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SUPPLEMENTARY NOTES TITLES  

Supplementary Note 1. Greedy alignment between pulse-token relationships and submarine-state   
relationships 

Supplementary Section 2. Inferring parts of  speech (PoS) from MNN pulse-token embeddings 

 

SUPPLEMENTARY FIGURES’ TITLES AND LEGENDS 

Fig S1. Original Token-Association Matrix (b) showing the accuracy of  recovering the first pulse-token (A) 

from the second (B) by using the MNN and ordered by their initial RF-token indices. The structure is quite 

arbitrary. A greedy joint permutation of  rows and columns attempts to align the embedding vectors to be 

similar to the ones in the State Compatibility Matrix (a), with similar structure emerging along the main 

diagonal (c). 

Fig S2. Mapping digital word-embedding relationships into microwave pulse-train tokens. a, A 

constrained English vocabulary (a.i) of  25 words (five categories: nouns, verbs, adverbs, adjectives, 

prepositions) is used to generate short, syntactically valid sentence-fragments from predefined grammatically 

correct templates. A language model consisting of  a trainable embedding layer and an LSTM decoder is 

trained to give embedding for each word in the dictionary. Pairwise cosine similarities between embeddings 

provide a Language Embedding matrix (a.ii). b, Microwave pulse-train token space is independently defined 

for the MNN by three physical degrees of  freedom: token amplitude, token pulse frequency and token 

duration (b.i). When fed into the Microwave Neural Network, the nonlinear coupling of  waveguides 

produces a broadband frequency-comb response, encoding features of  the tokens as spectrograms. A linear 

classifier is trained to predict token one from the other from these spectrograms to provide a Pulse-token 

Association Matrix (b.ii), quantifying spectral similarity among pulse tokens. c, Greedy and random matching 

algorithms attempt to select one-to-one mappings for the 25 words by maximizing similarity in relationships 

in the Word Embedding and the MNN's Pulse-Token Association matrices. 

Fig S3. MNN extracts grammatical structure from a sequence of  microwave pulses. a.i, Each English 

word is represented by a corresponding microwave pulse-train token. Tokens are injected into the MNN 

sequentially as word-pairs and the nonlinear microwave response is measured from the output port as a 

spectrogram. A trained linear classifier (ridge regularized multi-class logistic regression) processes these 

spectrograms to infer the syntactic category (Part-of-Speech) of  the first and second tokens.  a.ii, Confusion 

matrices show PoS prediction across five grammatical classes, with strong on-diagonal values indicating 

reliable discrimination enabled by the MNN’s broadband expansion. b, Word-at-a-time sentence-continuation 

game tests contextual understanding. MNN predicts the two PoS. Each word must follow a valid grammatical 

transition (based on valid templates in Supplementary Table 1) using the predicted PoS. The next words are 

cascaded with the previous ones and fed to the MNN. The process continues recursively to extend the length 

of  the sentence-fragment. The game ends if  the MNN predicts an incorrect PoS, or no valid next word exists. 

c, Evaluating mapping and syntactic inference capability. c.i, Comparison of  greedy-search vs random-search 

mapping between 25 English words and 25 pulse-train tokens, evaluated over 10,000 attempts to make valid 

sentence-fragments. Greedy search completes more valid fragments. c.ii, Sentence-generation success for 

MNN + linear classifier versus a baseline that computes on spectrograms produced from raw tokens. MNN’s 

nonlinear spectral expansion enables reliable inference up to 7 words in a valid sentence fragment template, 

while the baseline rarely exceeds 4 words. 
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Fig S4. The MNN’s broadband output signal, in response to a burst of  a pixel’s 8-bit pattern, is down-

converted at LO = 10.4 GHz and sampled at 625 MS/s (Sets 1-11). For each 8-bit pattern (2.5 Gb/s), two 

samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states 

(01/10). The static ratio is defined as: S = (# static states) / (300 repetitions). Dynamic ratio, T = 1 − S. 8-bit 

patterns are arranged in order of  decreasing Static Ratio. 

