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Appendix886

A.1 Problem definition and notational conven-887

tions888

Let D = {(Gi,yi)}N
i=1 denote a dataset of N molecular graphs,889

where Gi = (Vi,Ei). Each node v j 2Vi represents an atom with890

features x j 2Rdx , and each edge (u,v)2 Ei represents a chemi-891

cal bond. The scalar or vector label yi corresponds to a quantum892

or macroscopic molecular property (e.g., HOMO–LUMO gap,893

solubility, or bioactivity).894

Each model layer l maintains atomic embeddings895

h(l)
v 2 Rdh and bond contextual features b(l)

uv . Total896

number of message-passing layers is L. Throughout897

this appendix we use N (v) = {u | (u,v) 2 E}, S(t)uv ,898

for orbital overlap integrals of type t 2 {s ,p,nb}.899

A.2 Quantum-informed feature initialization900

To anchor the embedding space in physical signal, the initial-901

ization of atomic states uses a physically motivated basis:902

h(0)
v = [xv; EHOMO,v; ELUMO,v; µv; qv], (1)903

where µv and qv are atomic dipole and partial charge estimates904

computed from semi-empirical xTB calculations 46. All en-905

ergy quantities are normalized as E 0 = (E � Ē)/sE within each906

batch to stabilize training.907

A.3 Orbital-guided multi-head attention908

OG-QIMP interprets bond communication as a learned opera-909

tor acting on the space of atomic orbitals. For head type t (s ,910

p , non-bonding), we define an attention score911

a(l,t)uv =
(W(l,t)

q h(l)
u )>(W(l,t)

k h(l)
v )

p
dh

+btS
(t)
uv , (2)912

where W(l,t)
q , W(l,t)

k are projection matrices and bt scales the ex-913

plicit orbital prior. Applying softmax normalization over neigh-914

bors yields normalized attention coefficients915

a(l,t)
uv =

exp(a(l,t)uv )

Âw2N (u) exp(a(l,t)uw )
. (3)916

Messages are computed as917

m(l)
u =

��
t2T Â

v2N (u)
a(l,t)

uv W(l,t)
v h(l)

v . (4)918

Residual update with non-linearity: 919

h(l+1)
u = ReLU

⇣
W(l)

r m(l)
u

⌘
+h(l)

u . 920

A.4 Connection between attention and Hamilto- 921

nian operators 922

We formalize the link between OG-QIMP’s attention scores 923

and the quantum mechanical Hamiltonian Ĥ. For a given pair 924

of basis functions (fi,f j), the off-diagonal Hamiltonian ele- 925

ment is: 926

Hi j =
Z

f ⇤
i (r) Ĥ f j(r)dr. 927

Within the tight-binding approximation, Hi j is often propor- 928

tional to the overlap Si j. The attention mechanism implicitly 929

learns a transformation A : (i, j) 7! ai j. When bt > 0 and 930

W(l,t)
q ,W(l,t)

k are initialized to identity, ai j approximates a nor- 931

malized function of Hi j: 932

a(l,t)
i j ⇡

exp(gHi j)

Âk exp(gHik)
, 933

where g absorbs scaling terms. Thus, attention coefficients 934

can be interpreted as a differentiable stochastic estimate of the 935

Hamiltonian interactions electing electron transfer probability 936

between atomic sites. This connection formalizes the claim 937

that OG-QIMP learns a neural approximation to operator-level 938

quantum coupling. 939

A.5 Progressive physics-to-data loss derivation 940

The overarching training objective balances physical faithful- 941

ness and predictive performance. Formally, 942

Ltotal =
L

Â
l=1

⇥
(1�ll)L

(l)
phys +ll L

(l)
sup

⇤
, ll =

l
L
. (5) 943

A.5.1 Physics regularizer. For each layer l the physical re- 944

construction loss penalizes deviation from normalized overlap 945

values: 946

L (l)
phys =

1
|E| Â

(i, j)2E
ka(l)

i j � S̃i jk2
2, 947

where S̃i j = (Si j � S̄)/sS. This term ensures that attention maps 948

mimic physically plausible bonding distributions. 949

A.5.2 Supervised objective. For task-specific labels yG, 950

L (l)
sup = EG⇠D

h
`( f (l)q (G), yG)

i
, 951

where `(·) is cross-entropy for classification or MAE for re- 952

gression and f (l)q is the network prediction of partial output af- 953

ter layer l. 954

The weighting coefficient ll implements a linear annealing 955

from physical regularization toward empirical supervision: 956

dll

dl
=

1
L
> 0, 957

guaranteeing monotonic increase in empirical influence with- 958

out abrupt shifts. 959
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Table 3: Summary of symbols and notation. Key mathematical symbols used throughout the manuscript.
Symbol Definition

D = {(Gi,yi)}N
i=1 Dataset of N molecular graphs Gi with corresponding molecular property labels yi.

