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Experimental Section 

Cyclic tensile–unloading engineering stress–strain curves 

 

Supplementary Fig. 1 | Cyclic tensile–unloading engineering stress–strain curves of NiTi 

alloys under different annealing conditions. (a–f) correspond to specimens I–VI, 5 

respectively, showing the cyclic test results under strain amplitudes of 2%, 4%, 6%, and 8%. 
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Residual strain statistics  

 

Supplementary Fig. 2 | Residual strain accumulation of NiTi alloys under various 

annealing conditions. Evolution of residual strain with increasing cycle number at strain 

amplitudes of (a) 2%, (b) 4%, (c) 6%, (d) 8%, (e) 10% and (f) 12%. The first four amplitudes 5 

were employed for model training and validation. The latter two were used to evaluate 

extensibility, where the material had fully entered the martensitic plastic deformation period. 

  



 

4 

Digital image correlation experiment  

 

Supplementary Fig. 3 | Schematic of the digital image correlation (DIC) setup used to 

measure full-field strain during cyclic tensile loading. Dog bone specimens with a gauge 

section of 25 mm × 6 mm were sprayed with a random speckle pattern and recorded by a 5 

stereo DIC system comprising two 5-megapixel CCD industrial cameras equipped with 35-

mm lenses. Image pairs were continuously acquired and processed to obtain the three-

dimensional displacement and strain fields. The target strain amplitudes for the subsequent 

cyclic tensile unloading tests were first calibrated from monotonic uniaxial tensile 

experiments using the same DIC system. 10 
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Supplementary Fig. 4 | First cycle deformation analysis. DIC maps 1–8 mark key 

deformation stages and correspond to the symbols on the stress strain curve in Fig. 5b. At 2% 

strain, the specimen has entered the stress plateau and the initial martensitic transformation is 

activated. The transformation evolves from local nucleation to multiple localization and 5 

eventually to a fully transformed gauge section. Notably, the end of the plateau at 6.66% 

strain does not coincide with the completion of transformation: by 6.82% the gauge section is 

fully transformed, and at 8% strain martensitic plastic deformation emerges. 
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Supplementary Fig. 5 | Cyclic deformation analysis. DIC maps for successive cycles show 

the local deformation of the specimen at the end of each loading unloading loop, 

corresponding to the blue markers on the stress strain curve in Fig. 5b and visualizing the 

progressive accumulation of residual strain. As shown in the figure, the residual deformation 5 

region continuously expands during the first five loading cycles, corresponding to the 

observed orientation-dependent variant transfer phenomenon in the main text. 
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X-ray diffraction pattern  

 

Supplementary Fig. 6 | XRD patterns of NiTi alloys annealed under various short-term 

annealing conditions. Specimens I–VI correspond to distinct annealing regimes: I–50010 

(500 °C, 10 min), II–50030 (500 °C, 30 min), III–60010 (600 °C, 10 min), IV–60030 (600 °C, 5 

30 min), V–70010 (700 °C, 10 min), and VI–70030 (700 °C, 30 min). All specimens exhibit a 

B2 austenitic matrix at room temperature, accompanied by different precipitate species. With 

increasing annealing temperature, the fine Ni4Ti3 precipitates dominant at 500 °C evolve into 

a multiphase microstructure containing both Ni4Ti3 and NiTi2 at 600 °C, and NiTi2 becomes 

the prevailing phase at 700 °C. Prolonging the holding time mainly promotes the coarsening 10 

and redistribution of precipitates without altering their types. 
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Electron backscatter diffraction: The EBSD results from Specimen IV are presented as 

representative. The microstructure exhibits a multiphase configuration comprising the B2 

matrix (yellow) together with uniformly dispersed Ni4Ti3 (red) and NiTi2 (blue) precipitates. 

Due to cold rolling deformation prior to annealing, residual internal stresses were not 

completely relieved, resulting in a pronounced {101} texture orientation. Nevertheless, the 5 

overall structure remains predominantly uniform equiaxed grains with an average size of 

approximately 10.3 μm. In the phase image, NiTi2 precipitates are generally identifiable, while 

Ni4Ti3 can only be effectively resolved by EBSD when sufficiently large (>200 nm). EBSD 

struggles to fully analyze smaller Ni4Ti3 precipitates. This is why we incorporated TEM results 

into the numerical feature to achieve a more comprehensive microstructural characterization. 10 

Furthermore, KMA analysis reveals the presence of certain orientation gradients within the 

grains, which is also related to the retention of residual stresses from cold working. 

