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Green’s function
The retarded Green’s function Gr , represented as a 4×4 matrix in Nambu space using Zubarev notation, is given
by:

Gr =

〈〈(
d↑ d†

↓ d↓ d†
↑

)T
|
(

d†
↑ d↓ d†

↓ d↑
)〉〉

. (1)

We derive Gr using the equation-of-motion method. Given that the Coulomb interaction within the quantum dot is
set to zero (U = 0), the Green’s functions are exact. By applying equation-of-motion (EOM),

ε⟨⟨A : B⟩⟩ = ⟨{A, B}⟩+ ⟨⟨[A, H] : B⟩⟩

to the elements of Gr, we obtain following equations for the components of Green’s function,

(ε − εσ − Σ(0)e
Nσ )⟨⟨dσ|d†

σ′⟩⟩ = δσσ′ + U⟨⟨dσnσ̄|d†
σ′⟩⟩+ VTSC

kσ ∑
k
⟨⟨bkσ|d

†
σ′⟩⟩, (2)

(ε − εσ − Σ(0)e
Nσ )⟨⟨dσ|dσ′⟩⟩ = U⟨⟨dσnσ̄|dσ′⟩⟩+ VTSC

kσ ∑
k
⟨⟨bkσ|dσ′⟩⟩. (3)

Similarly,

(ε + εσ − Σ(0)h
Nσ )⟨⟨d†

σ|d†
σ′⟩⟩ = −U⟨⟨d†

σnσ̄|d†
σ′⟩⟩ − VTSC∗

kσ ∑
k
⟨⟨b†

−kσ|d
†
σ′⟩⟩, (4)

(ε + εσ − Σ(0)h
Nσ )⟨⟨d†

σ|dσ′⟩⟩ = δσσ′ − U⟨⟨d†
σnσ̄|dσ′⟩⟩ − VTSC∗

kσ ∑
k
⟨⟨b†

−kσ|dσ′⟩⟩. (5)

Here Σ(0)e(h)
Nσ denotes the electron (hole) component of the non-interacting self-energy due the ferromagnetic

lead-quantum dot coupling. On the RHS, we made assumption of momentum-independent tunneling amplitudes
i.e. VTSC

kσ = VTSC.

The triplet superconductor gap function can be represented as 2×2 complex matrix in spin space

∆(k) =
[

∆k
σσ ∆k

σσ̄

∆k
σ̄σ ∆k

σ̄σ̄

]
(6)

with ∆(k) obeying the relation ∆(k) = −∆(−k)T i.e. ∆(k)σ1σ2 = −∆(−k)σ2σ1 .

Applying the EOM to ⟨⟨b(†)kσ |d(†)σ′ ⟩⟩ gives,

(ε − εksσ)A − (∆k
σσ − ∆−k

σσ )C − (∆k
σσ̄ − ∆−k

σ̄σ )D = Vsσ⟨⟨dσ|d†
σ′⟩⟩, (7a)
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(ε − εksσ̄)B − (∆k
σ̄σ − ∆−k

σσ̄ )C − (∆k
σ̄σ̄ − ∆−k

σ̄σ̄ )D = Vsσ̄⟨⟨dσ̄|d†
σ′⟩⟩, (7b)

−(∆k∗
σσ − ∆−k∗

σσ )A − (∆k∗
σσ̄ − ∆−k∗

σ̄σ )B + (ε + ε−ksσ)C = −Vsσ⟨⟨d†
σ|d†

σ′⟩⟩, (7c)

−(∆k∗
σ̄σ − ∆−k∗

σσ̄ )A − (∆k∗
σ̄σ̄ − ∆−k∗

σ̄σ̄ )B + (ε + ε−ksσ̄)D = −Vsσ̄⟨⟨d†
σ̄|d†

σ′⟩⟩. (7d)

Here, A = ⟨⟨bkσ|d
†
σ′⟩⟩, B = ⟨⟨bkσ̄|d

†
σ′⟩⟩, C = ⟨⟨b†

−kσ|d
†
σ′⟩⟩, D = ⟨⟨b†

−kσ̄|d
†
σ′⟩⟩. By solving the coupled equations (7),

four variables A,B,C,D can be obtained in term of elements of reduced Green’s function given by Eq. (1).
For Polar and ABM state phases discussed in the main text, ∆σσ̄ = 0 = ∆σ̄σ. This simplifies the coupled system

of Eq. (7) significantly, resulting in the following analytical form of the dot Green’s function:

Gr
11 =

1

ε − εσ − Σ(0)e
Nσ − Σ11 + ΣN P

, with P =
Σ∗

14

ε + εσ − Σ(0)h
Nσ − Σ14

, (8a)

Gr
41 = P Gr

11, (8b)
Gr

12 = 0, (8c)
Gr

13 = 0. (8d)

We further present the analytical expression for superconductor self-energy in Polar and ABM state.

Self-energy
The general form of self-energy elements in the Nambu space (see Eq. (1) ) for the Polar or ABM state is given as,

Σr
11 = ∑

k
|VTSC

kσ |2 ε + εkσ

(ε + εkσ)(ε − εkσ)− ∆2
k

(9a)

Σr
14 = ∑

k
|VTSC

kσ |2 ∆k

(ε + εkσ)(ε − εkσ)− ∆2
k

(9b)

(9c)

A useful identity for converting the momentum sum into an integral is,

∑
k
→ V

∫ d3k
(2π)3 =

∫ dΩk
4π

∫
dεk N(εk) ≈

N0

4π

∫ π

0
sinθ dθ

∫ π

−π
dϕ

∫ D

−D
dεk (10)

where N(εk) ≈ N(εF) = N0 is density of states of normal electrons at the Fermi level, dΩk = sinθdθdϕ denotes
the solid angle subtracted by the momentum vector in the momentum space of superconducting electrons and D
represents the energy band width. Further, in the derivation of self-energy, we assume, εkσ = εkσ̄ = ε−kσ and placing
D→∞. We further show the ‘bare’ self-energy, i.e., the self-energy obtained in the absence of spatial weighting of
the coupling matrix elements between QD and TSC.

