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Supplementary Note 1. Two-way ANOVA for decomposing variance across techno-economic 

and meteorological dimensions 

 

 

We employ a two-way analysis of variance (ANOVA) to decompose the variance of modeled 

outcomes in the joint sample generated from techno-economic and meteorological sampling. The 

full simulation dataset is constructed by independently varying (i) techno-economic parameters (e.g., 

capital expenditures, conversion efficiencies, financing assumptions) and (ii) meteorological inputs 

(e.g., multi-year wind and solar resource profiles). The Cartesian combination of these two sampling 

dimensions yields a factorial structure in which each observation corresponds to a unique pair of 

techno-economic settings and meteorological conditions. 

Let each simulation be indexed by a pair (𝑖, 𝑗) , where 𝑖 = 1,… , 𝐼  denotes the techno-

economic scenario and 𝑗 = 1,… , 𝐽 denotes the meteorological realization. For each combination 

(𝑖, 𝑗), the model produces an output 𝑦𝑖𝑗 such as levelized cost of hydrogen (LCOH), energy yield, 

or financial returns. The two-way ANOVA model is written as 

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜀𝑖𝑗 , 

where 𝜇 is the grand mean, 𝛼𝑖 captures the effect of techno-economic variation, 𝛽𝑗 captures the 

effect of meteorological variation, (𝛼𝛽)𝑖𝑗 represents potential interactions between the two factor 

dimensions, and 𝜀𝑖𝑗 is the residual error. 

The ANOVA decomposition partitions the total variance of 𝑦𝑖𝑗 into contributions from each 

of these components. In particular, the sum of squares associated with the meteorological factor 𝛽𝑗 

quantifies the portion of variability that arises solely from differences in wind and solar resource 

conditions, conditional on the techno-economic sampling. Similarly, the interaction term captures 

how meteorological sensitivity depends on techno-economic settings. This decomposition allows us 

to extract and report the variance component attributable to meteorological drivers in isolation, 

thereby providing a clear measure of the extent to which project outcomes are shaped by climate-

related variability rather than by techno-economic assumptions. 

This framework ensures that, after jointly sampling across both dimensions, the meteorological 

contribution to overall uncertainty can be identified and quantified separately, providing a 

transparent characterization of the role of weather and climate variability in determining long-term 

project performance. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Note 2. Construction of Feature-Engineering Variables 

 

To systematically characterize the climatic and techno-economic drivers relevant for project-level 

hydrogen production, we construct a set of engineered features derived from the raw physical and 

cost inputs. The feature-engineering procedure aims to translate multi-dimensional climate statistics 

and technology parameters into a compact and interpretable set of metrics that can capture the key 

mechanisms affecting hydrogen production, variability, and system integration costs. The resulting 

features fall into five categories: (i) direct technology-cost terms, (ii) wind-resource statistics, (iii) 

solar-resource statistics, (iv) temperature-related metrics, and (v) interaction terms combining 

techno-economic parameters with climate variability or firmness. The full feature-construction logic 

is summarized below. 

1. Techno-economic cost variables 

Four variables capture the baseline capital cost assumptions for photovoltaic systems, wind turbines, 

battery storage, and electrolyzers. These direct cost variables (d_cost_pv, d_cost_wind, 

d_cost_storage, d_cost_elec) are included without transformation, as they enter the techno-

economic model linearly and serve as fundamental drivers of levelized hydrogen cost. These terms 

provide the baseline against which the climatic modifiers operate. 

2. Wind-resource statistics 

Wind features are derived from summary statistics of the 100-m wind-speed distribution. Each 

metric is selected to represent a distinct physical property of the wind resource relevant for energy 

conversion: 

• Typical wind resource level (wind_level) 

Represented by either the median or mean wind speed. This feature captures the central 

tendency of the resource and is the primary determinant of expected wind power output. 

• Wind variability (wind_var) 

Defined as the temporal variance of wind speed. Variability affects both renewable 

intermittency and storage requirements. 

• Peakiness (wind_peakiness) 

Constructed as the difference between maximum and mean wind speed. This metric 

captures the presence of short-duration extreme events and the skewness of wind-speed 

distributions. 

• Firmness (wind_firmness) 

The 10th-percentile wind speed serves as a proxy for low-generation conditions that drive 

backup requirements and influence electrolyzer utilization. 