 

Supplementary Fig. 7 | EBSD characterization of specimen IV annealed at 600 °C for 30 

min. a Band contrast image. b Inverse pole figure (IPF) map showing an equiaxed grain 15 

structure. c Phase map indicating that the matrix is primarily B2 austenite. d Kernel average 

misorientation (KAM) map revealing the local strain distribution and orientation gradients. 
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Pole figure of the selected region  

 

Supplementary Fig. 8 | EBSD results of the region selected for grain orientation analysis. 

a Inverse pole figure (IPF) map of the NiTi alloy subjected to heat treatment at 600 °C for 10 

min. The Y direction of the EBSD map is parallel to the tensile axis. The microstructure 5 

consists of equiaxed B2 austenite grains. b The corresponding IPF along the Y direction 

shows a relatively strong <111>B2 fiber texture in the B2 grains, with a multiple of uniform 

distribution (MUD) ≈ 1.99, a texture commonly observed in NiTi sheets1. 
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Orientation analysis of Ni₄Ti₃ precipitates  

 

Supplementary Fig. 9 | Orientation relationship between Ni4Ti3 precipitates and the B2 

austenite matrix. a Orientation distribution map. b1–b3 {123}, {110}, and {100} pole figures 

of the B2 austenite matrix. c1–c3 {0001}, {10-10}, and {11-20} pole figures of the Ni4Ti3 5 

precipitates. d Bright-field TEM image of the overall region, and (e) the selected area electron 

diffraction (SAED) pattern taken from the red boxed area in (d). f Corresponding dark field 

image, with (g) and (h) showing the SAED pattern and high-resolution TEM (HRTEM) 

image from the red boxed region in (f), respectively. i Geometric phase analysis2 (GPA) strain 

map corresponding to (h). No common-index crystal plane was identified between Ni4Ti3 and 10 

the B2 matrix in the pole figures. Nevertheless, the pole figure and SAED analyses reveal a 

specific orientation relationship of {123}<111>B2 // {11-20}<0001>Ni4Ti3. Dark field image 

demonstrates that Ni4Ti3 precipitates are uniformly distributed as nanoscale particles. 

HRTEM and GPA strain mapping indicate that the formation of Ni4Ti3 precipitates induces 

strain inhomogeneity in the NiTi matrix, with significant local tensile strain in continuous 15 

distribution regions. 
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Statistical information of Ni4Ti3 precipitates  

 

Supplementary Fig. 10 | Quantitative statistics of Ni4Ti3 precipitates under different 

annealing conditions. a–d Aspect ratio–diameter distributions of Ni4Ti3 precipitates in 

Specimens I–IV, corresponding to 500 °C × 10 min, 500 °C × 30 min, 600 °C × 10 min and 5 

600 °C × 30 min, respectively. Each symbol denotes one precipitate, and the insets give the 

mean aspect ratio and equivalent diameter. From Specimen I to IV, the data clouds shift 

toward larger diameters and higher aspect ratios, and the distributions gradually broaden, 

indicating progressive coarsening and slight elongation of Ni4Ti3. The increase in average 

diameter and aspect ratio is much more pronounced when the annealing temperature rises 10 

from 500 °C to 600 °C than when the holding time is extended from 10 min to 30 min, 

showing that temperature exhibits a stronger influence on the precipitation behavior than 

time. 
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Calculation and correction of the Schmitt factor: For multiphase NiTi alloys, traditional 

Schmid theory struggles to accurately predict critical transformation stresses. The primary 

limitation arises from the localized stress field introduced by precipitates, which modify the 

effective resolved shear stress distribution within grains. As a result, the actual slip and 

transformation behaviors depart from idealized crystallographic expectations. Previous studies 5 

indicate that the coherency mismatch stress of Ni4Ti3 precipitates can elevate the critical stress 

for dislocation slip while simultaneously lowering the onset stress required to martensitic 

transformation3-5. With Ni4Ti3 precipitates distributed nearly uniformly and the analysis 

centered on preferentially oriented grains that control superelastic degradation, the use of this 

correction is well-justified and broadly applicable. In principle, the Ni4Ti3 precipitates larger 10 

than ~300 nm, once they lose coherency with the matrix, should contribute only weakly to the 

internal stress field6, similar to NiTi2 particles. However, TEM observations (Supplementary 

Fig. 10) show that such oversized Ni4Ti3 particles are extremely scarce, so the overall 

adjustment is still formulated by treating the Ni4Ti3 population as effectively coherent. The 

specific derivation is as follows. We first assume that dislocation slip or SIMT is triggered when 15 

the total resolved shear stress attains a critical threshold c , such that: 

 rss-total app rss-i cm  (1) 

Where rss-total  denotes the total critical resolved shear stress. m represents the traditional 

Schmid factor, app  corresponds to the nominal stress under applied load, and rss-i  signifies 

the local resolved shear stress introduced by the coherent stress field of the Ni4Ti3 precipitates. 20 

