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Supplementary Section 1: Digitalized-Coding Generation of Non-

uniform Spatiotemporal Optical Vortices

In the main, NSTOVs were generated using a continuous sinusoidal modulation of the azimuthal

phase. To further demonstrate the generality and programmability of our approach, we extend

this concept to a fully discretized digitalized-coding scheme, in which the azimuthal phase of the

vortex is divided into a set of quantized angular segments. In this method, the total topological

phase is partitioned into N discrete levels. Fig S1(a) shows an implementation with six uniformly

spaced steps across the full 2π phase. The constructed phase pattern (Fig. S1(b)) consists of six

angular sectors separated by abrupt phase jumps. Although the phase is discontinuous locally, the

mapping satisfies Φ(θ + 2π) − Φ(θ) = 2π, ensuring that the global topological charge remains

unchanged. Thus, digitalized coding preserves the overall vortex topology while enabling highly

programmable local azimuthal structuring.

We evaluate the resulting field in both the temporal and spectral domains, as shown in Fig. S1(c).

In the temporal domain, the NSTOV exhibits six well-defined intensity lobes along the vortex

ring, each aligned with a phase-step boundary. These lobes arise from the locally enhanced az-

imuthal energy flow induced by the discrete phase gradients. Within each segment, the phase varies

smoothly, while finite jumps appear at the interfaces, forming a clearly quantized helical phase pro-

file. In the spectral domain, the amplitude distribution remains similar to that of a conventional

spatiotemporal vortex, typically exhibiting a two-lobed structure. Only minor local rearrangements

of spectral intensity occur, and the spectral phase retains a discrete angular pattern consistent with

its temporal counterpart. This indicates that digitalized coding predominantly redistributes the

azimuthal energy flow while leaving the global spectral envelope largely unaffected.

These results confirm that NSTOVs can be generated not only through continuous angular

mappings but also through fully digitalized, programmable phase coding. The digitalized-coding

strategy substantially broadens the design space of spatiotemporal structured light, offering a robust

and versatile platform for reconfigurable topological field engineering [1, 2], multidimensional

optical encoding [3, 4], and programmable space–time photonics [5, 6].
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Supplementary Section 2: Modal Decomposition and Analytical

Description of Spatiotemporal Dynamics

The azimuth-dependent phase profile imposed by the spatial light modulator (SLM) is defined as:

ΦSLM(kx, ω) = ℓ[θ + α sin(mθ)], (S1)

where θ = arctan[(ω−ω0)τ0/(kxw0)] is the spectral azimuthal angle in the normalized spatiotem-

poral frequency domain. Here, ω0 denotes the central angular frequency, while w0 and τ0 represent

the characteristic spatial beam waist and temporal pulse duration used to nondimensionalize the

orthogonal spectral coordinates. The parameter ℓ denotes the topological charge governing the

global phase winding. The bracketed terms introduce a deterministically controlled anisotropy:

α represents the dimensionless modulation depth, which dictates the amplitude of the local phase

distortion, and m is the azimuthal modulation order, which determines the m-fold rotational sym-

metry of the resulting spatiotemporal lattice.

To elucidate the spectral composition of this structured field, we analyze the corresponding

complex spectral transfer function imposed by the SLM, denoted as M(θ): M(θ) = exp[iΦSLM] =

eiℓθ · eiℓα sin(mθ). By applying the Jacobi-Anger expansion identity, eiz sinψ =
∑∞

q=−∞ Jq(z)e
iqψ,

and identifying the arguments as z = ℓα and ψ = mθ, the anharmonic modulation term can be

decomposed into a coherent superposition of infinite integer-order Bessel functions. Consequently,

the total spectral field becomes:

M(θ) = eiℓθ
∞∑

q=−∞

Jq(ℓα)e
iqmθ =

∞∑
q=−∞

Jq(β)e
i(ℓ+qm)θ, (S2)

where Jq( · ) is the Bessel function of the first kind of order q, and β = ℓα serves as the effective

modulation index. This expansion reveals that the generated field is spectrally constructed from

a central carrier mode (charge ℓ) interfering with a series of discrete sidebands with topological

charges ℓq = ℓ+ qm.