 

SUPPLEMENTARY TABLES’ TITLES AND LEGENDS 

Supplementary Table 1| Mappings extracted from pulse-train tokens to submarine states in the game 

shown in Figs. 3 and 4. i.e., (𝛽Tok in Volts, 𝐹Tok in MHz, 𝑇Tok in ns) → (X grid units, Y grid units, 𝜃 radians)  

Supplementary Table 2| Mappings extracted from pulse-train tokens to word tokens in the sentence-

building game shown in Supplementary Figs. 2 and 3. i.e., (𝛽Tok in Volts, 𝐹Tok in MHz, 𝑇Tok in ns) → word 

Supplementary Table 3| Syntactically valid sentence-fragment templates for generating a training set for 

mapping word-embeddings to pulse-train tokens in Supplementary Note 2. 

Supplementary Table 4| Breakdown of  power consumption in the feature extraction front-end. 
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1. Greedy alignment between pulse-token relationships
and submarine-state relationships

In the turn-based game discussed in the main Article, ideally, one would want a one-to-one
alignment between a subset of microwave pulse tokens generated by the Microwave Neural
Network (MNN) and a fixed menu of states the submarines could assume. Instead, the
MNN produces an empirical Association Matrix over amplitude–frequency–time (βTok, FTok,
TTok) parameters and the submarine-game engine gives us a precomputed State Compatibility
Matrix. The goal of the matching procedure is to identify a subset of (βTok, FTok, TTok) tokens
and an ordering of that subset whose pairwise interactions best reproduce the similarity in
the structure of the embedding vectors in the State Compatibility Matrix.

Let C ∈ Rn×n denote the MNN Association Matrix, where each index i ∈ {1, . . . , n}
corresponds to a particular (βTok, FTok, TTok) token. The entry Cij is a non-negative confi-
dence or interaction score between tokens i and j, obtained from the MNN experiments. Let
Scont ∈ RB×B denote the State Compatibility Matrix over a fixed set of B word tokens. In
practice, we work with a binarized version

Sij = I
(
Scont
ij > σ

)
, (1)

where σ is a compatibility threshold (e.g. σ = 0.1) and I(·) is the indicator function. The
resulting matrix S ∈ {0, 1}B×B encodes which word pairs are considered to be “compatible”
with respect to the objective of the game, which is to always intercept the sonar beam. For
the example in Supplementary Fig. 1, we fix the states’ vocabulary size to B = 25, so S is
a 25× 25 binary matrix whose row and column order is held fixed throughout the matching
procedure. Given a subset of (βTok, FTok, TTok) indices I ⊆ {1, . . . , n} of size k = |I|, we
consider the corresponding MNN submatrix

C(k) = C[I, I] ∈ Rk×k. (2)

To compare this with the State Compatibility Matrix, we also take the top-left k × k block
of S,

S(k) = S[1 :k, 1:k] ∈ {0, 1}k×k. (3)

We introduce a confidence threshold τ and define a binarized version of the MNN sub-
matrix via

C̃
(k)
ij =

{
1, C

(k)
ij ≥ τ,

0, otherwise,
i, j ∈ {1, . . . , k}. (4)

Thresholds were chosen to balance sparsity and structural overlap; moderate variations
did not qualitatively change the resulting mappings.

Given a pair of k×k binary matrices (C̃(k), S(k)), we define the match score as the number
of positions where both matrices equal 1:

score
(
C̃(k), S(k)

)
=

k∑
i=1

k∑
j=1

I
(
C̃

(k)
ij = 1 ∧ S

(k)
ij = 1

)
. (5)
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Intuitively, this counts how many pairwise “edges” in the thresholded MNN graph coincide
with edges in the State-Compatibility graph, restricted to the current subset and ordering.
For a fixed subset I of size k, there is no canonical ordering of the selected (βTok, FTok, TTok)
tokens. To maximize the alignment with S(k), we allow the rows and columns of C(k) to be
permuted jointly. We first construct a cost matrix

costij = − I
(
C̃

(k)
ij = 1 ∧ S

(k)
ij = 1

)
, i, j ∈ {1, . . . , k}. (6)

Entries where both matrices have a 1 receive cost −1, and all other entries receive cost 0.
Minimizing the total cost is therefore equivalent to maximizing the number of overlapping
ones. We then apply the Hungarian Algorithm [Ref. S1] to this cost matrix to obtain a

pair of index permutations (πr, πc), which defines a reordered submatrix Ĉ
(k)
ij = C

(k)
πr(i), πc(j)

.

