaning the coefficients of the above quadratic expansion does not generate
when σ approaches to zero. Following the proof of [42, Proposition III.2], the spectral gap of H0 is lower bounded by
a constant over N independent of σ.

Let

Φ̂ = US(T ) ◦ exp
(
Mα2

)
◦ US(T ), M = −i[Hc, ρ] + L̂KMS,c .

Combining Lemma 11 and Theorem 27, we first have∥∥∥Φ̂− Φα

∥∥∥
1↔1

= O
(
α2

(
σ exp

(
−T 2/(4σ2)

)
+ α2T 4σ−2 +

β

σ

))
.

In addition, according to Corollary 26 and (J2), when β/σ = O(1), we have

tmix,Φ̂(ϵ) = O

N log

2
∥∥∥σ−1/2

β

∥∥∥
ϵ

 .

We note that log
(∥∥∥σ−1/2

β

∥∥∥) = O(β∥H∥ + N) = O(βN) = O(N) in our case. Applying Theorem 8 to Φ and Φ̂, we

obtain that, if

σ exp
(
−T 2/(4σ2)

)
+ α2T 4σ−2 +

1

σ
= O(ϵN−1(N + log(1/ϵ))−1) ,

then

tmix,Φα(ϵ) = O

N log

2
∥∥∥σ−1/2

β

∥∥∥
ϵ

 .

This concludes the proof.
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Appendix K: Mixing time for commuting local Hamiltonians

In this section, we prove a general version of Theorem 20. Unlike the previous section, here we show that, the
dissipative part of L can converge to the Davies generator. The Davies generator satisfies the GNS detailed balance
condition (defined in Section A), and therefore also satisfies the KMS detailed balance condition.

In the general case, establishing rigorous convergence to the Davies generator requires σ to scale exponentially
with the system size, since one may need to resolve exponentially close Bohr frequencies ω1 and ω2 in order to
generate distinct jump operators AS(ω1) and AS(ω2) that appear in the Davies generator. However, in cases where
the effective Bohr frequencies are not exponentially close, such as for local commuting Hamiltonians, σ does not need
to be exponentially large, allowing for an efficient approximation. This property is mainly summarized in the following
theorem.

Theorem 31. Given a coupling set A. Assume

• The Davies generator LD,A[ρ] has a spectral gap λgap > 0.

• There exists a constant δ > 0 such that: for any A ∈ A, ω1 ̸= ω2, if A(ω1) ̸= 0 and A(ω2) ̸= 0, we must have
|ω1 − ω2| ≥ δ.

• There exists a constant M such that supA∈A |{ω|A(ω) ̸= 0}| ≤M .

Given any ϵ > 0, if

σ = Ω
(
β|A|λ−1

gapδ
−1ϵ−1M log

(∥∥∥σ−1/2
β

∥∥∥ /ϵ)E(∥AS∥2)
)
, T = Ω̃(σ) ,

and

α = O
(
ϵ1/2σ−1|A|−1/2λ1/2gap log

−1/2
(∥∥∥σ−1/2

β

∥∥∥ /ϵ)E−1/2(∥AS∥4)
)
,

then

tmix,Φ̂(ϵ) ≤
|A|
λgap

log

8
∥∥∥σ−1/2

β

∥∥∥
ϵ

+ 1

In Theorem 31, we note that the second condition is a technical assumption used to bound the difference between L̃
and the Davies generator. When δ is not exponentially small, it is not necessary to fully resolve all Bohr frequencies
to ensure that the Lindbladian dynamics converges to the Davies generator. This condition is easily satisfied in the
case of local commuting Hamiltonians: A(ω) is determined by the interaction between A and a constant number of
local Hamiltonians. Hence, it suffices to choose δ to be a constant to guarantee that different components A(ω) are
well separated.

Remark 32. According to [35, Section VIII], when H is a local commuting Hamiltonian as stated in Theorem 20,
there exists a constant βc dependent on the Hamiltonian H such that for every β ≤ βc, the spectral gap of the Davies
generator can be lower bounded by a constant, meaning λgap = Θ(1). Furthermore, we also have δ = Ω(1), M = O(1),

|A| = O(N), ∥H∥ = O(N). Noticing log
(∥∥∥σ−1/2

β

∥∥∥) = O(β∥H∥+N) = O((β + 1)N), we can choose

σ = Ω̃
(
ϵ−1(β + 1)2N2

)
, T = Ω̃(σ), and α = Õ

(
ϵ3/2(β + 1)−5/2N−3

)
,

to obtain

tmix,Φ(ϵ) = O (N(∥H∥β +N) log(1/ϵ)) = O
(
N2(β + 1) log(1/ϵ)

)
.

This gives Theorem 20.

Proof. Recall Φ̃ defined in Eq. (E2):

Φ̃ = US(T ) ◦ exp
(
L̃α2

)
◦ US(T ) . (K1)
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Here

L̃(ρ) = −i
[
H̃LS, ρ

]
+ EAS

(∫ ∞

−∞
γ(ω)DṼAS,f (ω)(ρ)dω

)
, (K2)

where

H̃LS = −EAS

(
Im

(∫ ∞

−∞
γ(ω)G̃AS ,f (−ω)dω

))
, ṼAS ,f (ω) =

∫ ∞

−∞
f(t)AS(t) exp(−iωt)dt ,

with

G̃A,f (ω) =

∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1)A

†(s2)A(s1) exp(iω(s2 − s1))ds2ds1 . (K3)

Similar to the proof of Theorem 23, we will construct

Φ̂ = US(T ) ◦ exp
(
L̂α2

)
◦ US(T ) (K4)

with

L̂(ρ) = −i
[
ĤLS, ρ

]
+ EAS

(∑
ω

LD,AS

)
, (K5)

such that
∥∥∥Φ̂− Φ̃

∥∥∥
1↔1

is small. Here LD,AS
is the Davies generator associated with the coupling operator AS .

