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SUPPLEMENTARY NOTES TITLES

Supplementary Note 1. Greedy alignment between pulse-token relationships and submarine-state
relationships

Supplementary Section 2. Inferring parts of speech (PoS) from MNN pulse-token embeddings

SUPPLEMENTARY FIGURES’ TITLES AND LEGENDS

Fig S1. Original Token-Association Matrix (b) showing the accuracy of recovering the first pulse-token (A)
from the second (B) by using the MNN and ordered by their initial RF-token indices. The structure is quite
arbitrary. A greedy joint permutation of rows and columns attempts to align the embedding vectors to be
similar to the ones in the State Compatibility Matrix (a), with similar structure emerging along the main
diagonal (c).

Fig S2. Mapping digital word-embedding relationships into microwave pulse-train tokens. a, A
constrained English vocabulary (a.d) of 25 words (five categories: nouns, verbs, adverbs, adjectives,
prepositions) is used to generate short, syntactically valid sentence-fragments from predefined grammatically
correct templates. A language model consisting of a trainable embedding layer and an LSTM decoder is
trained to give embedding for each word in the dictionary. Pairwise cosine similarities between embeddings
provide a Language Embedding matrix (a.ii). b, Microwave pulse-train token space is independently defined
for the MNN by three physical degrees of freedom: token amplitude, token pulse frequency and token
duration (b.i). When fed into the Microwave Neural Network, the nonlinear coupling of waveguides
produces a broadband frequency-comb response, encoding features of the tokens as spectrograms. A linear
classifier is trained to predict token one from the other from these spectrograms to provide a Pulse-token
Association Matrix (b.ii), quantifying spectral similarity among pulse tokens. ¢, Greedy and random matching
algorithms attempt to select one-to-one mappings for the 25 words by maximizing similarity in relationships
in the Word Embedding and the MNN's Pulse-Token Association mattices.

Fig S3. MNN extracts grammatical structure from a sequence of microwave pulses. a.i, Each English
word is represented by a corresponding microwave pulse-train token. Tokens are injected into the MNN
sequentially as word-pairs and the nonlinear microwave response is measured from the output port as a
spectrogram. A trained linear classifier (ridge regularized multi-class logistic regression) processes these
spectrograms to infer the syntactic category (Part-of-Speech) of the first and second tokens. a.ii, Confusion
matrices show PoS prediction across five grammatical classes, with strong on-diagonal values indicating
reliable discrimination enabled by the MNN’s broadband expansion. b, Word-at-a-time sentence-continuation
game tests contextual understanding. MNN predicts the two PoS. Each word must follow a valid grammatical
transition (based on valid templates in Supplementary Table 1) using the predicted PoS. The next words are
cascaded with the previous ones and fed to the MNN. The process continues recursively to extend the length
of the sentence-fragment. The game ends if the MNN predicts an incorrect PoS, or no valid next word exists.
¢, Evaluating mapping and syntactic inference capability. c.i, Comparison of greedy-search vs random-search
mapping between 25 English words and 25 pulse-train tokens, evaluated over 10,000 attempts to make valid
sentence-fragments. Greedy search completes more valid fragments. c.ii, Sentence-generation success for
MNN + linear classifier versus a baseline that computes on spectrograms produced from raw tokens. MNN'’s
nonlinear spectral expansion enables reliable inference up to 7 words in a valid sentence fragment template,
while the baseline rarely exceeds 4 words.



Fig S4. The MNN’s broadband output signal, in response to a burst of a pixel’s 8-bit pattern, is down-
converted at LO = 10.4 GHz and sampled at 625 MS/s (Sets 1-11). For each 8-bit pattern (2.5 Gb/s), two
samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states
(01/10). The static ratio is defined as: S = (# static states) / (300 repetitions). Dynamic ratio, T =1 — S. 8-bit
patterns are arranged in order of decreasing Static Ratio.

SUPPLEMENTARY TABLES’ TITLES AND LEGENDS

Supplementary Table 1| Mappings extracted from pulse-train tokens to submarine states in the game
shown in Figs. 3 and 4. i.e., (Brok in Volts, Frok in MHz, Trok in ns) = (X grid units, Y grid units, 8 radians)

Supplementary Table 2| Mappings extracted from pulse-train tokens to word tokens in the sentence-
building game shown in Supplementary Figs. 2 and 3. i.e., (Bok in Volts, Fpok in MHz, Tty in ns) = word

Supplementary Table 3| Syntactically valid sentence-fragment templates for generating a training set for
mapping word-embeddings to pulse-train tokens in Supplementary Note 2.

