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Green’s function

The retarded Green’s function G” , represented as a 4 x4 matrix in Nambu space using Zubarev notation, is given
by:

Gr—<<(dT dt d, d;)T|(d; d, df dT)>>. (1)

We derive G" using the equation-of-motion method. Given that the Coulomb interaction within the quantum dot is
set to zero (U = 0), the Green’s functions are exact. By applying equation-of-motion (EOM),

e((A:B)) = ({A,B}) + ({[A, H]: B))

to the elements of G’, we obtain following equations for the components of Green’s function,
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Here Zg\%g(h) denotes the electron (hole) component of the non-interacting self-energy due the ferromagnetic
lead-quantum dot coupling. On the RHS, we made assumption of momentum-independent tunneling amplitudes
ie. V 5¢ = VT,

ko

The triplet superconductor gap function can be represented as 2x2 complex matrix in spin space

A Ak}
A(k) = oo (% (6)
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with A(k) obeying the relation A(k) = —A(—k)T i.e. A(k)gy0, = —A(—K)oyoy -
Applying the EOM to ((bé? |d((;) )) gives,

(e = exso) A — (BSg — 8:5)C = (Afy — 850)D = Vi ((dy|d})), (7a)
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Here, A = ((b,|d}))), B = ((by,|d",)), C= ((b", |d},)), D = ((b*,_ |dl,)). By solving the coupled equations (7),
four variables A,B,C,D can be obtained in term of elements of reduced Green’s function given by Eq. (1).

For Polar and ABM state phases discussed in the main text, Az = 0 = Ag,. This simplifies the coupled system
of Eq. (7) significantly, resulting in the following analytical form of the dot Green’s function:
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We further present the analytical expression for superconductor self-energy in Polar and ABM state.

Self-energy

The general form of self-energy elements in the Nambu space (see Eq. (1) ) for the Polar or ABM state is given as,
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A useful identity for converting the momentum sum into an integral is,
d®k Ay No (7 T D
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where N(gx) =~ N(ep) = Ny is density of states of normal electrons at the Fermi level, d(); = sin6dfd¢ denotes
the solid angle subtracted by the momentum vector in the momentum space of superconducting electrons and D
represents the energy band width. Further, in the derivation of self-energy, we assume, ;, = €;5 = € _g, and placing
D—>co. We further show the ‘bare’ self-energy, i.e., the self-energy obtained in the absence of spatial weighting of
the coupling matrix elements between QD and TSC.

Self-energy for superconductor in Polar state

Gap function for Polar state is Apor = Agcosh. From equation (9), the integration over momentum in polar
coordinates leads to

i AQ —+ A2 — 2
iI'rsc € {arcsin <A€0)®(|g —No) + (—iln\/T +sign(e)7zr) (A — €|)] , (11a)
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Here, ©(x) represents the Heaviside function and T'rsc = 27tNg|VT°C|2. The vanishing of Z; »1 14 Tesults due to

effective integrand being an odd function of 6. Therefore, in the absence of weighting, Polar self-energy matrix is
always diagonal. When weighting is introduced (as discussed in the main text), the non-diagonal (X},) elements
becomes finite.

Self-energy for superconductor in ABM state
Gap function for ABM state is A 4y = Agsinfexp (i¢). In this case the self-energy acquires the form,
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—1 arcsin —71
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0
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The parameters in X, 5, ,, are defined as k = %, a= %, sinu = & = iax. The integral | (arcsin %,k) represents
an elliptic function, such that its characteristic parameter {k} can have value lesser or greater that unity. Because the
ABM pairing contains the azimuthal phase factor ¢/?, the angular integration fozn e'? dp = 0. Therefore, the bare
self-energy ¥ 5,/ 14 vanishes and off-diagonal elements satisty ¥, 5,/ ,, = 0. Nonzero off-diagonal elements appear
only when direction dependent weighting is included, as discussed in the main text.
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Tunneling Coefficients
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Figure S1. Tunneling coefficient (quasiparticle contribution) for the Polar state in the averaged self-energy case
(without weighting), shown as a function of the tunneling electron energy ¢. The Andreev reflection is absent,

