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Appendix

A.1 Problem definition and notational conven-
tions

Let 7 = {(G;,y;)}Y., denote a dataset of N molecular graphs,
where G; = (V;,E;). Each node v; € V; represents an atom with
features x; € R%, and each edge (u,v) € E; represents a chemi-
cal bond. The scalar or vector label y; corresponds to a quantum
or macroscopic molecular property (e.g., HOMO-LUMO gap,
solubility, or bioactivity).

Each model layer ! maintains atomic embeddings
th) € R% and bond contextual features E,lv) Total
number of message-passing layers is L. Throughout

(1)

uy s

this appendix we use A (v) = {u | (u,v) € E},
for orbital overlap integrals of type ¢ € {c, 7w, nb}.

A.2 Quantum-informed feature initialization

To anchor the embedding space in physical signal, the initial-
ization of atomic states uses a physically motivated basis:

(0)

h; ey

where U, and g, are atomic dipole and partial charge estimates
computed from semi-empirical xTB calculations 4. All en-
ergy quantities are normalized as E' = (E — E') / o within each
batch to stabilize training.

= [%y; Enomo.ys ELumo.s Hvs gv),

A.3 Orbital-guided multi-head attention

OG-QIMP interprets bond communication as a learned opera-
tor acting on the space of atomic orbitals. For head type ¢ (o,
7, non-bonding), we define an attention score

L0 _ (W) T W OR()
" vy
where W< ) W(l ) are projection matrices and f3; scales the ex-

plicit orbltal prior. Applying softmax normalization over neigh-
bors yields normalized attention coefficients

+BSY, )

l,
0 explan”) 3
uv 1. M
Zwe/l/(u) exp(a,(”’f))
Messages are computed as
) =l ¥ oalwOR @

veN (u)
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Residual update with non-linearity:

b = ReLU (W' m{) +n{’.

A.4 Connection between attention and Hamilto-
nian operators

We formalize the link between OG-QIMP’s attention scores
and the quantum mechanical Hamiltonian A. For a given pair
of basis functions (¢;,¢;), the off-diagonal Hamiltonian ele-
ment is:

Hy = [/ ()6 (e)dr

Within the tight-binding approximation, H;; is often propor-
tional to the overlap S;;. The attention mechanism implicitly
learns a transformation &7 : (i, j) — 04;. When f; > 0 and

W(qm,W,((l *) are initialized to identity, @;; approximates a nor-

malized function of H;;:

(, t) exp(yHlj)
al
77 Yeexp(yHy)

where 7y absorbs scaling terms. Thus, attention coefficients
can be interpreted as a differentiable stochastic estimate of the
Hamiltonian interactions electing electron transfer probability
between atomic sites. This connection formalizes the claim
that OG-QIMP learns a neural approximation to operator-level
quantum coupling.

A.S5 Progressive physics-to-data loss derivation

The overarching training objective balances physical faithful-
ness and predictive performance. Formally,

~

-

zotal + )Ll ﬂup] L &)

2[1*11

phyg

A.5.1 Physics regularizer. For each layer / the physical re-
construction loss penalizes deviation from normalized overlap

values:
0 _ &
Z ||0‘ij -5
i,j)eE

1

2
| | ij||2;
(

where S;; = (S;; —S)/ 0. This term ensures that attention maps
mimic physically plausible bonding distributions.
A.5.2 Supervised objective. For task-specific labels yg,

L =Eos [1(£5(6). y0)]

where ¢(-) is cross-entropy for classification or MAE for re-
gression and f(g” is the network prediction of partial output af-
ter layer [.

The weighting coefficient A; implements a linear annealing
from physical regularization toward empirical supervision:

a1
M _ 25
a Lo

guaranteeing monotonic increase in empirical influence with-
out abrupt shifts.
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Table 3: Summary of symbols and notation. Key mathematical symbols used throughout the manuscript.

Symbol Definition

2 = {(Gi,yi)}¥, Dataset of N molecular graphs G; with corresponding molecular property labels y;.
G=(V,E) Molecular graph, where V and E represent sets of atoms (nodes) and chemical bonds (edges).
hy) € R% Hidden representation of atom v at layer /.

bl(,lv) Edge (bond) feature for atomic pair («,v) at layer /.