Supplementary Table 4| Breakdown of power consumption in the feature extraction front-end.



1. Greedy alignment between pulse-token relationships
and submarine-state relationships

In the turn-based game discussed in the main Article, ideally, one would want a one-to-one
alignment between a subset of microwave pulse tokens generated by the Microwave Neural
Network (MNN) and a fixed menu of states the submarines could assume. Instead, the
MNN produces an empirical Association Matrix over amplitude—frequency—time (Srox, Frok,
Trrox ) parameters and the submarine-game engine gives us a precomputed State Compatibility
Matrix. The goal of the matching procedure is to identify a subset of (Srok, Frok, Trox) tokens
and an ordering of that subset whose pairwise interactions best reproduce the similarity in
the structure of the embedding vectors in the State Compatibility Matrix.

Let C' € R™" denote the MNN Association Matrix, where each index i € {1,...,n}
corresponds to a particular (Brok, Frok, Trox) token. The entry Cj; is a non-negative confi-
dence or interaction score between tokens ¢ and j, obtained from the MNN experiments. Let
Seont ¢ RBXB denote the State Compatibility Matrix over a fixed set of B word tokens. In
practice, we work with a binarized version

Sy = 1(S2 > o), (1)

where o is a compatibility threshold (e.g. ¢ = 0.1) and I(-) is the indicator function. The
resulting matrix S € {0, 1}2*# encodes which word pairs are considered to be “compatible”
with respect to the objective of the game, which is to always intercept the sonar beam. For
the example in Supplementary Fig. 1, we fix the states’ vocabulary size to B = 25, so S is
a 25 x 25 binary matrix whose row and column order is held fixed throughout the matching
procedure. Given a subset of (Srox, Frok, Trok) indices I C {1,...,n} of size k = |I|, we
consider the corresponding MNN submatrix

C® = C[I,1] € R¥**, (2)

To compare this with the State Compatibility Matrix, we also take the top-left k& x k block
of S,
S® = S[1:k, 1:k] € {0, 1} (3)

We introduce a confidence threshold 7 and define a binarized version of the MNN sub-

matrix via
(k) 1, C’i(k) > T,
Cy = ! i,j €{1,..., k}. (4)

ij = .
0, otherwise,

Thresholds were chosen to balance sparsity and structural overlap; moderate variations
did not qualitatively change the resulting mappings.

Given a pair of k x k binary matrices (C~’ (k) S()) | we define the match score as the number
of positions where both matrices equal 1:

k

score(é'(k), S(k)> = iZH(C’g’C) =1 A Sg-g) = 1) : (5)

i=1 j=1
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Intuitively, this counts how many pairwise “edges” in the thresholded MNN graph coincide
with edges in the State-Compatibility graph, restricted to the current subset and ordering.
For a fixed subset I of size k, there is no canonical ordering of the selected (Srok, Frrok, Trok)
tokens. To maximize the alignment with S*), we allow the rows and columns of C*) to be
permuted jointly. We first construct a cost matrix

costy; = —H(é§f’:1 A S§f>:1), ije{l,... k) (6)

Entries where both matrices have a 1 receive cost —1, and all other entries receive cost 0.
Minimizing the total cost is therefore equivalent to maximizing the number of overlapping
ones. We then apply the Hungarian Algorithm [Ref. S1] to this cost matrix to obtain a

pair of index permutations (m,, 7.), which defines a reordered submatrix C’ff ) = C’frljzi) o)’

The match score used for evaluation of this subset is then score (C'(k), S (k)> , Where C® ig
the thresholded version of C® under the same confidence threshold 7.