These features collectively summarize the mean–variance–extremes structure of the wind-speed 

distribution without relying on raw time series. 

3. Solar-resource statistics 

Solar features mirror the construction used for wind and are derived from broadband surface 

shortwave radiation (ssrd): 

• Typical solar level (ssrd_level): median or mean radiation 

• Solar variability (ssrd_var): variance of irradiance 

• Solar peakiness (ssrd_peakiness): max – mean 

• Solar firmness (ssrd_firmness): 10th percentile 



These features capture irradiance availability, intermittency, and the presence of short-lived high-

irradiance peaks that disproportionately influence PV output. 

4. Temperature-related metrics 

Temperature affects both electrolyzer efficiency and thermal stress on system components. We 

extract: 

• Hot-temperature exposure (t_hot): 90th-percentile temperature 

• Cold-temperature exposure (t_cold): transformed 10th-percentile temperature (sign-

flipped for intuitive interpretation) 

• Temperature spread (t_spread): q75 – q25, representing the breadth of typical 

temperatures 

These metrics summarize thermal conditions affecting both technology performance and 

operational reliability. 

5. Interaction terms combining technology costs with climatic conditions 

To account for the fact that the impact of climate conditions is mediated by technology costs, we 

construct interpretable interaction features: 

• PV cost × solar level (pv_cost_x_level): captures how solar availability interacts with PV 

cost assumptions. 

• Wind cost × wind level (wind_cost_x_level): analogous term for wind. 

• Storage cost × variability (storage_cost_x_variab): quantifies how the economic penalty 

of variability depends on storage costs. 

• Electrolyzer cost × firmness (elec_cost_x_firmness): captures the sensitivity of 

electrolyzer economics to low-output periods. 

These terms ensure that models can represent how climate statistics influence the marginal value of 

each technology under cost uncertainty. 

6. Final feature selection and grouping 

A minimal, non-redundant feature set is retained by selecting one representative feature for each 

physical concept (typical level, variability, peakiness, firmness, temperature extremes, and 

interaction structures). Features are then assigned to groups (Tech-cost, Wind, Solar, Temperature, 

Interaction) to facilitate grouped SHAP interpretation and structured visualization. 

The final engineered dataset therefore provides a compact but physically interpretable 

representation of both climatic and techno-economic determinants of hydrogen-system performance. 

This structured feature set enables transparent attribution analysis, supports model generalization 

across climate and cost scenarios, and preserves interpretability while substantially reducing the 

dimensionality of the raw inputs. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Supplementary Fig. 1 | Model performance evaluation results on the test set. Density scatter 

plot comparing the predicted versus actual (optimized) values of LCOH. The color gradient reflects 

the density of data points, where colors closer to yellow indicate a higher concentration of samples. 

The red dashed line represents the 𝑦 = 𝑥 line. Key performance metrics, including the coefficient 

of determination (𝑅2) and root mean square error (RMSE), are reported in the top-left inset. 

 

 

 

 

 



 

Supplementary Fig. 2 | SHAP analysis of key drivers. The summary plot illustrates the 

distribution of SHAP values for the top features, representing their respective contributions to the 

LCOH. The horizontal axis indicates the impact on the model output: positive SHAP values 

correspond to an increase in LCOH, while negative values indicate a reduction. Features are ranked 

by their global importance. 

 

 



 

Supplementary Fig. 3 | Global feature importance ranking. The bar chart displays the top input 

variables sorted by their mean absolute SHAP values. A longer bar indicates a greater average 

impact of the feature on the predicted LCOH magnitude. 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Fig. 4 | The 22 United Nations-defined statistical subregions. The map illustrates 

the geographical boundaries of the subregions used for regional aggregation and analysis in this 

study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Fig. 5 | Global distribution of the lowest-cost hydrogen regions under current 

and future climate conditions. The maps identify the United Nations-defined statistical subregions 

with the most competitive levelized cost of hydrogen (LCOH). a–c, Spatial extent of subregions 

ranking in the top 10% (a), 20% (b), and 30% (c) of the lowest costs, respectively. 