Sg.) Orbital overlap integral between orbitals of type t € {o, w,nb} for atoms i and j.

6, Learnable term weighting the influence of orbital overlap term SE'-) within each attention head.
A =I1/L Layer-wise progressive coefficient controlling physics—to—data transition (L: total layers).
ag.‘[) Raw attention score between atoms i and j for head type ¢ in layer /.

ocl-(;‘t) Normalized attention coefficient for edge (i, /) under orbital head 7.

mg-‘r) Message passed from node j to node i through head 7 at layer /.

Att® Orbital-decomposed attention operator for type ¢ € {G,7,nb}.

Enomo, ELumo
AEy,

Frontier orbital energies: highest occupied and lowest unoccupied molecular orbitals.
HOMO-LUMO gap, representing electronic reactivity: AEy, = Epymo — Enomo-

Bi Atom-level reactivity coefficient derived from attention pooling.

G Molecular embedding obtained after hierarchical pooling (Set2Set, Orbital, Reactivity).
fo: M - Neural mapping from molecular structures .2 to properties % parameterized by 6.

Lap Supervised task loss (mean squared error for regression; cross-entropy for classification).
Lohys Physics reconstruction loss aligning attention weights with orbital overlaps.

Lotal Composite training objective: ):lel[(l - JLI)D?;;}?YS + A Lup)-

Lonysics ltask Layer-wise metrics for physical consistency and task relevance.

Qoac Overlap—attention correlation quantifying alignment between learned and quantum overlaps.
R(fP) Expected predictive risk of model f under data distribution P.

I Quantum Hamiltonian operator governing electronic energy.

0i(r) Basis function (atomic orbital) of atom i in spatial coordinates r.

Hij = [ ¢/ (r) 2 ¢;(r)dr
n,d,H,L
O(LHdn)

Number of atoms, average bond

Off-diagonal Hamiltonian term proportional to orbital overlap S;;.

degree, attention heads, and network layers.

Computational complexity of one forward—backward training iteration.

A.6 Optimization dynamics

Let 0 denote all learnable parameters. The gradient of the total
loss follows:

L
VoLroa = Y, [(1-A)Vo Ll +MVo. L)

I=1
During early training, A; small = gradients dominated by
V ZLpnys, stabilizing physical alignment. As optimization pro-
ceeds, gradient mass shifts to V.%,,, permitting data-driven
feature discovery. This behaves analogously to a curriculum
learning schedule traversing from theory-driven to empirically
guided optimization.

A.7 Hierarchical reactivity pooling formalism

Given atomic embeddings {hl(L) }, the molecular representation
Z is constructed as:

ex WTth)
7| :ZaihEUv o = p( — (2) )
; X exp(w/h")
T
zg = Set2Set(z;,T) = Z GRU(qy, z/—1), (6)

t=1

where (¢, denotes attention queries updated via a gated recur-
rent unit (GRU) over T iterations. This ensures permutation
invariance of pooled molecular embeddings.

A.8 Theoretical properties

Theorem 1 (Quantum Figenfunction Learning). Orbital-
guided attention learns a variational approximation to the

ground state wavefunction with error bound:

R C
Ao —Polla < —=+ O (A}
[AoG —Poll2 < NG (A)
satisfying the variational principle E [Aog] > Ey for chemically
meaningful representations.

Theorem 2 (Optimal Progressive Weighting). Linear weight-
ing Ay = l/L minimizes composite 10ss Liptal = Lrask + B -
KL(Piearned||Pphysics) among all monotonic functions, optimally
balancing task performance with physical consistency.