To select a subset of B (Srok, Frrok, Trok) tokens and their alignment to the B submarine
states, we maintain two sets: an ordered list of selected (Brok, Frrok, Trox) indices, denoted
S and a set of remaining candidate indices, denoted R. Initially,

S« 1], R« {1,2....n. (7)

At each iteration, we evaluate adding a single new index i € R to the current selection. For
each candidate, we form I; = SU{i} with k; = |[;|, extract the corresponding MNN submatrix
C®) = C[I;, I;], and compare it to the top-left k; x k; block S®*?) of the State-Compatibility
matrix. Applying the Hungarian algorithm gives permutations (m(«i),ﬁgi)), the reordered
submatrix C'*9) and the match score score 1, from (5). We then select i* = arg max;exg scorey,
and update

S SUfitt, R«R\{*. 8)

This repeats until |S| = B or the score stops improving. At the final iteration, the Hungarian
step yields (7%, 7%) and C®)| defining the ordering of the B selected tokens. The resulting
match score

SCOI'€greedy = score(é’ (B) g(B ))

is reported as the greedy performance for the threshold 7. This is only a first-pass method
to demonstrate that it is possible to extract meaning from the MNN’s feature-extracted
Association Matrix. Through this reordering, we can see structure beginning to emerge —
for example, the diagonal of the Permuted Association Matrix starts to resemble the State
Compatibility Matrix, mimicking that behavior to some extent, as shown in Supplementary
Figs. 1 e and f.
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Supplementary Figure 1. Procedure to find one-to-one mappings between RF pulse-train tokens and submarine states. The State Compatibility Matrix (a) defines which submarine states
lead to long survival across many rallies in the signal-interception game. This matrix provides a target embedding structure that must be replicated by the Token Association Matrix (b) generated
by feeding the MNN with ordered pairs of pulse-train tokens, as described in the main text. To align these representations, we perform a joint row- and column-wise permutation of the Token
Association Matrix using a greedy search procedure that iteratively reorders rows and columns to maximize structural overlap with the Compatibility Matrix. This produces a rearranged
association matrix (c¢) whose large-scale structure begins to resemble the Compatibility Matrix (note that token indices are relabeled during this process). From the greedily permuted matrix, we
then select the 25 x 25 sub-block that most closely matches the Compatibility Matrix (d). Finally, by applying appropriate thresholds to both the Compatibility Matrix and the selected, permuted
Association sub-matrix, we identify a pair of matrices whose embedding vectors are approximately aligned (e and f). This alignment enables a reliable one-to-one mapping (like that shown in
Main Fig. 3c.iii) between submarine states and pulse-train tokens that can excite the MNN to support optimal feature extraction and decision-making.



2. Inferring parts of speech (PoS) from MNN pulse-
token embeddings

A set of microwave pulse-trains that are related to one another may have applications
beyond establishing logical context for decision-making at the edge as in the submarine
navigation game in the main Article. They could also be used to encrypt meaning in the
words of a spoken language. That is to say, long messages could be encrypted, with meaning,
in just a few analog pulses of a pulse-train token. For example, the word “boy” is 24 bits
long because each of the three letters is represented by one 8-bit byte. In contrast, its
meaning could be encoded in a few cycles of a pulse-train token in a way that, when feature-
extracted, still maintains context with other words in a message. If we do this and, thereby,
transmit with less bandwidth, it could enable an MNN-interpretable communication scheme
that remains compatible with the sub-100-Mbps data rates typical of Ka-band satellite links.
This will dramatically reduce data volume.

Supplementary Fig. 2 illustrates this process. We train a PyTorch Long Short-Term
Memory (LSTM) language model on syntactically valid sentence-fragment ranging from 2
to 7 words in length. For demonstration here, the vocabulary only uses five Parts of Speech
(PoS): Noun, Verb, Adverb, Preposition, and Adjective (Fig. S2a.i), and with only five
words for each PoS (25 total). Training is performed over these fragments, and the resulting
embedding layer provides the learned relationships between words as a cosine-similarity
embedding matrix in the model’s latent space (Fig. S2a.ii). These fragments follow the
set of valid grammatical templates listed below, which define allowable PoS sequences for
varying fragment lengths (Supplementary Table 3).

As in the submarine navigation game, we try to draw parallels between words and their
context to the relationships embedded in the MNN'’s token-association matrix extracted from
short analog pulses (Supplementary Fig. 2b.ii). We map between them using a few search
algorithms (Greedy, Random, etc.) to maximize correspondence between word behavior and
their microwave-token counterparts, using a subset of 25 tokens only. These relationships
are shown in Supplementary Table 2.

