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Supplementary Note 1. Two-way ANOVA for decomposing variance across techno-economic

and meteorological dimensions

We employ a two-way analysis of variance (ANOVA) to decompose the variance of modeled
outcomes in the joint sample generated from techno-economic and meteorological sampling. The
full simulation dataset is constructed by independently varying (i) techno-economic parameters (e.g.,
capital expenditures, conversion efficiencies, financing assumptions) and (ii) meteorological inputs
(e.g., multi-year wind and solar resource profiles). The Cartesian combination of these two sampling
dimensions yields a factorial structure in which each observation corresponds to a unique pair of
techno-economic settings and meteorological conditions.

Let each simulation be indexed by a pair (i,j), where i =1,...,I denotes the techno-
economic scenario and j = 1,...,] denotes the meteorological realization. For each combination
(i, ), the model produces an output y;; such as levelized cost of hydrogen (LCOH), energy yield,
or financial returns. The two-way ANOVA model is written as

yij =u+ai+ B+ (aB)y + &,
where p is the grand mean, «; captures the effect of techno-economic variation, f5; captures the
effect of meteorological variation, («f);; represents potential interactions between the two factor
dimensions, and ¢;; is the residual error.

The ANOVA decomposition partitions the total variance of y;; into contributions from each
of these components. In particular, the sum of squares associated with the meteorological factor f;
quantifies the portion of variability that arises solely from differences in wind and solar resource
conditions, conditional on the techno-economic sampling. Similarly, the interaction term captures
how meteorological sensitivity depends on techno-economic settings. This decomposition allows us
to extract and report the variance component attributable to meteorological drivers in isolation,
thereby providing a clear measure of the extent to which project outcomes are shaped by climate-
related variability rather than by techno-economic assumptions.

This framework ensures that, after jointly sampling across both dimensions, the meteorological
contribution to overall uncertainty can be identified and quantified separately, providing a
transparent characterization of the role of weather and climate variability in determining long-term

project performance.



Supplementary Note 2. Construction of Feature-Engineering Variables

To systematically characterize the climatic and techno-economic drivers relevant for project-level
hydrogen production, we construct a set of engineered features derived from the raw physical and
cost inputs. The feature-engineering procedure aims to translate multi-dimensional climate statistics
and technology parameters into a compact and interpretable set of metrics that can capture the key
mechanisms affecting hydrogen production, variability, and system integration costs. The resulting
features fall into five categories: (i) direct technology-cost terms, (ii) wind-resource statistics, (iii)
solar-resource statistics, (iv) temperature-related metrics, and (v) interaction terms combining
techno-economic parameters with climate variability or firmness. The full feature-construction logic
is summarized below.
1. Techno-economic cost variables
Four variables capture the baseline capital cost assumptions for photovoltaic systems, wind turbines,
battery storage, and -electrolyzers. These direct cost variables (d cost pv, d cost wind,
d cost_storage, d cost elec) are included without transformation, as they enter the techno-
economic model linearly and serve as fundamental drivers of levelized hydrogen cost. These terms
provide the baseline against which the climatic modifiers operate.
2. Wind-resource statistics
Wind features are derived from summary statistics of the 100-m wind-speed distribution. Each
metric is selected to represent a distinct physical property of the wind resource relevant for energy
conversion:
e Typical wind resource level (wind level)
Represented by either the median or mean wind speed. This feature captures the central
tendency of the resource and is the primary determinant of expected wind power output.
e  Wind variability (wind var)
Defined as the temporal variance of wind speed. Variability affects both renewable
intermittency and storage requirements.
e Peakiness (wind_peakiness)
Constructed as the difference between maximum and mean wind speed. This metric
captures the presence of short-duration extreme events and the skewness of wind-speed
distributions.
¢ Firmness (wind_firmness)
The 10th-percentile wind speed serves as a proxy for low-generation conditions that drive
backup requirements and influence electrolyzer utilization.
These features collectively summarize the mean—variance—extremes structure of the wind-speed
distribution without relying on raw time series.
3. Solar-resource statistics
Solar features mirror the construction used for wind and are derived from broadband surface
shortwave radiation (ssrd):
e Typical solar level (ssrd_level): median or mean radiation
e Solar variability (ssrd_var): variance of irradiance
e Solar peakiness (ssrd_peakiness): max — mean
e Solar firmness (ssrd_firmness): 10th percentile



These features capture irradiance availability, intermittency, and the presence of short-lived high-
irradiance peaks that disproportionately influence PV output.