The match score used for evaluation of this subset is then score
(
˜̂
C(k), S(k)

)
, where

˜̂
C(k) is

the thresholded version of Ĉ(k) under the same confidence threshold τ .

To select a subset of B (βTok, FTok, TTok) tokens and their alignment to the B submarine
states, we maintain two sets: an ordered list of selected (βTok, FTok, TTok) indices, denoted
S and a set of remaining candidate indices, denoted R. Initially,

S ← [ ], R ← {1, 2, . . . , n}. (7)

At each iteration, we evaluate adding a single new index i ∈ R to the current selection. For
each candidate, we form Ii = S∪{i} with ki = |Ii|, extract the corresponding MNN submatrix
C(ki) = C[Ii, Ii], and compare it to the top-left ki× ki block S(ki) of the State-Compatibility

matrix. Applying the Hungarian algorithm gives permutations (π
(i)
r , π

(i)
c ), the reordered

submatrix Ĉ(ki), and the match score scoreIi from (5). We then select i⋆ = argmaxi∈R scoreIi
and update

S ← S ∪ {i⋆}, R ← R \ {i⋆}. (8)

This repeats until |S| = B or the score stops improving. At the final iteration, the Hungarian
step yields (π⋆

r , π
⋆
c ) and Ĉ(B), defining the ordering of the B selected tokens. The resulting

match score
scoregreedy = score(

˜̂
C(B), S(B))

is reported as the greedy performance for the threshold τ . This is only a first-pass method
to demonstrate that it is possible to extract meaning from the MNN’s feature-extracted
Association Matrix. Through this reordering, we can see structure beginning to emerge —
for example, the diagonal of the Permuted Association Matrix starts to resemble the State
Compatibility Matrix, mimicking that behavior to some extent, as shown in Supplementary
Figs. 1 e and f.
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Supplementary Figure 1. Procedure to find one-to-one mappings between RF pulse-train tokens and submarine states. The State Compatibility Matrix (a) defines which submarine states 
lead to long survival across many rallies in the signal-interception game. This matrix provides a target embedding structure that must be replicated by the Token Association Matrix (b) generated 

by feeding the MNN with ordered pairs of pulse-train tokens, as described in the main text. To align these representations, we perform a joint row- and column-wise permutation of the Token 
Association Matrix using a greedy search procedure that iteratively reorders rows and columns to maximize structural overlap with the Compatibility Matrix. This produces a rearranged 

association matrix (c) whose large-scale structure begins to resemble the Compatibility Matrix (note that token indices are relabeled during this process). From the greedily permuted matrix, we 
then select the 25 × 25 sub-block that most closely matches the Compatibility Matrix (d). Finally, by applying appropriate thresholds to both the Compatibility Matrix and the selected, permuted 
Association sub-matrix, we identify a pair of matrices whose embedding vectors are approximately aligned (e and f). This alignment enables a reliable one-to-one mapping (like that shown in 
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2. Inferring parts of speech (PoS) from MNN pulse-
token embeddings

A set of microwave pulse-trains that are related to one another may have applications
beyond establishing logical context for decision-making at the edge as in the submarine
navigation game in the main Article. They could also be used to encrypt meaning in the
words of a spoken language. That is to say, long messages could be encrypted, with meaning,
in just a few analog pulses of a pulse-train token. For example, the word “boy” is 24 bits
long because each of the three letters is represented by one 8-bit byte. In contrast, its
meaning could be encoded in a few cycles of a pulse-train token in a way that, when feature-
extracted, still maintains context with other words in a message. If we do this and, thereby,
transmit with less bandwidth, it could enable an MNN-interpretable communication scheme
that remains compatible with the sub-100-Mbps data rates typical of Ka-band satellite links.
This will dramatically reduce data volume.

Supplementary Fig. 2 illustrates this process. We train a PyTorch Long Short-Term
Memory (LSTM) language model on syntactically valid sentence-fragment ranging from 2
to 7 words in length. For demonstration here, the vocabulary only uses five Parts of Speech
(PoS): Noun, Verb, Adverb, Preposition, and Adjective (Fig. S2a.i), and with only five
words for each PoS (25 total). Training is performed over these fragments, and the resulting
embedding layer provides the learned relationships between words as a cosine-similarity
embedding matrix in the model’s latent space (Fig. S2a.ii). These fragments follow the
set of valid grammatical templates listed below, which define allowable PoS sequences for
varying fragment lengths (Supplementary Table 3).