To test whether the above mapping is even useful, we first check if the MNN can recognize
the Part of Speech (PoS) of a word injected into it. This training and inference procedure is
shown in Supplementary Fig. 3: a linear layer is trained on pairs of words in the vocabulary,
injected into the MNN, using 10-fold cross-validation. Each token in a PoS pair is classified
from the MNN’s spectrogram response (Fig. S3a.i), with ground-truth labels being the two
actual PoS types (Noun—Adverb, Adjective-Noun, etc.) as shown in Fig S3a.ii.

We then extend this to test how many times we can correctly classify a PoS in sequence,
since this would indicate that MNN-encoded messages can be extended to longer lengths.
To evaluate sentence-level comprehension, we created a “word-at-a-time” game. (Fig. S3b).
Pairs of token-mapped words are fed sequentially into the MNN, with the output then fed
to a trained linear classifier to predict their Parts of Speech. If classification fails, the game
ends; if correct, one or two more words are added. If both PoS predictions are correct,
we inject another two words from a valid template. For odd-numbered templates, the final



single word is given as a “bye” to complete the phrase. This continues until an error occurs
(Fig. 3b). From 10,000 trials with attempts to make 2-7-word sentence-fragments, we
analyze the MNN’s ability to keep extracting the right PoS. It is effectively testing a shared
password, where one MNN is used to try to decode a message encoded by another MNN.
We first evaluated which algorithms for matching microwave tokens to words worked best
by comparing a Greedy Search with a random one-shot assignment between the pulse-train
token-association matrix and the word-embedding matrix. We found that Greedy Search,
when used in combination with the backend linear classifier, correctly identifies the PoS
in sentences up to seven words long (Fig. S3c.i), and performs better than the Random
search. The Greedy Search mapping was therefore used for subsequent evaluation. We then
compared the MNN’s comprehension to a baseline linear model trained directly on raw token
spectrograms. The MNN correctly understood sentence structure in over 55% attempts to
form syntactically valid fragments, versus fewer than 10% for the baseline (Fig. S3c.ii). Also,
the MNN-aided classifier was seen to decipher PoS through full 7-word fragments, whereas
the baseline struggled to reach even 4 words.

This exercise shows that, as a proof of concept, the MNN’s feature expansion—achieved
by instantaneously modulating the bandwidth of its output comb—can be used to interpret
short pulses containing linguistic meaning. In this framework, the MNN acts as a physi-
cal embedding layer, transforming microwave pulse-trains into semantic feature vectors for
downstream language tasks. Although the vocabulary demonstrated here is small, the same
principle could be expanded to form the embedding stage of a larger language model.
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Supplementary Fig. 2 - Mapping digital word-embedding relationships into microwave pulse-train tokens.

a, A small English vocabulary (a.i) of 25 words (five categories: nouns, verbs, adverbs, adjectives, prepositions) is used to generate
short, syntactically valid sentence-fragments from predefined grammatically correct templates. A language model consisting of a
trainable embedding layer and an LSTM decoder is trained to give embedding for each word in the dictionary(a.ii). b, Microwave
pulse-train token space is independently defined for the MNN by three physical degrees of freedom: token amplitude, token pulse

frequency and token duration (b.i). When fed into the Microwave Neural Network, the nonlinear coupling of waveguides produces a

broadband frequency-comb response, encoding features of the tokens as spectrograms. A linear classifier is trained to predict token

one from the other from these spectrograms to provide a Pulse-token Association Matrix (b.ii), quantifying spectral similarity among
pulse tokens. ¢, Greedy and random matching algorithms attempt to select one-to-one mappings for the 25 words by maximizing
similarity in relationships in the Word Embedding and the MNN's token Association matrices (See Supp. Table 2 for word mappings).



a. MNN identifies Parts of Speech (PoS)
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Supplementary Figure. 3 — MNN extracts grammatical structure from a sequence of microwave pulses. a.i, Each English
word is represented by a corresponding microwave pulse-train token. Tokens are injected into the MNN sequentially as word-pairs
and the nonlinear microwave response is measured from the output port as a spectrogram. A trained linear classifier (ridge
regularized multi-class logistic regression) processes these spectrograms to infer the syntactic category (Part-of-Speech) of the
first and second tokens. a.ii, Confusion matrices show PoS prediction across five grammatical classes, with strong on-diagonal
values indicating reliable discrimination enabled by the MNN’s broadband expansion. b, Word-at-a-time sentence-continuation
game tests contextual understanding. MNN predicts the two PoS . Each word must follow a valid grammatical transition (based on
valid templates in Supplementary Table 1) using the predicted PoS. The next words are cascaded with the previous ones and fed
to the MNN. The process continues recursively to extend the length of the sentence-fragment. The game ends if the MNN predicts
an incorrect PoS, or no valid next word exists. ¢, Evaluating mapping and syntactic inference capability. ¢.i, Comparison of greedy-
search vs random-search mapping between 25 English words and 25 pulse-train tokens, evaluated over 10,000 attempts to make
valid sentence-fragments. Greedy search completes more valid fragments. c.ii, Sentence-generation success for MNN + linear
classifier versus a baseline that computes on spectrograms produced from raw tokens. MNN'’s nonlinear spectral expansion
enables reliable inference up to 7 words in a valid sentence fragment template, while the baseline rarely exceeds 4 words.