To analyze the activation behavior in different regions, the above relationship can be 

equivalently expressed as a modified Schmid factor: 

 eff app app rss-im m  (2) 

 rss-i
eff

app

m m  (3) 

Here, effm  denotes the corrected Schmid factor, which integrates the combined effects of the 25 

external load and the local coherency stress field. For different deformation mechanisms, the 

corrected form can be expressed as follows: 

 

rss-i,slip
eff,slip slip

app,slip

rss-i,trans
eff,trans trans

app,trans

m m

m m

 (4) 
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Among these, slipm  and transm  represent the conventional Schmid factors for slip and 

transformation, respectively. rss-i,slip  and rss-i,trans  denote the local shear stress corrections 

for the precipitates, with the former corresponding to the slip inhibition effect and the latter to 

the transformation promotion effect. app,slip  and app,trans  represent the applied stress, 

respectively. For transformation, app,trans  employs the stress corresponding to the first tensile 5 

transformation plateau. To quantify the local stress fields generated by precipitates, the Eshelby 

approach is employed： 

 p
rss-i,trans ( )ij ijkl klmn mnC D x  (5) 

Here, ij  is the orientation tensor transformed into the principal coordinate system of the 

precipitate from ij : 10 

 
1

( )
2

ij i j i jm n n m  (6) 

m and n denote the shear direction and the habit plane normal associated with each martensitic 

twin variant. Each martensite twin variant pair comprises two martensite single-crystal variants 

Vi and Vj connected by a twin relationship, maintaining a specific volume fraction ratio x:(1-

x). Although the interface between the austenite and each individual martensite variant (Vi or 15 

Vj) is not an invariant plane, the interface between the austenite and the martensite variant pair 

(Vi–Vj) is an invariant habit plane. In this study, we consider the only two types of martensitic 

twins with invariant habit planes: the <011> type II twin and the {11-1} type I twin, yielding a 

total of 48 variant pairs7,8. For the first type, the crystallographic parameters are m = [0.41145, 

−0.76331, 0.49807] and n = [−0.88888, −0.21524, 0.40443]; for the second type, m = [−0.82044, 20 

0.02068, 0.57136] and n = [0.27789, −0.85894, 0.43012]. The parameters for the other 46 

variants can be obtained through cyclic permutation of the indices. Supplementary Table 1 

and Table 2 summarize the theoretical solutions for all habit planes of these two twin types. 

Additionally, ijklC  represents the elastic constant tensor for the precipitate and the surrounding 

matrix (assumed to be consistent). ( )klmnD x  denotes the Eshelby tensor describing the 25 

transmission of lattice misfit strain from the precipitate within the matrix9, characterizing the 

elastic field response at any position x. p
mn  represents the intrinsic misfit strain of the Ni4Ti3 

precipitate, reflecting its spontaneous lattice distortion in the absence of external loading6.  

For slip-related correction, the Eshelby's calculation method remains consistent, employing 

only the crystallographic parameters of the slip system in the orientation projection section. 30 

Specifically, in Equations (6), the ij  no longer represents the orientation tensor of the 
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transformation variant, but instead denotes the Schmid orientation tensor ij i js n , defined 

by the slip direction is  and slip plane normal jn . The most representative slip systems in B2 

NiTi, {011}<001> and {011}<111>, are selected. Moreover, the app,slip  is the conventional 

yield stress10, extracted from tensile tests conducted at 200 °C (Supplementary Fig. 11), a 

temperature at which no stress-induced transformation occurs and aging effects are still 5 

negligible.  

  



 

15 

Supplementary Table 1 | Theoretical solutions of the habit plane system for <011> type 

II twin. The volume fraction ratio of the twinning x:(1-x)=0.72898:0.27102 

Variant pairs Invariant habit plane Invariant shear direction 

1-2 (−0.88888 −0.21524 0.40443) [0.41145 −0.76331 0.49807] 

1-2′ (−0.88888 −0.40443 0.21524) [0.41145 −0.49807 0.76331] 

1'-2 (0.88888 −0.40443 0.21524) [−0.41145 −0.49807 0.76331] 

1'-2′ (0.88888 −0.21524 0.40443) [−0.41145 −0.76331 0.49807] 

2-1 (−0.88888 −0.21524 −0.40443) [0.41145 −0.76331 −0.49807] 

2-1′ (−0.88888 −0.40443 −0.21524) [0.41145 −0.49807 −0.76331] 

2′-1 (0.88888 −0.40443 −0.21524) [−0.41145 −0.49807 −0.76331] 

2′-1′ (0.88888 −0.21524 −0.40443) [−0.41145 −0.76331 −0.49807] 