4. Temperature-related metrics

Temperature affects both electrolyzer efficiency and thermal stress on system components. We
extract:

e Hot-temperature exposure (t_hot): 90th-percentile temperature

¢ Cold-temperature exposure (t cold): transformed 10th-percentile temperature (sign-

flipped for intuitive interpretation)

e Temperature spread (t spread): q75 — q25, representing the breadth of typical

temperatures
These metrics summarize thermal conditions affecting both technology performance and
operational reliability.
5. Interaction terms combining technology costs with climatic conditions
To account for the fact that the impact of climate conditions is mediated by technology costs, we
construct interpretable interaction features:

o PV cost x solar level (pv_cost_x_level): captures how solar availability interacts with PV

cost assumptions.

¢ Wind cost x wind level (wind _cost x_level): analogous term for wind.

e Storage cost x variability (storage cost x_variab): quantifies how the economic penalty

of variability depends on storage costs.

o Electrolyzer cost x firmness (elec cost x firmness): captures the sensitivity of

electrolyzer economics to low-output periods.
These terms ensure that models can represent how climate statistics influence the marginal value of
each technology under cost uncertainty.
6. Final feature selection and grouping
A minimal, non-redundant feature set is retained by selecting one representative feature for each
physical concept (typical level, variability, peakiness, firmness, temperature extremes, and
interaction structures). Features are then assigned to groups (Tech-cost, Wind, Solar, Temperature,
Interaction) to facilitate grouped SHAP interpretation and structured visualization.

The final engineered dataset therefore provides a compact but physically interpretable
representation of both climatic and techno-economic determinants of hydrogen-system performance.
This structured feature set enables transparent attribution analysis, supports model generalization
across climate and cost scenarios, and preserves interpretability while substantially reducing the
dimensionality of the raw inputs.
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Supplementary Fig. 1 | Model performance evaluation results on the test set. Density scatter
plot comparing the predicted versus actual (optimized) values of LCOH. The color gradient reflects
the density of data points, where colors closer to yellow indicate a higher concentration of samples.
The red dashed line represents the y = x line. Key performance metrics, including the coefficient

of determination (R?) and root mean square error (RMSE), are reported in the top-left inset.
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Supplementary Fig. 2 | SHAP analysis of key drivers. The summary plot illustrates the
distribution of SHAP values for the top features, representing their respective contributions to the
LCOH. The horizontal axis indicates the impact on the model output: positive SHAP values
correspond to an increase in LCOH, while negative values indicate a reduction. Features are ranked
by their global importance.
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Supplementary Fig. 3 | Global feature importance ranking. The bar chart displays the top input
variables sorted by their mean absolute SHAP values. A longer bar indicates a greater average
impact of the feature on the predicted LCOH magnitude.
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Supplementary Fig. 4 | The 22 United Nations-defined statistical subregions. The map illustrates
the geographical boundaries of the subregions used for regional aggregation and analysis in this

study.
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Supplementary Fig. 5 | Global distribution of the lowest-cost hydrogen regions under current
and future climate conditions. The maps identify the United Nations-defined statistical subregions
with the most competitive levelized cost of hydrogen (LCOH). a—c, Spatial extent of subregions
ranking in the top 10% (a), 20% (b), and 30% (c) of the lowest costs, respectively.
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Supplementary Fig. 6 | Evaluation of the attribution model. Density scatter plot comparing the
predicted versus actual values. Darker colors indicate a higher concentration of samples. The black
line represents the y = x line. Key performance metrics, including R? and RMSE, are reported

in the top-left inset.
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Supplementary Fig. 7 | SHAP analysis of key drivers. The summary plot illustrates the

distribution of SHAP values for the top features, representing their respective contributions to the