We first deal with the Lamb shift term. For each ω, we have

G̃AS ,f (ω) =

∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1)AS(s2)AS(s1) exp(−iω(s2 − s1))ds2ds1

=
∑

ν1,ν2∈B(HS)

A†
S(ν2)AS(ν1)

∫ ∞

−∞

∫ s1

−∞
f(s2)f(s1) exp(iν2s2) exp(iν1s1) exp(−iω(s2 − s1))dudv

=
σ

2
√
2π

∑
ν1,ν2∈B(HS)

A†
S(ν2)AS(ν1)

·
∫ ∞

−∞
exp

(
i
σp

2
(ν1 + ν2)

)
exp

(
−p

2

8

)
dp︸ ︷︷ ︸

=O(exp(−σ2(ν1+ν2)2/2))

∫ ∞

0

exp

(
−q

2

8

)
exp

(
i
σq

2
(ν1 − ν2)

)
exp(iσωq)dq︸ ︷︷ ︸

=O(1)

Define the commuting part as ĜAS ,f (ω):

ĜAS ,f (ω) =
σ

2
√
2π

∑
ν1+ν2=0

A†
S(ν2)AS(ν1)

·
∫ ∞

−∞
exp

(
i
σp

2
(ν1 + ν2)

)
exp

(
−p

2

8

)
dp

∫ ∞

0

exp

(
−q

2

8

)
exp

(
i
σq

2
(ν1 − ν2)

)
exp(iσωq)dq

According to the assumption of AS , we have |ν1 + ν2| ≥ δ in the summation of G̃AS ,f (ω). Thus,∥∥∥G̃AS ,f (ω)− ĜAS ,f (ω)
∥∥∥ = O

(
σ exp(−σ2δ2/2)∥AS∥2M2

)
,

where M comes from the total number of terms in the summation.

Define ĤLS = −EAS

(
Im
(∫∞

−∞ γ(ω)ĜAS ,f (−ω)dω
))

. We have∥∥∥H̃LS − ĤLS

∥∥∥ = O
(
σ exp(−σ2δ2/2)M2E(∥AS∥2)

)
.

Next, for the dissipative operator, we have

ṼA,f (ω) =

∫ ∞

−∞
f(t)A(t) exp(−iωt)dt = 23/4σ1/2π1/4

∑
ξ∈B(H)

exp(−(ξ − ω)2σ2)A(ξ)
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Then ∫ ∞

−∞
γ(ω)DṼAS,f (ω)(ρ)dω − LD,AS

=
∑

ξ∈B(H)


∫ ∞

−∞
23/2π1/2σ exp(−2(ξ − ω)2σ2)γ(ω)dω − 2πγ(ξ)︸ ︷︷ ︸

|·|=O(βσ−1)

LAS(ξ) +

∫ ∞

−∞
γ(ω)

∑
ξ1 ̸=ξ2

· · ·

 dω

︸ ︷︷ ︸
∥·∥1↔1=O(σ exp(−σ2δ2/2)M2∥AS∥2)

.

This implies that∥∥∥∥∫ ∞

−∞
γ(ω)DṼAS,f (ω)(ρ)dω − LD,AS

∥∥∥∥
1↔1

= O
((
βσ−1M + σ exp(−σ2δ2/2)M2

)
∥AS∥2

)
.

In conclusion, ∥∥∥Φ̂− Φ̃
∥∥∥
1↔1

= O
(
α2
(
βσ−1M + σ exp(−σ2δ2/2)M2

)
E(∥AS∥2)

)
.

Combining this and Lemma 11, we have∥∥∥Φ̂− Φ
∥∥∥
1↔1

= O
(
α2
(
βσ−1M + σ exp(−σ2δ2/2)M2 + σ exp

(
−T 2/(4σ2)

))
E(∥AS∥2) + α4T 4σ−2E

(
∥AS∥4

))
.

Furthermore, according to Corollary 26, we have

tmix,Φ̂(ϵ) ≤
|A|
λgap

log

2
∥∥∥σ−1/2

β

∥∥∥
ϵ

+ 1 .

Finally, when

σ = Ω
(
|A|λ−1

gapδ
−1ϵ−1βM log

(∥∥∥σ−1/2
β

∥∥∥ /ϵ)E (∥AS∥2
))
, T = Ω̃(σ) ,

and

α = O
(
ϵ1/2σ−1|A|−1/2λ1/2gap log

−1/2
(∥∥∥σ−1/2

β

∥∥∥ /ϵ)E−1/2
(
∥AS∥4

))
,

we have

tmix,Φ̂(ϵ)
∥∥∥Φ̂− Φ

∥∥∥
1↔1

≤ ϵ .

Applying Theorem 8, we conclude the proof.
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