3-4 (0.40443 −0.88888 −0.21524) [0.49807 0.41145 −0.76331] 

3-4′ (0.21524 −0.88888 −0.40443) [0.76331 0.41145 −0.49807] 

3′-4 (0.21524 0.88888 −0.40443) [0.76331 −0.41145 −0.49807] 

3′-4′ (0.40443 0.88888 −0.21524) [0.49807 −0.41145 −0.76331] 

4-3 (−0.40443 −0.88888 −0.21524) [−0.49807 0.41145 −0.76331] 

4-3′ (−0.21524 −0.88888 −0.40443) [−0.76331 0.41145 −0.49807] 

4′-3 (−0.21524 0.88888 −0.40443) [−0.76331 −0.41145 −0.49807] 

4′-3′ (−0.40443 0.88888 −0.21524) [−0.49807 −0.41145 −0.76331] 

5-6 (−0.21524 0.40443 −0.88888) [−0.76331 0.49807 0.41145] 

5-6′ (−0.40443 0.21524 −0.88888) [−0.49807 0.76331 0.41145] 

5′-6 (−0.40443 0.21524 0.88888) [−0.49807 0.76331 −0.41145] 

5′-6′ (−0.21524 0.40443 0.88888) [−0.76331 0.49807 −0.41145] 

6-5 (−0.21524 −0.40443 −0.88888) [−0.76331 −0.49807 0.41145] 

6-5′ (−0.40443 −0.21524 −0.88888) [−0.49807 −0.76331 0.41145] 

6′-5 (−0.40443 −0.21524 0.88888) [−0.49807 −0.76331 −0.41145] 

6′-5′ (−0.21524 −0.40443 0.88888) [−0.76331 −0.49807 −0.41145] 
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Supplementary Table 2 | Theoretical solutions of the habit plane system for {11-1} type I 

twin. The volume fraction ratio of the twinning x:(1-x)=0.67994:0.32006 

Variant pairs Invariant habit plane Invariant shear direction 

1–4 (0.27789 −0.85894 0.43012) [−0.82044 0.02068 0.57136] 

1–5′ (0.27789 −0.43012 0.85894) [−0.82044 −0.57136 −0.02068] 

1′–3 (−0.27789 −0.85894 0.43012) [0.82044 0.02068 0.57136] 

1′–6 (−0.27789 −0.43012 0.85894) [0.82044 −0.57136 −0.02068] 

2–3′ (0.27789 −0.85894 −0.43012) [−0.82044 0.02068 −0.57136] 

2–5 (0.27789 −0.43012 −0.85894) [−0.82044 −0.57136 0.02068] 

2′–4′ (−0.27789 −0.85894 −0.43012) [0.82044 0.02068 −0.57136] 

2′–6′ (−0.27789 −0.43012 −0.85894) [0.82044 −0.57136 0.02068] 

3–1′ (0.85894 0.27789 −0.43012) [−0.02068 −0.82044 −0.57136] 

3–6 (0.43012 0.27789 −0.85894) [0.57136 −0.82044 0.02068] 

3′–2 (0.85894 −0.27789 −0.43012) [−0.02068 0.82044 −0.57136] 

3′–5 (0.43012 −0.27789 −0.85894) [0.57136 0.82044 0.02068] 

4–1 (−0.85894 0.27789 −0.43012) [0.02068 −0.82044 −0.57136] 

4–5′ (−0.43012 0.27789 −0.85894) [−0.57136 −0.82044 0.02068] 

4′–2′ (−0.85894 −0.27789 −0.43012) [0.02068 0.82044 −0.57136] 

4′–6′ (−0.43012 −0.27789 −0.85894) [−0.57136 0.82044 0.02068] 

5–2 (−0.85894 0.43012 0.27789) [0.02068 0.57136 −0.82044] 

5–3′ (−0.43012 0.85894 0.27789) [−0.57136 −0.02068 −0.82044] 

5′–1 (−0.85894 0.43012 −0.27789) [0.02068 0.57136 0.82044] 

5′–4 (−0.43012 0.85894 −0.27789) [−0.57136 −0.02068 0.82044] 

6–1′ (−0.85894 −0.43012 0.27789) [0.02068 −0.57136 −0.82044] 

6–3 (−0.43012 −0.85894 0.27789) [−0.57136 0.02068 −0.82044] 

6′–2′ (−0.85894 −0.43012 −0.27789) [0.02068 −0.57136 0.82044] 

6′–4′ (−0.43012 −0.85894 −0.27789) [−0.57136 0.02068 0.82044] 
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Supplementary Fig. 11 | Tensile testing at 200 °C is used to determine the critical stress 

app,slip  for slip (conventional yield strength). At this temperature, no stress-induced 

transformation occurs and aging effects are still negligible. 