 

 



 

 

 

Supplementary Fig. 6 | Evaluation of the attribution model. Density scatter plot comparing the 

predicted versus actual values. Darker colors indicate a higher concentration of samples. The black 

line represents the 𝑦 = 𝑥 line. Key performance metrics, including 𝑅2 and RMSE, are reported 

in the top-left inset. 

 

 



 

Supplementary Fig. 7 | SHAP analysis of key drivers. The summary plot illustrates the 

distribution of SHAP values for the top features, representing their respective contributions to the 

∆ LCOH. The horizontal axis indicates the impact on the model output: positive SHAP values 

correspond to an increase in ∆ LCOH, while negative values indicate a reduction. Features are 

ranked by their global importance. 

 

 

 

 

 

 



 

Supplementary Fig. 8 | Global feature importance ranking. The bar chart displays the top input 

variables sorted by their mean absolute SHAP values. A longer bar indicates a greater average 

impact of the feature on the predicted ∆LCOH magnitude. 

 

 



 

Supplementary Fig. 10 | Overview of selected projects (MWel) from the IEA Hydrogen 

Projects Database. 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 10 | Global project-level climate impacts on renewable-powered green 

hydrogen production, presented as an interactive web application 

(https://github.com/onismyh/climate-impacts-hydrogen). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/onismyh/climate-impacts-hydrogen


 

Supplementary Fig. 11 | Distribution of future hydrogen costs and climate change impacts 

across 42 major countries. The figure illustrates the projected LCOH and the magnitude of climate-

induced variations for 42 major economies. Dashed lines indicate reference baselines: the line 

representing no climate change impact (zero change) and the line corresponding to the global 

average LCOH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 12 | Performance evaluation of simulated climate variables. Standardized 

Taylor diagrams quantifying the ability of seven models to reproduce global climate patterns for the 

period 2005–2014. a, Near-surface air temperature (tas) and 10-meter wind speed components (uas, 

vas). b, Surface downward shortwave radiation (ssrd). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 13 | Typical wind power capacity factor curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 14 | Global grid-level monthly wind speed scaling factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Supplementary Table 1 | Summary of Global Climate Models (GCMs) used in this study. 

 

Model Institution, Country Resolutions (Lat*Lon) Member 

ACCESS-CM2 CSIRO, Australia 1.25°×1.875° 

r1i1p1f1, 

r4i1p1f1, 

r5i1p1f1 

AWI-CM-1-1-MR AWI, Germany 1.067°×1.067° r1i1p1f1 

BCC-CSM2-MR BCC, China 1.125°×1.125° r1i1p1f1 

GFDL-ESM4 NOAA-GFDL, USA 1°×1° r1i1p1f1 

KACE-1-0-G NIMS-KMA, Korea 1.25°×1.875° 

r1i1p1f1, 

r2i1p1f1, 

r3i1p1f1 

MIROC6 JAMSTEC, Japan 1.4°×1.4° 

r1i1p1f1, 

r2i1p1f1, 

r3i1p1f1 

MPI-ESM1-2-HR MPI-M, Germany 1.067°×1.067° 
r1i1p1f1, 

r2i1p1f1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Table 2 | Cost distribution ($/kW) in 2050 and key Monte Carlo parameters. 

 

Technology Distribution Mean SD P5 P10 Mid P90 P95 

PV Log-normal 283 52.33 205.82 220.0 278.28 352.0 376.25 

Wind Log-normal 904.55 156.70 671.70 715.0 891.27 1111.0 1182.62 

Li-ion battery Log-normal 309.99 131.55 146.12 169.4 285.36 480.7 557.29 

Electrolyzer Log-normal 353.75 65.42 257.28 275.0 347.85 440.0 470.31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Table 3 | The selected 42 major countries across the world. 

 

Continents Involved countries 

Oceania New Zealand, Australia 

Asia 
China, India, Indonesia, Iran, Japan, Malaysia, Saudi Arabia, Thailand, South 

Korea, Vietnam 

Europe 
Turkey, Russia, France, Germany, Italy, Sweden, Ukraine, United Kingdom, 

Spain, Poland 

Americas 
United States, Canada, Brazil, Mexico, Venezuela, Argentina, Chile, 

Colombia, Paraguay, Peru 

Africa 
Algeria, Egypt, Ghana, Libya, Morocco, Mozambique, Nigeria, South Africa, 

Sudan, Tunisia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