G = (V,E) Molecular graph, where V and E represent sets of atoms (nodes) and chemical bonds (edges).
h(l)v 2 Rdh Hidden representation of atom v at layer l.
b(l)uv Edge (bond) feature for atomic pair (u,v) at layer l.
S(t)i j Orbital overlap integral between orbitals of type t 2 {s ,p,nb} for atoms i and j.
qt Learnable term weighting the influence of orbital overlap term S(t)i j within each attention head.
ll = l/L Layer-wise progressive coefficient controlling physics–to–data transition (L: total layers).
a(l,t)i j Raw attention score between atoms i and j for head type t in layer l.
a(l,t)

i j Normalized attention coefficient for edge (i, j) under orbital head t.
m(l,t)

i j Message passed from node j to node i through head t at layer l.
Att(t) Orbital-decomposed attention operator for type t 2 {s ,p,nb}.
EHOMO, ELUMO Frontier orbital energies: highest occupied and lowest unoccupied molecular orbitals.
DEHL HOMO–LUMO gap, representing electronic reactivity: DEHL = ELUMO �EHOMO.
bi Atom-level reactivity coefficient derived from attention pooling.
zG Molecular embedding obtained after hierarchical pooling (Set2Set, Orbital, Reactivity).
fq : M ! Y Neural mapping from molecular structures M to properties Y parameterized by q .
Lsup Supervised task loss (mean squared error for regression; cross-entropy for classification).
Lphys Physics reconstruction loss aligning attention weights with orbital overlaps.
Ltotal Composite training objective: ÂL

l=1[(1�ll)L
(l)

phys +llLsup].
Iphysics, Itask Layer-wise metrics for physical consistency and task relevance.
WOAC Overlap–attention correlation quantifying alignment between learned and quantum overlaps.
R( f ;P) Expected predictive risk of model f under data distribution P.
H Quantum Hamiltonian operator governing electronic energy.
fi(r) Basis function (atomic orbital) of atom i in spatial coordinates r.
Hi j =

R
f⇤

i (r)H f j(r)dr Off-diagonal Hamiltonian term proportional to orbital overlap Si j .
n, d, H, L Number of atoms, average bond degree, attention heads, and network layers.
O(LHdn) Computational complexity of one forward–backward training iteration.

A.6 Optimization dynamics960

Let q denote all learnable parameters. The gradient of the total961

loss follows:962

—q Ltotal =
L

Â
l=1

⇥
(1�ll)—q L (l)

phys +ll—q L (l)
sup

⇤
.963

During early training, ll small ) gradients dominated by964

—Lphys, stabilizing physical alignment. As optimization pro-965

ceeds, gradient mass shifts to —Lsup, permitting data-driven966

feature discovery. This behaves analogously to a curriculum967

learning schedule traversing from theory-driven to empirically968

guided optimization.969

A.7 Hierarchical reactivity pooling formalism970

Given atomic embeddings {h(L)
i }, the molecular representation971

zG is constructed as:972

z1 = Â
i

aih(L)
i , ai =

exp(w>
r h(L)

i )

Â j exp(w>
r h(L)

j )
,973

zG = Set2Set(z1,T ) =
T

Â
t=1

GRU(qt , zt�1), (6)974

where qt denotes attention queries updated via a gated recur-975

rent unit (GRU) over T iterations. This ensures permutation976

invariance of pooled molecular embeddings.977

A.8 Theoretical properties978

Theorem 1 (Quantum Eigenfunction Learning). Orbital-
guided attention learns a variational approximation to the

ground state wavefunction with error bound:

kÂOG �Y0k2 
Cp

n
+O(l 2

L )