Proposition 1 (Energy consistency). If the overlap—attention
correlation p(a,S) >0 at each layer and A; — 0, the learned
representation conserves pairwise interaction energies up to a
factor O((1 —Ar)). Proof sketch. Since early layers minimize
Zhys» the attention kernel approximates S. Given tight-binding
proportionality H;; o S;;, the expectation of predicted energy
E[Epreq] differs from quantum reference Eqy by a residual de-
creasing with 4. O

Proposition 2 (Progressive universality). Assume base
GNN layer is a universal approximator on bounded graphs *’.
Then the composite loss with A; = [ /L preserves universality
as L — oo, while enforcing physical bias in the limit //L — 0.
Sketch. Because (1 — 4;) decays linearly, asymptotic layer
capacity converges to purely data-driven expressivity. Hence
OG-QIMP spans the convex hull between physically con-
strained and universal representations.

A.9 Out-of-distribution generalization theorem

Let Pyin and Pieg denote training and shifted molecular dis-
tributions. Define risk Z(f; %) = E»[¢(f(G),y)]. Under the
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assumption that the physical overlap kernel captures invariant
structural relations, the risk difference satisfies

Z(foc-omp; Prest) — Z(foG-omp; Prain) < C(1—1) || Agm |2,

where Agym quantifies deviation in overlap distributions be-
tween domains and A = %):l A;. Thus, incorporating physical
priors mitigates sensitivity to distribution shift.

A.10 Computational complexity

For molecule of n atoms with maximum degree d, attention
computation per layer scales as &' (Hdn), where H is number of
heads. Computing orbital overlaps S;; scales as &'(dn) with low
constant factor due to analytic STO integrals. Overall training
complexity: ¢ (LHdn). Empirically, OG-QIMP is 1.8 x slower
than a standard GAT '2, but yields > 25% higher OOD robust-
ness.

A.11 Relation to existing models

Relative to established message-passing and physics-informed
approaches, OG-QIMP introduces a progressive physics-to-
data paradigm that embeds quantum-mechanical structure di-
rectly into representation learning. (1) Compared to SchNet,
which parameterizes continuous radial filters over interatomic
distances, OG-QIMP replaces purely distance-based filters
with orbital-overlap kernels grounded in quantum overlap in-
tegrals. This substitution injects discrete chemical semantics
(e.g., 0/ and bonding/nonbonding character) into early rep-
resentations, yielding features that align with molecular or-
bital theory rather than generic distance encodings. (2) In
contrast to architectures such as DimeNet and GemNet that
hard-code angular potentials via explicit spherical harmonics
and angle-based message functions, OG-QIMP learns angular
dependencies implicitly through multi-head attention guided
by orbital theory. Attention heads are modulated by overlap-
informed cues, shifting angular reasoning from manual po-
tential design to data-driven mechanisms that remain physics-
aware. (3) Unlike standard physics-informed neural networks
(PINNSs), which impose differential equation residuals as loss
constraints, OG-QIMP constrains intermediate representations
through quantum-informed priors and a linear progressive
weighting scheme. By enforcing physically interpretable sub-
spaces early and gradually relaxing toward data-adaptive trans-
formations, the model captures regimes where governing PDEs
or mean-field approximations are only approximate, while pre-
serving robustness and transferability.

Together, these design choices reconcile quantum-chemistry
priors with deep learning flexibility: early layers provide inter-
pretable, transferable orbital semantics, whereas deeper layers
refine these signals through learned transformations, yielding
improved generalization under distribution shift beyond what
is attainable with distance-only filters, hand-crafted angular po-
tentials, or loss-only PDE constraints.

A.12 Interpretability quantification

We quantify physical consistency using overlap—attention cor-
relation (OAC) defined as:

Yij) (aff) —a)(s;;—9)

0AC!) = .
\/Z(O‘i(;) - 55(1))2\/2(51']‘ -8)?
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OAC values range 0-1; higher indicates stronger adherence
to quantum bonding patterns. Empirically, OG-QIMP yields
0AC®) ~ (.85, surpassing baseline GNNs (< 0.3).

A.13 Gradient attribution and visualization met-
rics

The molecular saliency r; is defined via Integrated Gradients *%:

-1

V, @f(h*)da,

a=0 hia
providing atom-level contribution to property prediction. Over-
lay of r; on 3D structures yields interpretable maps aligning

with chemical reactivity centers.