  5 
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Transmission electron microscope characterization after cyclic loading 

 

Supplementary Fig. 12 | TEM characterization of NiTi after cyclic loading at different 

strain amplitudes. a, b The bright field images of the specimen cycled at 4% strain 

amplitude under different diffraction conditions, revealing a high density of dislocations but 5 

no discernible austenite twins or retained martensite plates. c SAED pattern from the region 

marked in (b). d–f TEM results for the specimen cycled at 6% strain amplitude, showing the 

appearance of {114} B2 austenite twins. g BF image of the specimen cycled at 8% strain, 

displaying extensive austenite twins. h Local observation of a representative twin band, and 

(i) corresponding HRTEM image from the boxed region in (h), where the twin boundaries are 10 

clearly resolved. Overall, superelastic degradation of the NiTi alloy under cyclic loading is 

primarily governed by dislocation accumulation and austenite twinning, with no retained 

martensite detected over the entire strain amplitude range. 
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EBSD characterization after cyclic loading (n=5) 

 

Supplementary Fig. 13 | EBSD characterization of the NiTi alloy annealed at 700 °C for 

30 min after 5 cycles at 8% strain amplitude. a IPF map showing the development of a 

pronounced {101} texture after annealing. b Band contrast image, where dense deformation 5 

bands aligned along specific orientations traverse the grains after high strain cycling. c 

Coincidence site lattice (CSL) boundary map revealing the extensive formation of Σ9 

boundaries, reaching 38.4%, indicative of substantial grain boundary reconfiguration during 

deformation. We provide a schematic illustration of the formation mechanism of Σ9 special 

boundaries in B2 austenite during cyclic phase transformation. d The initial B2 phase 10 

(schematized using the {011} plane) exhibits a regular lattice. e Cyclic loading induces the 

formation of a composite B19′ martensite twin structure. f Subsequent reverse transformation 

produces two newly formed B2 regions with a relative lattice rotation that satisfies the Σ9 

relation, thereby generating high densities of Σ9 boundaries at the microscale. 

 15 
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EBSD characterization after cyclic loading (n=10) 

 

Supplementary Fig. 14 | EBSD characterization of the NiTi alloy annealed at 700 °C for 

30 min after 10 cycles at 8% strain amplitude. a IPF orientation map, with Line 1–3 

indicating the paths used for subsequent misorientation profiles. b Corresponding BC image 5 

on the RD–TD section, showing numerous deformation twin bands traversing the grains along 

specific orientations after high strain cyclic loading. c CSL boundary map, revealing a high 

density of Σ9 special deformation boundaries with an area fraction of 25.1%. d Intragrain 

misorientation profiles extracted along Line 1–3 in (a, b) show the mismatch angle of 

approximately 36° when passing through the grain boundary, confirming the existence of 10 

deformation twins. 
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Machine learning framework construction  

Dataset Description: During dataset construction, EBSD maps obtained under various 

annealing conditions were segmented and augmented offline, then paired with the 

corresponding Ni4Ti3 descriptor, cycle number, and strain amplitude, yielding 31,536 labeled 

sequences. The dataset was divided into training, validation, and test sets in a ratio of 8:1:1. 5 

The test set contained only original data to ensure independent evaluation. Images were 

partitioned by field of view to avoid splitting the same region across subsets. 

Framework Description: In this study, pronounced modality gaps and semantic misalignment 

exist between microstructural features and loading conditions. Handling cross-modal 

entanglement and semantic inconsistency remains a central challenge for effective multimodal 10 

feature fusion. For clarity, we take KAM maps and Euler angle matrices (EAM) as a 

representative pair of modalities. Most existing approaches11 simply concatenate these features 

and then perform feature extraction, which can be expressed as: 

 pred( ( ), ( ) )KAM KAM EAM EAMP h R F B F B  (7) 

Here, ( )KAM KAMF B  and ( )EAM EAMF B  represent KAM and EAM features, respectively. [] 15 

denotes the concatenation operation. R denotes the extracted feature representation, which is 

subsequently fed into the prediction head predh  to obtain the prediction result P. Although 

concatenating multimodal features followed by unified feature extraction simplifies the 

modeling process, this strategy overlooks the latent inconsistencies between modalities, leaving 

the intrinsic conflicts in complex tasks unresolved. On the other hand, Wu et al.12 explicitly 20 

accounts for such cross-modal inconsistencies by decomposing the feature encoding process 

into multiple coordinated subtasks, which can be formulated as: 

 pred([ ( ), ( )])KAM KAM KAM EAM EAM EAMP h R F B R F B  (8) 