The derivation begins in the frequency domain, where we assume a spectrum corresponding

to a pure phase modulation. This electric field distribution, denoted as Ẽ(k, θ), is defined by the

product of a Gaussian envelope and an azimuthal phase term: Ẽ(k, θ) = exp(−k2) · eiℓθ, where

k represents the normalized radial spectral coordinate, θ is the spectral azimuthal angle, and the
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integer ℓ indicates the topological charge (vortex order) of the field. To transition to the physical

spatiotemporal domain, we apply a 2D Fourier transform, which corresponds to an ℓ-th order Han-

kel transform for the radial component (mapping the spectral phase eiℓθ to the spatial phase eiℓϕ).

This yields the radial distributionR(r), expressed as the integral: R(r) ∝ iℓ
∫∞
0
k · e−k2 · Jℓ(kr) dk.

In this expression, r denotes the normalized radial coordinate in the spatiotemporal domain, Jℓ(kr)

is the Bessel function of the first kind of order ℓ, and i is the imaginary unit. Notably, the factor iℓ

is mathematically significant and corresponds directly to the Gouy phase shift observed in the nu-

merical implementation. By utilizing Weber’s second exponential integral and performing identity

transformations, we arrive at the exact analytical solution for the radial profile involving Modified

Bessel functions (Iν).

Defining a dimensionless variable ξ to scale the solution relative to the characteristic beam

waist w0, specifically ξ = r2/(2w2
0) where r represents the physical radial coordinate, we can

express the complex electric field Eℓ(r, ϕ) in the spatiotemporal domain. This is achieved by

combining the derived radial amplitude with the spatiotemporal azimuthal phase term eiℓϕ:

Eℓ(r, ϕ) = re−ξ
[
I |ℓ|−1

2

(ξ)− I |ℓ|+1
2

(ξ)
]

· eiℓϕ (S3)

This specific analytical form is of particular significance as it corresponds to the solution for

Hypergeometric Gaussian (HyGG) modes. While HyGG modes provide the theoretical description

for this structured field, their standard formulation relies on confluent hypergeometric functions

(1F1), which are often computationally intensive and slow to evaluate numerically. The expres-

sion derived here, utilizing Modified Bessel functions (Iν), serves as a computationally efficient

analytical substitute that circumvents these numerical bottlenecks while maintaining mathematical

exactness.

Based on the spectral decomposition analyzed above, the total STOV field is constructed by

the coherent superposition of the three dominant HyGG modes (corresponding to the central car-

rier and the first-order modulation sidebands). The total electric field Etotal(r, ϕ) in the physical

spatiotemporal domain can be expressed as:

Etotal(r, ϕ) = C0 · iℓ0 ·Ψℓ0(r, ϕ) + C+ · iℓ+ ·Ψℓ+(r, ϕ) + C− · iℓ− ·Ψℓ−(r, ϕ), (S4)

where i is the imaginary unit, and the factor iℓ represents the characteristic Gouy phase shift intro-
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duced by the Fourier transform. The term Ψℓ(r, ϕ) denotes the normalized spatial mode function

for a specific topological charge ℓ. Incorporating the analytical solution derived previously, the

explicit form for each constituent mode is compactly expressed using the dimensionless radial

coordinate ξ = r2/(2w2
0):

Ψℓ(r, ϕ) = Nℓ · r · e−ξ ·
[
I |ℓ|−1

2

(ξ)− I |ℓ|+1
2

(ξ)
]

· eiℓϕ. (S5)

In this expression, Iν( · ) is the modified Bessel function of the first kind, andNℓ is a normaliza-

tion constant determined numerically to ensure energy conservation (satisfying
∫∫

|Ψℓ|2 r dr dϕ =

1).