As in the submarine navigation game, we try to draw parallels between words and their
context to the relationships embedded in the MNN’s token-association matrix extracted from
short analog pulses (Supplementary Fig. 2b.ii). We map between them using a few search
algorithms (Greedy, Random, etc.) to maximize correspondence between word behavior and
their microwave-token counterparts, using a subset of 25 tokens only. These relationships
are shown in Supplementary Table 2.

To test whether the above mapping is even useful, we first check if the MNN can recognize
the Part of Speech (PoS) of a word injected into it. This training and inference procedure is
shown in Supplementary Fig. 3: a linear layer is trained on pairs of words in the vocabulary,
injected into the MNN, using 10-fold cross-validation. Each token in a PoS pair is classified
from the MNN’s spectrogram response (Fig. S3a.i), with ground-truth labels being the two
actual PoS types (Noun–Adverb, Adjective–Noun, etc.) as shown in Fig S3a.ii.

We then extend this to test how many times we can correctly classify a PoS in sequence,
since this would indicate that MNN-encoded messages can be extended to longer lengths.
To evaluate sentence-level comprehension, we created a “word-at-a-time” game. (Fig. S3b).
Pairs of token-mapped words are fed sequentially into the MNN, with the output then fed
to a trained linear classifier to predict their Parts of Speech. If classification fails, the game
ends; if correct, one or two more words are added. If both PoS predictions are correct,
we inject another two words from a valid template. For odd-numbered templates, the final
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single word is given as a “bye” to complete the phrase. This continues until an error occurs
(Fig. 3b). From 10,000 trials with attempts to make 2–7-word sentence-fragments, we
analyze the MNN’s ability to keep extracting the right PoS. It is effectively testing a shared
password, where one MNN is used to try to decode a message encoded by another MNN.
We first evaluated which algorithms for matching microwave tokens to words worked best
by comparing a Greedy Search with a random one-shot assignment between the pulse-train
token-association matrix and the word-embedding matrix. We found that Greedy Search,
when used in combination with the backend linear classifier, correctly identifies the PoS
in sentences up to seven words long (Fig. S3c.i), and performs better than the Random
search. The Greedy Search mapping was therefore used for subsequent evaluation. We then
compared the MNN’s comprehension to a baseline linear model trained directly on raw token
spectrograms. The MNN correctly understood sentence structure in over 55% attempts to
form syntactically valid fragments, versus fewer than 10% for the baseline (Fig. S3c.ii). Also,
the MNN-aided classifier was seen to decipher PoS through full 7-word fragments, whereas
the baseline struggled to reach even 4 words.

This exercise shows that, as a proof of concept, the MNN’s feature expansion—achieved
by instantaneously modulating the bandwidth of its output comb—can be used to interpret
short pulses containing linguistic meaning. In this framework, the MNN acts as a physi-
cal embedding layer, transforming microwave pulse-trains into semantic feature vectors for
downstream language tasks. Although the vocabulary demonstrated here is small, the same
principle could be expanded to form the embedding stage of a larger language model.
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short, syntactically valid sentence-fragments from predefined grammatically correct templates. A language model consisting of a 
trainable embedding layer and an LSTM decoder is trained to give embedding for each word in the dictionary(a.ii). b, Microwave 
pulse-train token space is independently defined for the MNN by three physical degrees of freedom: token amplitude, token pulse 

frequency and token duration (b.i). When fed into the Microwave Neural Network, the nonlinear coupling of waveguides produces a 
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Supplementary Figure. 3 ⎯ MNN extracts grammatical structure from a sequence of microwave pulses. a.i, Each English 
word is represented by a corresponding microwave pulse-train token. Tokens are injected into the MNN sequentially as word-pairs 

and the nonlinear microwave response is measured from the output port as a spectrogram. A trained linear classifier (ridge 
regularized multi-class logistic regression) processes these spectrograms to infer the syntactic category (Part-of-Speech) of the 
first and second tokens.  a.ii, Confusion matrices show PoS prediction across five grammatical classes, with strong on-diagonal 
values indicating reliable discrimination enabled by the MNN’s broadband expansion. b, Word-at-a-time sentence-continuation 