Among them, KAMR  and  EAMR  represent the KAM and EAM feature representations, 

respectively. Apparently, this method only segregates feature exraction through two 25 

independent networks, while failing to explore and utilize their mutual cooperation. Distinct 

from above methods, the construction of our model accommodates the disentanglement and 

modulation of signal, which is enlightened by cognitive neuroscience13. From the perspective 

of feature learning, it can be expressed as: 

 

pred

( ( ), ( ))

( ( ), ( ))

( ( , ))

KAM KAM KAM KAM KAM EAM EAM EAM

EAM EAM EAM EAM EAM KAM KAM KAM

KAM EAM

f R F B R F B

f R F B R F B

P h f f

 (9) 30 
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Here,  and  denote the feature alignment and mergence operations, respectively. 

Specifically, we first employ two backbone networks to extract KAM and EAM features 

independently, as illustrated in Fig. 1 of the main text. Since features learned by different 

backbones may exhibit semantic misalignment, we develop a feature synergy module to align 

and merge these disentangled representations. Note that the design inspiration of this module 5 

derives from visual center that focuses on integrating multipartite information, but the specific 

mechanism is still unknown. Therefore, the method proposed in this paper emphasizes on 

drawing lessons from its cogitation, while the technical details are incompletely corresponding. 

Feature synergy module: We designed a feature synergy module to mitigate the contextual 

misalignment between modalities. This module comprises feature alignment and mergence, 10 

which are detailed in this section. As illustrated in Supplementary Fig. 15 and Eq. (10), the 

alignment step primarily involves estimating an offset and applying it to the corresponding 

feature representations: 

 
0

1

([ ( ), ( )]), { , }

ˆ ( ( ), ) { , }

i
i KAM KAM KAM EAM EAM EAM

i
i i i i i

f R F B R F B i KAM EAM

F f R F B i KAM EAM
 (10) 

where 0f  and  1f  represent functions that learn coordinate offsets of the features and align 15 

the features with offsets, respectively. In this work, they are implemented using 3×3 deformable 

convolution, activation and standard convolutions with the same kernel size. In the feature 

mergence stage, we emphasize the significant feature maps which contains a large amount of 

spatial information, while suppressing redundant information to achieve precise allocation. The 

process is shown in Equation (11): 20 

 *

* *

ˆ ˆGAP([ , ])

ˆ ˆ(W ) , { , }

KAM EAM

i i i i

KAM EAM

u R R

R R u R i KAM EAM

R R R

 (11) 

where u is obtained by global average pooling after the concat of ˆ
KAMR  and ˆ

EAMR .  

represents the Sigmoid function, and Wi  refers to the 1×1 convolution kernel. Besides, we 

add residual connections to prevent any response of particular channel from being overly 

amplified or suppressed. Ultimately, the obtained feature R is used for prediction. 25 
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Supplementary Fig. 15 | Illustration of the feature synergy module consisting of both 

feature alignment (i.e., KAM  and EAM ) and feature mergence operations (i.e., ). 

Refer to the text description for more details. 

  5 
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Deep learning model structure: Each branch uses the same feature extraction backbone. The 

input tensor of size H×W×3 is first passed sequentially through five stacked ConvBlocks. Each 

ConvBlock consists of a 2D convolution, batch normalization, ReLU, dropout, and a pooling 

layer; downsampling pooling is enabled only in selected blocks to moderately compress spatial 

resolution and expand the receptive field while controlling network depth, and batch 5 

normalization together with dropout helps suppress overfitting. A DilConvBlock is then 

introduced to reinforce multi-scale context modeling: this module applies four parallel 3×3 

dilated convolutions with dilation rates of 1, 2, 3, and 4 to the same feature map, concatenates 

their outputs along the channel dimension (dim = 1). The output of the DilConvBlock is 

compressed into a 1D vector by global adaptive average pooling and mapped to three scalar 10 

features through several fully connected layers. Applying this pipeline to the Euler, KAM, and 

phase branches yields three sets of matrix features, which are combined with numerical features 

and fed into the feature synergy module of the main network. 