A.14 Summary of theoretical guarantees
In summary:

1. Operator analogy: attention acts as a stochastic estimator
of Hamiltonian interactions.

2. Energy preservation: early-layer alignment maintains
approximate energy conservation.

3. Progressive universality: the A; schedule interpolates
between physics-limited and universal approximation
regimes.

4. Bounded distribution shift: physical priors reduce risk

under domain shift by a factor proportional to (1 —2).

Combined, these properties formally justify OG-QIMP’s ob-
served interpretability and robustness described in the main
text.

A.15 Related Work

Graph neural networks have revolutionized molecular property
prediction, evolving from simple message passing architectures
like GCN #° and GAT *° to sophisticated models incorporating
physical constraints. SchNet '3 and DimeNet ! leverage 3D
coordinates, while recent transformer-based approaches 3233
and foundation models like MolFormer °* achieve impres-
sive scale. GPS++ > introduces powerful graph transform-
ers and GeoT ® combines geometric and topological infor-
mation. However, these architectures fundamentally rely on
correlation-based learning, making them vulnerable to spuri-
ous patterns and distribution shifts when encountering novel
chemical spaces.

Physics-informed molecular modeling has improved ac-
curacy through incorporating quantum mechanical princi-
ples 71 OrbNet 6% operates on quantum features, while
PaiNN 3 and NequlP * build in physical symmetries. Recent
advances include MatterGen >’ and AlphaFold3 ©!. However,
existing methods face critical limitations: they treat quantum
constraints as static priors, creating tension between physical
consistency and expressiveness. This binary paradigm, where
physics either dominates or is absent, fails to recognize that dif-
ferent network depths should capture different abstraction lev-
els. Early layers require strong physical guidance for orbital
interactions, while deeper layers need flexibility for emergent
patterns.
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Figure 6: Layer-wise interpretability and attention evolution in OG-QIMP. (a) Normalized metrics demonstrating the pro-
gressive transition from physics-guided to task-oriented learning across 12 layers. The physical alignment metric Jynysics (green)
decreases from 1.0 to near 0, while task relevance I, (red) increases from O to approximately 0.25, with crossover occurring at
layer 6, validating our linear weighting schedule A; = /L. (b) t-SNE projections of hidden representations from layers 1, 3, 6, 9,
and 12, showing gradual tight of molecular embeddings as representations evolve from dispersion, physically-widely distributed
features in early layers (light blue) to task-adapted, constrained clusters in deeper layers (dark blue). (c) Attention heatmaps
revealing the evolution of learned interaction patterns: early layers capture local chemical bonding with strong diagonal elements
and nearest-neighbor connections, while later layers develop distributed attention incorporating both local and long-range molec-

ular correlations for task-specific predictions.

Table 4: Hyperparameter settings and corresponding performance on BACE. Each row shows the hyperparameter values (e.g.,
hidden dimension, number of layers, attention heads, and dropout rate) and their respective performance (mean 4 standard

deviation).

Hyperparameter Hidden Dimension Number of Layers Attention Heads Dropout Rate
Setting 32 4 6 0.0
Performance 0.889:0.010 0.907:0017 0.914:0004 0.898:0.009
Setting 64 8 8 0.1
Performance 0.914 10004 0.880:0011 0.892:0002 0.914:00.004
Setting 128 12 10 0.2
Performance 0.894 0017 0.914:0004 0.882:0.006 0.884:0013
Setting 256 14 12 0.3
Performance 0.886:0.016 0.882:0.006 0.905:0011 0.885:0.025

Current approaches 3¢ suffer from single-scale representation
bottlenecks. Molecular properties emerge from complex inter-
play across quantum electron distributions, molecular confor-
mations, and intermolecular interactions. Methods operating at
single resolutions 4 3% miss crucial cross-scale dependencies.
Drug-target binding depends simultaneously on local hydrogen
bonding (quantum scale), shape complementarity (molecular
scale), and solvation effects (mesoscale), explaining why ex-
isting methods fail on multi-property prediction. Additionally,
the interpretability paradox persists. Thus incorporating phys-
ical constraints doesn’t yield interpretable models. Methods
adding orbital features  still produce black-box predictions
with physics entangled opaquely.