game tests contextual understanding. MNN predicts the two PoS . Each word must follow a valid grammatical transition (based on 
valid templates in Supplementary Table 1) using the predicted PoS. The next words are cascaded with the previous ones and fed  
to the MNN. The process continues recursively to extend the length of the sentence-fragment. The game ends if the MNN predicts 
an incorrect PoS, or no valid next word exists. c, Evaluating mapping and syntactic inference capability. c.i, Comparison of greedy-
search vs random-search mapping between 25 English words and 25 pulse-train tokens, evaluated over 10,000 attempts to make 

valid sentence-fragments. Greedy search completes more valid fragments. c.ii, Sentence-generation success for MNN + linear 
classifier versus a baseline that computes on spectrograms produced from raw tokens. MNN’s nonlinear spectral expansion 
enables reliable inference up to 7 words in a valid sentence fragment template, while the baseline rarely exceeds 4 words.
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Supplementary Tables 

 

Supplementary Table 1: Mappings extracted from pulse-train tokens to submarine states in the game shown 

in Figs. 3 and 4. i.e., (𝛽Tok in Volts, 𝐹Tok in MHz, 𝑇Tok in ns) → (X grid units, Y grid units, 𝜃 radians)  

𝜷𝐓𝐨𝐤 𝑭𝐓𝐨𝐤 𝑻𝐓𝐨𝐤  X Y 𝜽  𝜷𝐓𝐨𝐤 𝑭𝐓𝐨𝐤 𝑻𝐓𝐨𝐤  X Y 𝜽  𝜷𝐓𝐨𝐤 𝑭𝐓𝐨𝐤 𝑻𝐓𝐨𝐤  X Y 𝜽 

0.4 20 40 → 0 0 0  0.85 40 40 → 2 0 0  0.85 60 100 → 2 1 0 

0.55 20 40 → 1 3 1  0.7 80 40 → 3 1 0  0.4 80 40 → 2 1 2 

0.7 20 40 → 0 0 2  0.7 20 60 → 1 0 1  0.7 100 120 → 0 4 1 

0.85 20 40 → 4 4 2  0.4 60 40 → 1 1 2  0.4 60 80 → 1 4 2 

1 20 40 → 0 3 0  1 40 60 → 1 1 0  0.55 100 60 → 3 2 0 

0.4 40 40 → 0 1 1  0.55 100 40 → 1 2 0  0.85 100 100 → 2 3 2 

0.55 40 40 → 0 1 2  0.4 100 120 → 0 3 1  0.4 100 60 → 2 0 1 

0.4 100 40 → 0 2 0  0.55 100 100 → 1 0 2  1 80 40 → 2 2 0 

0.7 100 40 → 0 2 1  0.7 60 80 → 1 3 2  0.7 80 60 → 1 4 0 

0.55 20 80 → 0 4 0  1 60 60 → 1 2 2  0.55 100 80 → 2 1 1 

0.7 40 40 → 3 1 2  0.85 100 60 → 1 0 0  1 60 100 → 2 3 0 

0.85 40 80 → 4 3 2  0.85 80 40 → 0 0 1  0.7 60 40 → 2 3 1 

0.85 60 40 → 0 3 2  0.4 40 60 → 1 2 1  0.4 100 80 → 0 2 2 

1 40 40 → 2 0 2  1 100 80 → 1 3 0  0.85 100 40 → 2 4 0 

1 100 60 → 0 1 0  1 100 40 → 1 1 1  0.7 100 80 → 3 1 1 

0.55 60 60 → 3 0 1  1 20 80 → 2 2 1  0.55 60 120 → 3 3 1 

0.7 80 120 → 3 0 2  1 60 120 → 4 0 2  0.4 80 120 → 4 1 1 

1 80 80 → 3 0 0  0.85 60 60 → 0 4 2  1 80 100 → 4 1 2 

0.85 100 80 → 4 2 2  1 40 100 → 3 4 2  0.55 40 100 → 4 2 0 

0.85 80 60 → 3 3 0  0.7 40 100 → 4 0 1  0.7 20 80 → 4 2 1 

1 100 100 → 3 2 1  1 20 120 → 3 3 2  0.55 40 60 → 4 3 0 

0.85 20 100 → 4 4 1  0.7 60 60 → 3 4 0  0.7 100 100 → 4 3 1 

1 20 60 → 2 2 2  0.7 80 80 → 2 4 2  0.7 20 100 → 1 4 1 

0.85 80 100 → 2 4 1  0.85 20 120 → 4 0 0  0.4 20 60 → 4 4 0 

1 60 40 → 4 1 0  1 80 120 → 3 2 2  0.4 40 120 → 3 4 1 