The specific parameters and weighting coefficients are strictly determined by the Jacobi-Anger

expansion. With the effective modulation index defined as β = ℓ0α (where ℓ0 ≡ ℓ denotes the fun-

damental topological charge), the topological charges for the three interacting modes are identified

as ℓ0 (carrier), ℓ+ = ℓ0+m (positive sideband), and ℓ− = ℓ0−m (negative sideband). Correspond-

ingly, the amplitude weights are governed by the Bessel functions of the first kind: C0 = J0(β) for

the carrier, C+ = J1(β) for the q = +1 sideband, and C− = J−1(β) = −J1(β) for the q = −1

sideband.

It is important to note that while the spectral decomposition theoretically involves an infinite

series, the physical field structure is dominated by the lowest-order terms due to the rapid spectral

decay of the coefficients Jq(β) at moderate modulation indices. Consequently, the complex field

is accurately approximated as the coherent interference of the central carrier (ℓ0) with the two

principal first-order sidebands (ℓ±).

The superposition of optical vortices with distinct topological charges induces the phenomenon

of singularity splitting. Specifically, the coherent interference between the central carrier mode

of charge ℓ0 and the sideband modes of charge ℓ0 ± m generates secondary phase singularities.

Within the symmetric three-mode superposition, this interaction produces an azimuthal modula-

tion with m-fold rotational symmetry, resulting in m discrete regions of constructive interference

characterized by intensity maxima and m regions of destructive interference manifesting as in-

tensity minima. The radial distribution of these secondary structures is strictly governed by the

modulation depth α. Since the sideband-to-carrier amplitude ratios depend on the effective index

β = ℓ0α, the parameter α functions as a radial control variable. Variation in α causes the secondary
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vortices to migrate radially relative to the optical axis, thereby altering the spatial mode overlap and

modifying the contrast between the peak and valley intensities of the wave packet. Furthermore,

this interferometric framework elucidates the formation of steep phase gradients. In regions of

low optical intensity corresponding to destructive interference, the modulus of the complex field is

minimal. In these zones, the phase evolution becomes highly sensitive to the rapidly varying phase

components of the constituent modes, as the stabilizing influence of the field amplitude diminishes.

Consequently, the component with the faster phase variation dominates relative to the small local

amplitude, inducing abrupt phase transitions. Conversely, high-intensity regions of constructive in-

terference possess a large complex modulus that stabilizes the local phase. Therefore, the steepest

phase gradients—and potential additional phase singularities—are physically localized to regions

of minimal intensity. To facilitate the quantitative analysis of the azimuthal intensity modulation

and the local momentum density, we derive a simplified analytical form of the complex field at a

fixed radial distance r = R (typically chosen at the radius of maximum intensity). By fixing the ra-

dial coordinate, the radial dependence terms—comprising the Gaussian envelope and the modified

Bessel functions—reduce to constant scalar amplitude coefficients.

We define the dimensionless radial coordinate at this specific radius as ξ = R2/(2w2
0). By

grouping the radial amplitude functions and the Jacobi-Anger expansion coefficients, we introduce

three real-valued amplitude parameters, A, B, and C, which characterize the magnitude of the

carrier and sideband contributions:


A = J0(β)Nℓ0Rℓ0(ξ)

B = J1(β)
[
Nℓ+Rℓ+(ξ)−Nℓ−Rℓ−(ξ)

]
C = J1(β)

[
Nℓ+Rℓ+(ξ) +Nℓ−Rℓ−(ξ)

] (S6)

where Rℓ(ξ) = Re−ξ[I(|ℓ|−1)/2(ξ) − I(|ℓ|+1)/2(ξ)] represents the unnormalized radial profile for a

mode of charge ℓ evaluated at the fixed radius. Here, A corresponds to the amplitude of the central

carrier, while B and C represent the weighted difference and sum of the sideband amplitudes,

respectively.