ALCOH. The horizontal axis indicates the impact on the model output: positive SHAP values

correspond to an increase in ALCOH, while negative values indicate a reduction. Features are

ranked by their global importance.
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Supplementary Fig. 8 | Global feature importance ranking. The bar chart displays the top input
variables sorted by their mean absolute SHAP values. A longer bar indicates a greater average
impact of the feature on the predicted ALCOH magnitude.
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Supplementary Fig. 10 | Overview of selected projects (MWel) from the TEA Hydrogen
Projects Database.



Supplementary Fig. 10 | Global project-level climate impacts on renewable-powered green
hydrogen production, presented as an interactive web application
https://github.com/onismyh/climate-impacts-hydrogen).



https://github.com/onismyh/climate-impacts-hydrogen
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Supplementary Fig. 11 | Distribution of future hydrogen costs and climate change impacts
across 42 major countries. The figure illustrates the projected LCOH and the magnitude of climate-
induced variations for 42 major economies. Dashed lines indicate reference baselines: the line
representing no climate change impact (zero change) and the line corresponding to the global
average LCOH.
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Supplementary Fig. 12 | Performance evaluation of simulated climate variables. Standardized
Taylor diagrams quantifying the ability of seven models to reproduce global climate patterns for the
period 2005-2014. a, Near-surface air temperature (tas) and 10-meter wind speed components (uas,
vas). b, Surface downward shortwave radiation (ssrd).
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Supplementary Fig. 13 | Typical wind power capacity factor curve.
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Supplementary Fig. 14 | Global grid-level monthly wind speed scaling factors.



Supplementary Table 1 | Summary of Global Climate Models (GCMs) used in this study.

Model Institution, Country Resolutions (Lat*Lon) Member
rlilplfl,

ACCESS-CM2 CSIRO, Australia 1.25°%1.875° rdilplfl,
rSilplfl

AWI-CM-1-1-MR AWI, Germany 1.067°%x1.067° rlilplfl
BCC-CSM2-MR BCC, China 1.125°%1.125° rlilplfl
GFDL-ESM4 NOAA-GFDL, USA 1°x1° rlilplfl
rlilplfl,

KACE-1-0-G NIMS-KMA, Korea 1.25°x1.875° r2ilplfl,
r3ilplfl

rlilplfl,

MIROC6 JAMSTEC, Japan 1.4°x1.4° r2ilplfl,
r3ilplfl

rlilplfl,

MPI-ESM1-2-HR

MPI-M, Germany

1.067°x1.067°

r2ilplfl




Supplementary Table 2 | Cost distribution ($/kW) in 2050 and key Monte Carlo parameters.

Technology Distribution Mean SD PS5 P10 Mid P90 P95
PV Log-normal 283 5233 205.82 220.0 27828 352.0 376.25
Wind Log-normal  904.55 156.70 671.70 715.0 891.27 1111.0 1182.62

Li-ion battery Log-normal  309.99 131.55 146.12 1694 28536 480.7 557.29
Electrolyzer Log-normal  353.75 6542 257.28 275.0 347.85 440.0 470.31




Supplementary Table 3 | The selected 42 major countries across the world.

Continents Involved countries
Oceania New Zealand, Australia
Asia China, India, Indonesia, Iran, Japan, Malaysia, Saudi Arabia, Thailand, South
Korea, Vietnam
Europe Turkey, Russia, France, Germany, Italy, Sweden, Ukraine, United Kingdom,
Spain, Poland
. United States, Canada, Brazil, Mexico, Venezuela, Argentina, Chile,
Americas .
Colombia, Paraguay, Peru
Aftica Algeria, Egypt, Ghana, Libya, Morocco, Mozambique, Nigeria, South Africa,

Sudan, Tunisia