satisfying the variational principle E[ÂOG]� E0 for chemically 979

meaningful representations. 980

Theorem 2 (Optimal Progressive Weighting). Linear weight- 981

ing ll = l/L minimizes composite loss Ltotal = Ltask + b · 982

KL(Plearned ||Pphysics) among all monotonic functions, optimally 983

balancing task performance with physical consistency. 984

Proposition 1 (Energy consistency). If the overlap–attention 985

correlation r(a,S)> 0 at each layer and l1 ! 0, the learned 986

representation conserves pairwise interaction energies up to a 987

factor O((1�lL)). Proof sketch. Since early layers minimize 988

Lphys, the attention kernel approximates S. Given tight-binding 989

proportionality Hi j µ Si j, the expectation of predicted energy 990

E[Epred] differs from quantum reference EQM by a residual de- 991

creasing with l1. 992

Proposition 2 (Progressive universality). Assume base 993

GNN layer is a universal approximator on bounded graphs 47. 994

Then the composite loss with ll = l/L preserves universality 995

as L ! •, while enforcing physical bias in the limit l/L ! 0. 996

Sketch. Because (1 � ll) decays linearly, asymptotic layer 997

capacity converges to purely data-driven expressivity. Hence 998

OG-QIMP spans the convex hull between physically con- 999

strained and universal representations. 1000

A.9 Out-of-distribution generalization theorem 1001

Let Ptrain and Ptest denote training and shifted molecular dis- 1002

tributions. Define risk R( f ;P) = EP [`( f (G),y)]. Under the 1003
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assumption that the physical overlap kernel captures invariant1004

structural relations, the risk difference satisfies1005

R( fOG-QIMP;Ptest)�R( fOG-QIMP;Ptrain)C(1� l̄ )kDQMk2,1006

where DQM quantifies deviation in overlap distributions be-1007

tween domains and l̄ = 1
L Âl ll . Thus, incorporating physical1008

priors mitigates sensitivity to distribution shift.1009

A.10 Computational complexity1010

For molecule of n atoms with maximum degree d, attention1011

computation per layer scales as O(Hdn), where H is number of1012

heads. Computing orbital overlaps Si j scales as O(dn) with low1013

constant factor due to analytic STO integrals. Overall training1014

complexity: O(LHdn). Empirically, OG-QIMP is 1.8⇥ slower1015

than a standard GAT 12, but yields > 25% higher OOD robust-1016

ness.1017

A.11 Relation to existing models1018

Relative to established message-passing and physics-informed1019

approaches, OG-QIMP introduces a progressive physics-to-1020

data paradigm that embeds quantum-mechanical structure di-1021

rectly into representation learning. (1) Compared to SchNet,1022

which parameterizes continuous radial filters over interatomic1023

distances, OG-QIMP replaces purely distance-based filters1024

with orbital-overlap kernels grounded in quantum overlap in-1025

tegrals. This substitution injects discrete chemical semantics1026

(e.g., s/p and bonding/nonbonding character) into early rep-1027

resentations, yielding features that align with molecular or-1028

bital theory rather than generic distance encodings. (2) In1029

contrast to architectures such as DimeNet and GemNet that1030

hard-code angular potentials via explicit spherical harmonics1031

and angle-based message functions, OG-QIMP learns angular1032

dependencies implicitly through multi-head attention guided1033

by orbital theory. Attention heads are modulated by overlap-1034

informed cues, shifting angular reasoning from manual po-1035

tential design to data-driven mechanisms that remain physics-1036

aware. (3) Unlike standard physics-informed neural networks1037

(PINNs), which impose differential equation residuals as loss1038

constraints, OG-QIMP constrains intermediate representations1039

through quantum-informed priors and a linear progressive1040

weighting scheme. By enforcing physically interpretable sub-1041

spaces early and gradually relaxing toward data-adaptive trans-1042

formations, the model captures regimes where governing PDEs1043

or mean-field approximations are only approximate, while pre-1044

serving robustness and transferability.1045

Together, these design choices reconcile quantum-chemistry1046

priors with deep learning flexibility: early layers provide inter-1047

pretable, transferable orbital semantics, whereas deeper layers1048

refine these signals through learned transformations, yielding1049

improved generalization under distribution shift beyond what1050

is attainable with distance-only filters, hand-crafted angular po-1051

tentials, or loss-only PDE constraints.1052

A.12 Interpretability quantification1053

We quantify physical consistency using overlap–attention cor-1054

relation (OAC) defined as:1055

OAC(l) =
Â(i, j)(a

(l)
i j � ā(l))(Si j � S̄)

q
Â(a(l)

i j � ā(l))2
q

Â(Si j � S̄)2
.1056

OAC values range 0–1; higher indicates stronger adherence 1057

to quantum bonding patterns. Empirically, OG-QIMP yields 1058

OAC(3) ⇡ 0.85, surpassing baseline GNNs (< 0.3). 1059

A.13 Gradient attribution and visualization met- 1060

rics 1061

The molecular saliency ri is defined via Integrated Gradients48: 1062

ri = (h(L)
i �h(0)