Self-energy for superconductor in Polar state
Gap function for Polar state is ∆pol = ∆0 cosθ. From equation (9), the integration over momentum in polar
coordinates leads to

Σr
pol,11 = − iΓTSC

2
ε

∆0

arcsin
(

∆0

ε

)
Θ(|ε| − ∆0) +

−i ln
∆0 +

√
∆2

0 − ε2

|ε| + sign(ε)
π

2

Θ(∆0 − |ε|)

 , (11a)

Σr
pol,14 = 0. (11b)
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Here, Θ(x) represents the Heaviside function and ΓTSC = 2πN0|VTSC|2. The vanishing of Σr
pol,14 results due to

effective integrand being an odd function of θ. Therefore, in the absence of weighting, Polar self-energy matrix is
always diagonal. When weighting is introduced (as discussed in the main text), the non-diagonal (Σr

14) elements
becomes finite.

Self-energy for superconductor in ABM state
Gap function for ABM state is ∆ABM = ∆0 sinθ exp (iϕ). In this case the self-energy acquires the form,

Σr
ABM,11 =

−iΓTSC
4

ε

∆0
ln
∣∣∣∣ ε + ∆0

ε − ∆0

∣∣∣∣
=

−iΓTSC
4

ε

∆0

[
ln
(

ε + ∆0

ε − ∆0

)
Θ(|ε| − ∆0) + ln

(
ε + ∆0

∆0 − ε

)
Θ(∆0 − |ε|)− iπΘ(∆0 − |ε|)

]
Σr

ABM,14 = (
iN0|Vs|2

2
)

∆0√
ε2 − ∆2

0

(−k)
∫ 2π

0
dϕeiϕ I

(
arcsin

−1
k

,k
) (12)

with

I
(

arcsin
−1
k

,k
)
=

[∫ arcsin −1
k

0
du

√
1 − k2 sin2 u

]
(13)

The parameters in Σr
ABM,14 are defined as k = i

a , a = ∆2
0

ε2−∆2
0
, sinu = x̃ = iax. The integral I

(
arcsin −1

k ,k
)

represents

an elliptic function, such that its characteristic parameter |k| can have value lesser or greater that unity. Because the
ABM pairing contains the azimuthal phase factor eiϕ, the angular integration

∫ 2π
0 eiϕ dϕ = 0. Therefore, the bare

self-energy Σr
ABM,14 vanishes and off-diagonal elements satisfy Σr

ABM,14 = 0. Nonzero off-diagonal elements appear
only when direction dependent weighting is included, as discussed in the main text.
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Tunneling Coefficients
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Figure S1. Tunneling coefficient (quasiparticle contribution) for the Polar state in the averaged self-energy case
(without weighting), shown as a function of the tunneling electron energy ε. The Andreev reflection is absent,
TA = 0, due to the vanishing off-diagonal component of the self-energy, i.e., Σr

14 = 0. The solid lines represent the
variation of the QD–TSC coupling for fixed polarization p = 0.5. The dotted lines indicate the variation of the FM
lead polarization for fixed coupling R = 1. Other parameters are set to: U = 0, ΓFM = 0.1, ΓSC = 0.1, and kBT = 0.1.
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Figure S2. Tunneling coefficients for the Polar state in parallel configuration: (a) Andreev reflection and (b)
quasiparticle contribution as functions of the tunneling energy ε, for the indicated values of the quantum-dot
energy level εd. Other parameters are U = 0, ΓFM = 0.1, ΓSC = 0.1, kBT = 0.1, and p = 0.5.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

εd=0.0
 β=0.1
 β=0.5

 β=1
 β=2

T
Q

P  
(1

0
-1

)

ε/Δ0

0

2

4

6

8

10

12

14

16

18

20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

εd=0.5

T
Q

P  
(1

0
-1

)

ε/Δ0

Figure S3. Tunneling coefficient for Polar state in perpendicular configuration as a function of energy ε of tunneling
electron. The Andreev tunneling coefficients are not shown, since TA = 0. Other Parameters U=0, ΓFM = 0.1,
ΓSC = 0.1, kbT = 0.1, p = 0.5.
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Figure S4. Tunneling coefficient for ABM state in parallel configuration as a function of energy ε of tunneling
electron. The Andreev tunneling coefficients are not shown, since TA = 0. Parameters: U=0, ΓFM = 0.1, ΓSC = 0.1,
kbT = 0.1, p = 0.5.
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Figure S5. Tunneling coefficients for ABM state in perpendicular configuration for a) Andreev b) Quasiparticle
tunneling as a function of energy ε of tunneling electron, for indicated values of quantum dot energy level εd. Other
Parameters U=0, ΓFM = 0.1, ΓSC = 0.1, kbT = 0.1, p = 0.5.
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Weighted Self-Energy
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Figure S6. Self-energy for Polar state in A) Parallel B) Perpendicular configuration for given β parameters. The α
parameters are not shown for perpendicular case as the weight function cancels out with the normalization,
therefore do not affect the self-energy. The 11th and 14th element of the self-energy in the Nambu space is shown.
The finite spin-triplet Andreev reflection is associated with Σr

14 being finite.
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Figure S7. Self-energy for ABM state in A) Parallel B) Perpendicular configuration for given α, β parameters. The
11th and 14th element of the self-energy in the Nambu space is shown. The finite spin-triplet Andreev reflection is
associated with Σr

14 being finite.
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