0.55 60 60 → 3 0 1  1 20 80 → 2 2 1  0.55 60 120 → 3 3 1 
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Supplementary Table 2: Mappings extracted from pulse-train tokens to word tokens in the sentence-

building game shown in Supplementary Figs. 2 and 3. i.e., (𝛽Tok in Volts, 𝐹Tok in MHz, 𝑇Tok in ns) → word 

𝜷𝐓𝐨𝐤 𝑭𝐓𝐨𝐤 𝑻𝐓𝐨𝐤  X  𝜷𝐓𝐨𝐤 𝑭𝐓𝐨𝐤 𝑻𝐓𝐨𝐤  X  𝜷𝐓𝐨𝐤 𝑭𝐓𝐨𝐤 𝑻𝐓𝐨𝐤  X 

0.7 100 80 → bridge  0.55 40 100 → happily  0.4 80 100 → quiet 

0.85 100 80 → laughed  0.85 40 100 → fell  0.55 80 100 → quickly 

1.0 100 80 → over  1.0 40 100 → crawled  0.7 80 100 → in 

0.4 20 100 → interesting  0.4 60 100 → jumped  0.85 80 100 → new 

0.55 20 100 → dark  0.55 60 100 → sadly  1.0 80 100 → old 

0.7 20 100 → boy  0.7 60 100 → mischievously  1.0 80 100 → across 

0.85 20 100 → at  0.85 60 100 → girl  0.4 100 100 → under 

1.0 20 100 → ran  1.0 60 100 → slowly  0.55 100 100 → road 

0.4 40 100 → river  

 

Supplementary Table 3: Syntactically valid sentence-fragment templates for generating a training set for mapping word-
embeddings to pulse-train tokens in Supplementary Note 2. 

Word length Syntactically valid sentence-fragment templates Representative example 

2 words long Noun – Verb boy-ran 

3 words long Noun – Verb – Adverb 
Noun – Adverb – Verb 
Adjective – Noun – Verb 

girl-laughed-happily 
boy-quickly-ran 
old-bridge-fell 

4 words long Noun – Verb – Preposition – Noun 
Verb – Adverb – Preposition – Noun 
Adverb – Verb – Preposition – Noun 
Adjective – Noun – Verb – Adverb 

boy-jumped-across-river 
ran-quickly-across-road 
slowly-crawled-under-bridge 
happy-girl-laughed-mischievously  

5 words long Adjective – Noun – Verb – Preposition – Noun 
Noun – Verb – Preposition – Adjective – Noun 
Verb – Preposition – Adjective – Noun – Adverb 
Verb – Adverb – Preposition – Adjective – Noun 
Adverb – Verb – Preposition – Adjective – Noun 

quiet-girl-ran-across-road 
boy-fell-over-old-bridge 
laughed-at-interesting-boy-happily 
ran-quickly-under-quiet-bridge 
quickly-jumped-across-new-bridge 

6 words long Adjective – Noun – Verb – Preposition – Noun – Adverb new-bridge-ran-across-river-happily 

7 words long Adjective – Noun – Adverb – Verb – Preposition – Adjective – Noun happy-boy-happily-ran-across-old-bridge 

 

Supplementary Table 4: Breakdown of  power consumption in the feature extraction front-end. 

On-chip MNN power consumption  Off-chip consumption (will be integrated in the next version) 

On-chip Max. Voltage Max. Current Max. Power  Component Voltage Current Power 

Supply for MNN 
oscillator core 

0.9 V 130 mA 117 mW  IF amplifier 3.3 55 mA 182 mA 

Supply for SPI 
registers 

1.5 V 3.3 mA 4.95 mW  Passive mixer N/A 0 mA 0 mA 

Supply for SPI 
logic 

1 V 1.2 mA 1.2 mW  RF gain stage 
(optional) 

5 21 mA 105 
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