i )
Z 1

a=0
—

h(a)
i

f (h(a))da, 1063

providing atom-level contribution to property prediction. Over- 1064

lay of ri on 3D structures yields interpretable maps aligning 1065

with chemical reactivity centers. 1066

A.14 Summary of theoretical guarantees 1067

In summary: 1068

1. Operator analogy: attention acts as a stochastic estimator 1069

of Hamiltonian interactions. 1070

2. Energy preservation: early-layer alignment maintains 1071

approximate energy conservation. 1072

3. Progressive universality: the ll schedule interpolates 1073

between physics-limited and universal approximation 1074

regimes. 1075

4. Bounded distribution shift: physical priors reduce risk 1076

under domain shift by a factor proportional to (1� l̄ ). 1077

Combined, these properties formally justify OG-QIMP’s ob- 1078

served interpretability and robustness described in the main 1079

text. 1080

A.15 Related Work 1081

Graph neural networks have revolutionized molecular property 1082

prediction, evolving from simple message passing architectures 1083

like GCN 49 and GAT 50 to sophisticated models incorporating 1084

physical constraints. SchNet 13 and DimeNet 51 leverage 3D 1085

coordinates, while recent transformer-based approaches 52, 53
1086

and foundation models like MolFormer 54 achieve impres- 1087

sive scale. GPS++ 55 introduces powerful graph transform- 1088

ers and GeoT 56 combines geometric and topological infor- 1089

mation. However, these architectures fundamentally rely on 1090

correlation-based learning, making them vulnerable to spuri- 1091

ous patterns and distribution shifts when encountering novel 1092

chemical spaces. 1093

Physics-informed molecular modeling has improved ac- 1094

curacy through incorporating quantum mechanical princi- 1095

ples 57–61. OrbNet 62 operates on quantum features, while 1096

PaiNN 63 and NequIP 64 build in physical symmetries. Recent 1097

advances include MatterGen 57 and AlphaFold3 61. However, 1098

existing methods face critical limitations: they treat quantum 1099

constraints as static priors, creating tension between physical 1100

consistency and expressiveness. This binary paradigm, where 1101

physics either dominates or is absent, fails to recognize that dif- 1102

ferent network depths should capture different abstraction lev- 1103

els. Early layers require strong physical guidance for orbital 1104

interactions, while deeper layers need flexibility for emergent 1105

patterns. 1106
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Figure 6: Layer-wise interpretability and attention evolution in OG-QIMP. (a) Normalized metrics demonstrating the pro-
gressive transition from physics-guided to task-oriented learning across 12 layers. The physical alignment metric Iphysics (green)
decreases from 1.0 to near 0, while task relevance Itask (red) increases from 0 to approximately 0.25, with crossover occurring at
layer 6, validating our linear weighting schedule ll = l/L. (b) t-SNE projections of hidden representations from layers 1, 3, 6, 9,
and 12, showing gradual tight of molecular embeddings as representations evolve from dispersion, physically-widely distributed
features in early layers (light blue) to task-adapted, constrained clusters in deeper layers (dark blue). (c) Attention heatmaps
revealing the evolution of learned interaction patterns: early layers capture local chemical bonding with strong diagonal elements
and nearest-neighbor connections, while later layers develop distributed attention incorporating both local and long-range molec-
ular correlations for task-specific predictions.

Table 4: Hyperparameter settings and corresponding performance on BACE. Each row shows the hyperparameter values (e.g.,
hidden dimension, number of layers, attention heads, and dropout rate) and their respective performance (mean ± standard
deviation).

Hyperparameter Hidden Dimension Number of Layers Attention Heads Dropout Rate
Setting 32 4 6 0.0
Performance 0.889±0.010 0.907±0.017 0.914±0.004 0.898±0.009

Setting 64 8 8 0.1
Performance 0.914±0.004 0.880±0.011 0.892±0.002 0.914±0.0.004

Setting 128 12 10 0.2
Performance 0.894±0.017 0.914±0.004 0.882±0.006 0.884±0.013

Setting 256 14 12 0.3
Performance 0.886±0.016 0.882±0.006 0.905±0.011 0.885±0.025