The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 1).
For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).
The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 2).
For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).
The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 3).

For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).

The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 4).
For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).
The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 5).

For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).

The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 6).
For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).
The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 7).

For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).
The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 8).

For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).
The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 9)

For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).
The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 10)
For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).
The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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00001100

The MNN's broadband output signal, in response to a burst of a pixel's 8-bit pattern, is down-converted at LO = 10.4 GHz and sampled at 625 MS/s (Set 11).
S$=0.33, T=0.67

For each 8-bit pattern (2.5 Gb/s), two samples are acquired every 3.2 ns at baseband, and thresholded into static states (00/11) or dynamic states (01/10).
The static ratio is defined as: S= (# static states) / (300 repetitions). Dynamic ratio, T=1-S. 8-bit patterns are arranged in order of decreasing Static Ratio.
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Supplementary Tables

Supplementary Table 1: Mappings extracted from pulse-train tokens to submarine states in the game shown
in Figs. 3 and 4. i.e., (Brok in Volts, Fpok in MHz, Ty in ns) = (X gtid units, Y grid units, 8 radians)

Brox| Frok| Trok X|Y| 0| |PBrok| Frok| Ttox X|Y| 0| | Brok| Frok| Ttox X|Y| 0
0.4 20 40 |=>(0]0]0 0.85 | 40 40 | =2>|121(01]0 0.85 | 60 100 |=>(2]11]0
0.55 | 20 40 |=>(1]3]|1 0.7 80 40 | =2>|3(11]0 0.4 80 40 |=>|2]1]2
0.7 20 40 |=2>(0]0]2 0.7 20 60 | =>|1|0]|1 0.7 | 100 | 120 | 2|0 |4 |1
0.85 | 20 40 | 2> 4]14]2 0.4 60 40 | =2>| 1|12 0.4 60 80 | 2> | 1|42
1 20 40 | =>(0]3|0 1 40 60 |21 |10 055 | 100 | 60 | =>|3|2]0
0.4 40 40 |20 1|1 055|100 | 40 | >|1|2]0 0.85 | 100 | 100 | > |2 |3 |2
0.55 | 40 40 |=>(0]1]2 0.4 ] 100 | 120 | 2> |03 |1 0.4 | 100 60 | =2>]2|01]1
04 [ 100 | 40 |=>]|0|2]0 0.55 | 100 | 100 | > | 1|0 ]2 1 80 40 |=>|121]21]0
0.7 | 100 | 40 | >0 |21 0.7 60 80 | 2> | 1|32 0.7 80 60 |2 1[40
0.55 | 20 80 | =>| 0|40 1 60 60 |21 2|2 0.55 | 100 80 | 2> 2|11
0.7 40 40 | =231 ]2 0.85 | 100 60 | =>|1|10|0 1 60 100 | =|2]3]0
0.85 | 40 80 | =>4 |32 0.85 | 80 40 | =200 1 0.7 60 40 | =223 |1
0.85 | 60 40 |=2>(101]3]2 0.4 40 60 |21 2|1 0.4 | 100 80 | =>| 0|22
1 40 40 |=>(2]0]2 1 100 80 | =>| 1|30 085|100 | 40 | =>|2]|4|0