OG-QIMP addresses these limitations through three syner-
gistic innovations. First, progressive physics-data transition
(A(I) = 1/L) enables each layer to optimally balance physical
constraints with data-driven refinement, smoothly transition-
ing from quantum foundations to task-specific patterns. Sec-
ond, hierarchical multi-scale architecture explicitly captures
quantum (orbital attention, layers 1-4), molecular (hybrid fu-
sion, layers 5-8), and pharmacological (task optimization, lay-
ers 9-12) scales with chemically-motivated pooling mecha-
nisms. Third, intrinsically interpretable orbital decomposition
factorizes attention into o, 7, and non-bonding components
with direct chemical meaning, attention weights correlate with
DFT-computed orbital coefficients. These innovations establish
“quantum-informed intelligence”, models that learn like neural
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networks but reason like quantum chemists, where physics and
machine learning synergistically enhance rather than constrain
each other.

A.16 Experiments
Datasets and Evaluation

We evaluate OG-QIMP on seven molecular property predic-
tion benchmarks from MoleculeNet, covering diverse pharma-
ceutical and toxicological endpoints. The datasets span a wide
range of molecular sizes and task complexities: BACE (1,513
molecules) for binary classification of f-secretase inhibitors
relevant to Alzheimer’s disease, BBBP (2,039 molecules) for
blood-brain barrier permeability prediction, ClinTox (1,478
molecules) with 2 binary tasks assessing clinical trial toxic-
ity, SIDER (1,427 molecules) containing 27 binary tasks for
marketed drug side effects, Tox21 (7,831 molecules) with 12
binary tasks measuring toxicity against nuclear receptors and
stress response pathways, HIV (41,127 molecules) for binary
classification of HIV replication inhibition, and MUV (93,087
molecules) comprising 17 binary tasks from PubChem bioas-
says designed to be challenging for virtual screening. This di-
verse collection enables comprehensive evaluation across dif-
ferent molecular property prediction scenarios, from small fo-
cused datasets requiring strong inductive bias to large-scale
screening tasks demanding computational efficiency. Scaffold

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157



1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

171

172

1173

1174

1175

1176

177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

split (80/10/10) ensures realistic evaluation by placing struc-
turally distinct molecules in different sets. ROC-AUC for clas-
sification tasks, with 5 random seeds for statistical significance.

Implementation Details of OG-QIMP

We conducted hyperparameter study and show results in Ta-
ble 4. We provide specific details of our model’s hyperpa-
rameter settings as follows: Architecture specifications. OG-
QIMP employs a 12-layer architecture with hidden dimension
d = 64, split evenly between 6 physics-constrained layers uti-
lizing 3 orbital-specific attention heads and 6 data-driven lay-
ers with 6 standard attention heads. Dropout rates increase
from 0.1 in early layers to 0.2 in late layers, with GELU ac-
tivation throughout. Molecular featurization combines three
complementary representations: 78-dimensional node features
encoding atomic properties (atomic number, degree, formal
charge, hybridization, aromaticity, ring membership, chiral-
ity, Gasteiger partial charge, atomic mass, van der Waals ra-
dius, covalent radius, and electrone gativity), 12-dimensional
edge features capturing bond characteristics (bond type, con-
jugation, ring membership, stereochemistry, and bond length),
and orbital features computed via PM6 semiempirical meth-
ods providing HOMO/LUMO coefficients and energies. Train-
ing procedure utilizes AdamW optimizer with learning rate
10~* and weight decay 1073, combined with cosine anneal-
ing with warm restarts for learning rate scheduling. Models
are trained with batch size 32 using gradient accumulation to
achieve an effective batch size of 128, running for a maxi-
mum of 300 epochs. All experiments were conducted on a
single NVIDIA H800 GPU (80GB), demonstrating the com-
putational efficiency of our approach despite the additional or-
bital calculations. The progressive weighting schedule 4; =1/L
is applied during training to smoothly transition from physics-
constrained to data-driven learning, ensuring stable conver-
gence while maintaining physical interpretability.
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