T4 =0, due to the vanishing off-diagonal component of the self-energy, i.e., £j, = 0. The solid lines represent the
variation of the QD-TSC coupling for fixed polarization p = 0.5. The dotted lines indicate the variation of the FM
lead polarization for fixed coupling R = 1. Other parameters are set to: U =0, I'rps = 0.1, I'sc = 0.1, and kgT = 0.1.
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Figure S2. Tunneling coefficients for the Polar state in parallel configuration: (a) Andreev reflection and (b)
quasiparticle contribution as functions of the tunneling energy e, for the indicated values of the quantum-dot
energy level ¢;. Other parameters are U =0, I'rpr = 0.1, I'sc = 0.1, kT = 0.1, and p = 0.5.
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Figure S3. Tunneling coefficient for Polar state in perpendicular configuration as a function of energy ¢ of tunneling
electron. The Andreev tunneling coefficients are not shown, since T4 = 0. Other Parameters U=0, I'rp; = 0.1,
I'sc=0.1,k,T=0.1,p=0.5.
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Figure S4. Tunneling coefficient for ABM state in parallel configuration as a function of energy ¢ of tunneling
electron. The Andreev tunneling coefficients are not shown, since TA = 0. Parameters: U=0, I'f Mm=01Tsc=0.1,
kyT=0.1,p=05.

1.6 T T T T 1.8 T T 16 T T
14| &=0.0 £,=0.5 1.6 €=0.0 , 14| &=0.5 4
1.2 _ Lar 12} 4
1.0 g2 2 10} 4
10
o8 > o8 Z s R
o er < fl
0.6 % o6 o6l H 1
0.4 0al at it 1
. I
0.2 0.2} " 2t ., R
0.0 A AN 0.0 ? ST == n o — ) f
20 -15 -1.0 -0.5 00 0.5 15 -1.0 -05 00 05 10 L5 20 220 -15 -1.0 -0.5 0.0 05 10 15 2.0 220 -15 -1.0 -0.5 00 05 10 15 2.0
2.0 T T 7.0 T T T T T 20 T T T T T T T 20 T T T T T T T
1.8 60| =15 18 £=1.0 18 g,=1.5
1.6 16} 16}
~14 ~50 ~14 ~141
& § & &
512 S a0 S5 12 512t
Z1o0 Z Ziof Ziof
Eos g 30 £ s} £ st
0.6 2.0 6L 6L
0.4 4+ | 4+
0.2 1o 2f 7 2t
0.0, 0.0, 0 ~ 0
20 -15 -1.0 -0.5 00 05 1.0 15 2.0 20 -15 -1.0 -0.5 00 05 1.0 15 2.0 220 -15 -1.0 0.5 0.0 05 10 15 2.0 20 -15 -1.0 -0.5 0.0
€/bo €/Do €/Do e/Do

(a)

(b)

Figure S5. Tunneling coefficients for ABM state in perpendicular configuration for a) Andreev b) Quasiparticle
tunneling as a function of energy ¢ of tunneling electron, for indicated values of quantum dot energy level ¢;. Other
Parameters U=0, I'rpy = 0.1, [sc =0.1, k, T =0.1, p = 0.5.
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Weighted Self-Energy
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Figure S6. Self-energy for Polar state in A) Parallel B) Perpendicular configuration for given B parameters. The «
parameters are not shown for perpendicular case as the weight function cancels out with the normalization,
therefore do not affect the self-energy. The 11" and 14! element of the self-energy in the Nambu space is shown.
The finite spin-triplet Andreev reflection is associated with Xj, being finite.
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Figure S7. Self-energy for ABM state in A) Parallel B) Perpendicular configuration for given a, f parameters. The
11" and 14" element of the self-energy in the Nambu space is shown. The finite spin-triplet Andreev reflection is
associated with X7, being finite.
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