 

Supplementary Fig. 16 | Schematic of the single branch network architecture. a 15 

Structure of the ConvBlock, consisting of convolution, batch normalizationn, ReLU, dropout, 

and pooling layers in sequence. b Structure of the DilConvBlock, comprising four parallel 

3×3 dilated convolutions with dilation rates of 1, 2, 3, and 4; their outputs are concatenated 

along the channel dimension (dim = 1) and followed by batch normalization. c Illustration of 

the sampling pattern and effective receptive field of the dilated convolutions, showing the 20 

number of times each spatial location is used. 
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Hyper-parameter setting 

Supplementary Table 3 | Hyper-parameters and their descriptions 

Hyper-parameter Description 

Data configuration 

num_images=3 Number of input images, the matrix is treated as similar 

num_parameters=3 Number of input numerical parameters 

num_outputs=1 Number of predicted outputs 

image_size=336 Input image size 

Model configuration 

backbone Custom CNN backbone; optional pretrained ResNet-18/34/50 

num_blocks=5 Number of convolution blocks 

feature_dim=512 Feature dimension after convolution 

num_feature=3 Number of features extracted from a single input image 

dropout=0.5 Dropout rate for regularization 

ReLU Activation function 

Training configuration 

batch size = 32 Number of samples used in each iteration 

epochs = 150 Number of model iterations 

Loss = MSE Loss function 

Adam Adaptive moment estimation optimizer 

LR = 0.001 Initial learning rate 

WD=0.0001 Weight decay 

Cosine Learning rate scheduler 

early_stopping=10 Early stopping patience 
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Parameter configuration 

Supplementary Table 4 | Initialization parameters of different ML models. For each 

comparative network (MCC-Net, ECMMF-Net, Base-w/oSM, MBNI-Net), we conducted a 

small grid search over the Adam hyperparameters on the validation set, while keeping all 

other optimizer settings at their default values. The final configuration for each model is 5 

summarized 

Model Batch size Optimizer Loss function Initial LR Weight decay 

MCC-Net 32 Adam MSE 1.0 × 10−3 1.0 × 10−4 

ECMMF-Net 32 Adam MSE 5.0 × 10−4 2.0 × 10−4 

Base-w/oSM 32 Adam MSE 1.5 × 10−3 5.0 × 10−5 

MBNI-Net 32 Adam MSE 5.0 × 10−4 2.0 × 10−4 

Ours 32 Adam MSE 1.0 × 10−3 1.0 × 10−4 
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Data augmentation: Given the limited size of the dataset in this study, we adopted offline data 

augmentation to expand the effective sample size. Images were preprocessed using the Imgaug 

Python library, and the augmented samples were then fed into the network for training. Seven 

augmentation strategies were used, including geometric transforms (horizontal flipping, small-

angle random rotation of approximately ±10°–15°, and shear affine transformation) and 5 

photometric perturbations (Gaussian blur with Gaussian noise, random brightness adjustment, 

and contrast/gamma perturbation), as well as Mosaic augmentation, in which four images were 

randomly cropped and stitched into composite scenes. 

Horizontal flipping, small-angle rotation, and shear primarily enhance the robustness to 

variations in orientation and pose, whereas blur+noise, brightness, and contrast/Gamma 10 

perturbations enrich the distribution of imaging conditions and appearance. Mosaic 

augmentation further increases the diversity of spatial compositions and structural patterns14. 

Together, these seven strategies provide a balanced and semantically consistent expansion of 

the small-scale dataset, as illustrated in Supplementary Fig. 17. 

 15 

Supplementary Fig. 17 | Schematic illustration of the data augmentation effect on the 

KAM map. 
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Supplementary Table 5 | Statistical comparison of model performance in terms of MSE 

(×10-2) and MAE (×10-1) for six specimens tested at strain amplitudes of 2 %, 4 %, 6 %, 

and 8 %. The best result is represented in bold, followed by underline. Our model achieves 

the best overall accuracy with an average rank of 1.521. After removing the feature synergy 

module (BMN-w/oSM), the errors increase to 7.39 × 10-2 and 2.43 × 10-1, corresponding to 5 

14.9 % and 21.5 % degradations, respectively, which highlights the essential role of this 