Crucially, the coherent superposition involves phase shifts iℓ± relative to the carrier iℓ0 . Utiliz-

ing the relation ℓ± = ℓ0 ±m, the relative phase factors can be expressed as i±me±imϕ. To simplify

the trigonometric manipulation, we introduce a rotated azimuthal variable ϕ̃ = mϕ+mπ/2. This
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allows us to absorb the imaginary units into the angular argument, transforming the complex ex-

ponential terms into purely real trigonometric functions within the local frame. Consequently,

by factoring out the global phase term iℓ0eiℓ0ϕ, the total complex amplitude E(R, ϕ) reduces to a

compact form with explicitly separated real and imaginary components:

E(R, ϕ) = iℓ0eiℓ0ϕ ·
[
(A+ B cos ϕ̃) + i(C sin ϕ̃)

]
. (S7)

Here, we identify the real and imaginary projection envelopes as X(ϕ) = A + B cos ϕ̃ and

Y (ϕ) = C sin ϕ̃, respectively. This simplified structure reveals that the complex field vector at a

fixed radius traces an elliptical trajectory in the complex plane, superimposed on the global rotation

of the carrier vortex. The real component X(ϕ) describes the amplitude modulation driven by the

sideband asymmetry (B), while the imaginary component Y (ϕ) is governed by their constructive

interference (C). This separation is pivotal for the subsequent derivation of the optical intensity

and phase gradient.

Building upon the simplified field projectionsX(ϕ) and Y (ϕ), we first determine the azimuthal

intensity profile I(ϕ), which is rigorously defined by the squared modulus of the complex ampli-

tude:

I(ϕ) = |E(R, ϕ)|2 = (A+ B cos ϕ̃)2 + (C sin ϕ̃)2. (S8)

This expression mathematically quantifies the m-fold rotational symmetry of the intensity lobes

observed in the lattice structure.

Simultaneously, the azimuthal component of the local phase gradient, which characterizes the

wavefront curvature and local orbital angular momentum (OAM) flux, is derived from the to-

tal phase argument Φ = ℓ0ϕ + arctan[Y (ϕ)/X(ϕ)]. Applying the chain rule for derivatives,

∂ϕ arctan(Y/X) = (X∂ϕY − Y ∂ϕX)/(X2 + Y 2), and noting that ∂ϕϕ̃ = m, we obtain the physi-

cal gradient at radius R:

∇ϕΦ =
1

R

∂Φ

∂ϕ
=

1

R

[
ℓ0 +

mC(A cos ϕ̃+ B)
I(ϕ)

]
. (S9)

In the paraxial approximation, the local canonical momentum density p is proportional to the

product of the optical intensity and the phase gradient. Focusing on the azimuthal dynamics, the

magnitude |p(ϕ)| ∝ I(ϕ) · |∇ϕΦ|. Substituting Eq. (S8) and Eq. (S9) into this relationship leads
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to the exact cancellation of the I(ϕ) denominator in the interference term. The final analytical

expression for the azimuthal momentum density is:

|p(ϕ)| ∝ 1

R

∣∣∣ℓ0 · I(ϕ) +m · C · (A cos ϕ̃+ B)
∣∣∣ . (S10)

Equation (S10) provides a rigorous decomposition of the momentum transport into two distinct

mechanisms. The first term, scaled by the carrier charge ℓ0, originates directly from the optical

intensity distribution I(ϕ) and represents the background momentum transport. In contrast, the

second term, proportional to the modulation orderm, constitutes a gradient-driven flux arising from

the steep phase gradients induced by the sideband interference. This decomposition is critical for

interpreting the competition between intensity-dominated and phase-gradient-dominated transport

regimes.