1 100 60 | =2>|0[1]0 1 100 40 | =>|1]1]1 0.7 | 100 80 | =2 | 3|11
0.55 | 60 60 | 23|01 1 20 80 | 2> 2|2 |1 055 ] 60 | 120 | >3 |3 |1
0.7 80 120 | =302 1 60 120 | =240 2 0.4 80 120 | =241 (1
1 80 80 | >|3]|0]0 0.85 | 60 60 | 2|0 4|2 1 80 | 100 | > | 4|12
0.85 | 100 80 | =>4 |22 1 40 100 | 2|3 [4]2 0.55 | 40 100 | >[4(2]0
0.85 | 80 60 |=2|31[13]0 0.7 40 100 | =401 0.7 20 80 | 2|4 ]|2]|1
1 100 | 100 | 2> [ 3|2 ]|1 1 20 120 | =233 ]2 0.55 | 40 60 | =2>]|4(1310
0.85 | 20 100 | =>4 1]4]1 0.7 60 60 | =>|3|4|0 0.7 | 100 | 100 | > | 4|3 |1
1 20 60 | =>|21]2]2 0.7 80 80 | > |2 4|2 0.7 20 100 | =21 (41
0.85 | 80 100 | = 2]4]1 0.85 | 20 120 | =21 4101]0 0.4 20 60 | 2>|4(1410
1 60 40 |=>(4]1]0 1 80 120 | =23 (2]2 0.4 40 120 | =23 (4|1
0.55 | 60 60 | =>|13]0]1 1 20 80 | 2> 2|2 |1 0.55 | 60 120 | =233 |1
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Supplementary Table 2: Mappings extracted from pulse-train tokens to word tokens in the sentence-

building game shown in Supplementary Figs. 2 and 3. i.e., (Brok in Volts, Frok in MHz, Ty in ns) = word

Brox | Frok | Ttox X Brok | Frok | Trox X Brox | Frok | Ttox X
0.7 | 100 80 > bridge 0.55 40 100 | > happily 0.4 80 100 | = | quiet
0.85 100 80 > laughed 0.85 40 100 | > fell 0.55 80 100 | = | quickly

1.0 100 80 > over 1.0 40 100 | > crawled 0.7 80 100 | > in
0.4 20 100 | = | intetresting 0.4 60 100 | 2> jumped 0.85 80 100 | 2> | new
0.55 20 100 | > dark 0.55 60 100 | > sadly 1.0 80 100 | > old
0.7 20 100 | > boy 0.7 60 100 | = | mischievously 1.0 80 100 | = | across
0.85 20 100 | > at 0.85 60 100 | > girl 0.4 100 100 | = | under
1.0 20 100 | > ran 1.0 60 100 | > slowly 0.55 100 100 | =2 | road
0.4 40 100 | > river

Supplementary Table 3: Syntactically valid sentence-fragment templates for generating a training set for mapping word-
embeddings to pulse-train tokens in Supplementary Note 2.

Word length

Syntactically valid sentence-fragment templates

Representative example

2 words long

Noun — Verb

boy-ran

3 words long

Noun — Vetb — Adverb
Noun — Adverb — Verb
Adjective — Noun — Verb

girl-laughed-happily
boy-quickly-ran
old-bridge-fell

4 words long

Noun — Verb — Preposition — Noun
Verb — Adverb — Preposition — Noun
Adverb — Verb — Preposition — Noun
Adjective — Noun — Verb — Adverb

boy-jumped-across-river
ran-quickly-across-road
slowly-crawled-under-bridge
happy-gitl-laughed-mischievously

5 words long

Adjective — Noun — Verb — Preposition — Noun
Noun — Verb — Preposition — Adjective — Noun
Verb — Preposition — Adjective — Noun — Adverb
Verb — Adverb — Preposition — Adjective — Noun
Adverb — Verb — Preposition — Adjective — Noun

quiet-girl-ran-across-road
boy-fell-over-old-bridge
laughed-at-interesting-boy-happily
ran-quickly-under-quiet-bridge
quickly-jumped-across-new-bridge

6 words long

Adjective — Noun — Verb — Preposition — Noun —

Adverb

new-bridge-ran-across-river-happily

7 words long

Adjective — Noun — Adverb — Verb — Preposition

— Adjective — Noun

happy-boy-happily-ran-across-old-bridge

Supplementary Table 4: Breakdown of power consumption in the feature extraction front-end.

On-chip MNN power consumption

Off-chip consumption (will be integrated in the next version)

On-chip Max. Voltage Max. Current | Max. Power Component Voltage Current Power
Supply for MNN 09V 130 mA 117 mW IF amplifier 33 55 mA 182 mA
oscillator core
Passive mixer N/A 0 mA 0 mA
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