Current approaches36 suffer from single-scale representation1107

bottlenecks. Molecular properties emerge from complex inter-1108

play across quantum electron distributions, molecular confor-1109

mations, and intermolecular interactions. Methods operating at1110

single resolutions 14, 38 miss crucial cross-scale dependencies.1111

Drug-target binding depends simultaneously on local hydrogen1112

bonding (quantum scale), shape complementarity (molecular1113

scale), and solvation effects (mesoscale), explaining why ex-1114

isting methods fail on multi-property prediction. Additionally,1115

the interpretability paradox persists. Thus incorporating phys-1116

ical constraints doesn’t yield interpretable models. Methods1117

adding orbital features 62 still produce black-box predictions1118

with physics entangled opaquely.1119

OG-QIMP addresses these limitations through three syner-1120

gistic innovations. First, progressive physics-data transition1121

(l (l) = l/L) enables each layer to optimally balance physical1122

constraints with data-driven refinement, smoothly transition-1123

ing from quantum foundations to task-specific patterns. Sec-1124

ond, hierarchical multi-scale architecture explicitly captures1125

quantum (orbital attention, layers 1-4), molecular (hybrid fu-1126

sion, layers 5-8), and pharmacological (task optimization, lay-1127

ers 9-12) scales with chemically-motivated pooling mecha-1128

nisms. Third, intrinsically interpretable orbital decomposition1129

factorizes attention into s , p , and non-bonding components1130

with direct chemical meaning, attention weights correlate with1131

DFT-computed orbital coefficients. These innovations establish1132

“quantum-informed intelligence”, models that learn like neural1133

networks but reason like quantum chemists, where physics and 1134

machine learning synergistically enhance rather than constrain 1135

each other. 1136

A.16 Experiments 1137

Datasets and Evaluation 1138

We evaluate OG-QIMP on seven molecular property predic- 1139

tion benchmarks from MoleculeNet, covering diverse pharma- 1140

ceutical and toxicological endpoints. The datasets span a wide 1141

range of molecular sizes and task complexities: BACE (1,513 1142

molecules) for binary classification of b -secretase inhibitors 1143

relevant to Alzheimer’s disease, BBBP (2,039 molecules) for 1144

blood-brain barrier permeability prediction, ClinTox (1,478 1145

molecules) with 2 binary tasks assessing clinical trial toxic- 1146

ity, SIDER (1,427 molecules) containing 27 binary tasks for 1147

marketed drug side effects, Tox21 (7,831 molecules) with 12 1148

binary tasks measuring toxicity against nuclear receptors and 1149

stress response pathways, HIV (41,127 molecules) for binary 1150

classification of HIV replication inhibition, and MUV (93,087 1151

molecules) comprising 17 binary tasks from PubChem bioas- 1152

says designed to be challenging for virtual screening. This di- 1153

verse collection enables comprehensive evaluation across dif- 1154

ferent molecular property prediction scenarios, from small fo- 1155

cused datasets requiring strong inductive bias to large-scale 1156

screening tasks demanding computational efficiency. Scaffold 1157
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split (80/10/10) ensures realistic evaluation by placing struc-1158

turally distinct molecules in different sets. ROC-AUC for clas-1159

sification tasks, with 5 random seeds for statistical significance.1160

Implementation Details of OG-QIMP1161

We conducted hyperparameter study and show results in Ta-1162

ble 4. We provide specific details of our model’s hyperpa-1163

rameter settings as follows: Architecture specifications. OG-1164

QIMP employs a 12-layer architecture with hidden dimension1165

d = 64, split evenly between 6 physics-constrained layers uti-1166

lizing 3 orbital-specific attention heads and 6 data-driven lay-1167

ers with 6 standard attention heads. Dropout rates increase1168

from 0.1 in early layers to 0.2 in late layers, with GELU ac-1169

tivation throughout. Molecular featurization combines three1170

complementary representations: 78-dimensional node features1171

encoding atomic properties (atomic number, degree, formal1172

charge, hybridization, aromaticity, ring membership, chiral-1173

ity, Gasteiger partial charge, atomic mass, van der Waals ra-1174

dius, covalent radius, and electrone gativity), 12-dimensional1175

edge features capturing bond characteristics (bond type, con-1176

jugation, ring membership, stereochemistry, and bond length),1177

and orbital features computed via PM6 semiempirical meth-1178

ods providing HOMO/LUMO coefficients and energies. Train-1179

ing procedure utilizes AdamW optimizer with learning rate1180

10�4 and weight decay 10�5, combined with cosine anneal-1181

ing with warm restarts for learning rate scheduling. Models1182

are trained with batch size 32 using gradient accumulation to1183

achieve an effective batch size of 128, running for a maxi-1184

mum of 300 epochs. All experiments were conducted on a1185

single NVIDIA H800 GPU (80GB), demonstrating the com-1186

putational efficiency of our approach despite the additional or-1187

bital calculations. The progressive weighting schedule ll = l/L1188

is applied during training to smoothly transition from physics-1189

constrained to data-driven learning, ensuring stable conver-1190

gence while maintaining physical interpretability.1191
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