The analytical structure of Eq. (S10) elucidates the competitive dynamics between the back-

ground momentum transport (proportional to ℓ0I) and the gradient-driven flux (proportional to

m). Under the specific numerical parameters adopted in this study (α = 0.5, ℓ0 = 1), this inter-

play manifests as two distinct transport regimes. For modulation orders m ≤ 2, the interference-

induced perturbation remains subordinate to the background topological current; consequently, the

local energy flow is largely dictated by the photon density, yielding an in-phase correlation where

momentum maxima spatially align with intensity maxima. Conversely, for m ≥ 3, the gradient

term becomes dominant. In regions of destructive interference, the depletion of optical intensity

is effectively superseded by the steep phase gradients associated with the split singularities. This

results in an out-of-phase distribution where the momentum density peaks within local intensity

minima. This framework rigorously clarifies the transition from intensity-following to topology-

driven transport as a direct consequence of enhanced phase gradients prevailing over local intensity

depletion.

Supplementary Section 3: Topological Dynamics of NSTOVs in

Frequency-Conversion Processes

NSTOVs offer a directly observable platform for examining the transport, redistribution and global

conservation of topological quantities in light, thereby enabling a systematic exploration of the
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coupling between topological structure and dynamical evolution in continuous space. A central

question that follows from this framework is whether the intrinsic local phase-gradient modulation

of NSTOVs can be preserved during nonlinear frequency conversion and faithfully transferred to

higher-frequency channels. To address this question, we investigate the topological dynamics of

NSTOVs in second-harmonic generation (SHG) as a representative model [7–9].

Fig S2 presents the evolution of the angular-momentum distribution for several representative

NSTOVs undergoing SHG, under both ideal phase-matching conditions and scenarios including

phase-mismatch effects. For an NSTOV with manipulation frequency m = 1 and modulation

amplitude a = 0.6, the fundamental field exhibits a single localized bright sector arising from an

enhanced local phase gradient. Notably, this localized feature remains clearly preserved in the

SHG output, independent of whether the model assumes perfect phase matching. The persistence

of this bright sector indicates that the azimuthal regions of accelerated and decelerated energy

flow in the fundamental field, arising from locally increased and decreased phase gradients, are

reproduced with high fidelity in the second-harmonic field.

As the manipulation frequency m increases, the number of localized bright sectors in the fun-

damental NSTOV increases accordingly, exhibiting a well-defined azimuthal periodicity. The SHG

results show that this periodic angular structure is fully retained after frequency doubling: the num-

ber, position and relative angular spacing of the bright sectors in the second-harmonic field remain

identical to those of the fundamental. This behaviour confirms that the local phase-gradient mod-

ulation intrinsic to NSTOVs is not washed out during the SHG process but instead transferred to

the higher-frequency channel with high fidelity. Taken together, these results demonstrate that the

non-uniform azimuthal phase structure of NSTOVs, along with the resulting redistribution of local

energy flow, remains remarkably robust in nonlinear frequency conversion. The faithful preser-

vation of local topological features across frequency channels reveals a deep connection among

topological phase mapping, energy-flow dynamics and nonlinear up-conversion, and further sug-

gests promising opportunities for engineering controllable topological states and developing mul-

tidimensional encoding schemes in multi-wavelength and high-harmonic systems.
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Figure S1: NSTOVs generated by digitalized phase discretization. (a) Discrete phase waveform

constructed by dividing the full 2π range into six digital step levels. (b) Corresponding azimuthal

phase map, showing six angular sectors created by the discretized phase. (c) Temporal and spectral

intensity and phase distributions of the NSTOV generated via digital phase discretization, demon-

strating faithful mapping of the discrete azimuthal structure into both domains.
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Figure S2: Dynamics of NSTOVs in SHG processes. Second-harmonic generation (SHG) results

for several types of NSTOVs under both ideal phase-matching conditions and phase-mismatched

models, illustrating the preservation and evolution of their characteristic azimuthal features during

frequency conversion.
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Figure S3: Experimental setup for the generation and detection of NSTOVs BS, beam splitter;

M, mirror; CL1–2, cylindrical lenses; SLM, spatial light modulator loaded with a non-uniform

vortex phase pattern.
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