module in enhancing overall predictive reliability 

Models MBFFA Base-w/oSM MBNI-Net MCC-Net ECMMF-Net 

Metric MSE  MAE  MSE MAE MSE MAE MSE MAE MSE MAE 

Specimen I 

2 0.124 0.256 0.158 0.345 0.149 0.298 0.183 0.412 0.201 0.455 

4 2.620 1.315 3.351 1.897 2.764 1.462 3.213 1.843 4.512 2.771 

6 7.851 2.278 9.112 3.045 7.743 2.113 10.94 3.681 12.37 4.268 

8 10.27 2.646 11.30 3.154 13.94 3.721 14.97 4.742 14.83 5.325 

Specimen II 

2 0.128 0.264 0.165 0.361 0.152 0.329 0.168 0.358 0.245 0.538 

4 2.703 1.357 2.654 1.329 3.387 1.742 3.223 1.812 5.032 2.391 

6 8.599 2.350 8.524 2.983 8.342 2.203 9.964 3.252 13.86 4.422 

8 10.60 2.726 10.81 3.025 13.74 3.505 14.28 3.792 14.24 4.783 

Specimen III 

2 0.133 0.275 0.126 0.249 0.175 0.333 0.131 0.412 0.233 0.564 

4 2.813 1.412 2.851 1.603 3.411 1.773 2.745 1.389 5.376 2.642 

6 8.429 2.446 9.524 3.246 10.38 3.201 8.68 2.589 13.15 3.893 

8 11.03 2.833 10.92 2.698 14.32 4.186 15.42 4.284 15.13 4.732 

Specimen IV 

2 0.137 0.283 0.144 0.322 0.128 0.279 0.157 0.353 0.282 0.598 

4 2.896 1.453 3.016 1.734 3.509 1.811 2.852 1.452 7.421 2.672 

6 8.677 2.518 8.764 3.063 9.684 2.423 8.989 2.893 11.34 4.462 

8 11.36 2.914 10.77 2.739 13.54 4.352 13.28 4.882 14.90 5.431 

Specimen V 

2 0.143 0.297 0.142 0.333 0.145 0.317 0.205 0.545 0.264 0.621 

4 3.034 1.523 2.904 1.653 3.107 1.644 3.364 1.918 7.506 2.745 

6 9.090 2.637 9.765 3.003 9.344 2.825 10.81 3.664 11.67 3.892 

8 11.90 2.948 15.03 4.566 11.68 3.125 14.32 3.808 14.51 5.324 

Specimen VI 

2 0.117 0.243 0.119 0.266 0.181 0.381 0.112 0.243 0.238 0.594 

4 2.482 1.246 3.501 1.945 3.352 1.812 4.283 2.474 4.762 2.876 

6 7.438 2.158 9.352 2.742 9.452 2.902 10.45 3.341 11.98 3.538 

8 9.733 2.512 14.91 3.874 11.36 2.973 14.46 4.163 12.88 4.511 

Avg Rank 1.521 2.521 2.583 3.417 4.938 
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Local interpretability 

 

Supplementary Fig. 18 | Local interpretability of residual strain predictions for six 

annealing conditions at 6% strain after 10 cycles. a–f SHAP waterfall plots for specimens 

I–VI, respectively. Overall, strain amplitude and cycle number act as the dominant positive 5 

contributors across all specimens. The Ni4Ti3 feature generally provides a strong negative 

contribution, indicating that fine, dispersed Ni4Ti3 precipitates mitigate degradation, 

consistent with previous results. In contrast, KAM1 contributes more strongly in lightly 

annealed specimens, where larger residual stresses and lattice distortion more readily trigger 

superelastic degradation, but its influence diminishes in more heavily annealed states, where 10 

recovery lowers stored energy and moderates local damage. 
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Feature correlation analysis 

 

Supplementary Fig. 19 | Feature interaction matrices across different levels of 

superelastic degradation. a–c Feature interaction matrices corresponding to mild, moderate, 

and severe degradation. Colors denote the normalized interaction intensity between feature 5 

pairs. Black circles highlight the term between cycle number and orientation features, whose 

magnitude decreases progressively from 0.7847 (mild) to 0.4518 (moderate) and 0.1164 

(severe). This systematic decline indicates that cyclically accumulated local damage and 

irreversible deformation increasingly dominate the material response, diminishing the 

influence of initial orientation and thereby weakening the coupling between cycle number and 10 

Euler orientation features as degradation advances. d Mapping between matrix indices and 

specific feature definitions. 
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Ablation experiments  

Assess the impact of number of blocks and dataset allocation 

 

Supplementary Fig. 20 | Influence of data-splitting ratios and network block numbers on 

model accuracy. Training, validation, and test accuracies are shown under three dataset 5 

partitions: (a) 6:3:1, (b) 7:2:1, and (c) 8:1:1. Accuracy was computed following the method 

reported in our previous study15. The test set was kept fixed, while the remaining samples 

were allocated to training and validation according to each ratio. Increasing the proportion of 

training data led to a progressive improvement in performance, with the 8:1:1 split achieving 

the highest accuracy. The effect of network depth exhibited a characteristic non-monotonic 10 

trend: performance peaked when the network comprised approximately 3–5 blocks, whereas 

further increasing the number of blocks did not yield additional gains. Instead, excessive 

depth caused feature representations to become increasingly redundant and saturated, 

resulting in reduced model stability and a decline in predictive accuracy. 

 15 
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Why Euler orientation matrix instead of IPF map? We encode the three Euler angles into 

three channels to construct the Euler matrix that represents the actual crystal orientation, rather 

than directly using the more readily available IPF map. The IPF map essentially compresses the 

orientation of a selected reference direction in the crystal frame into RGB colors, where a single 

color may correspond to multiple crystallographically orientations (Supplementary Fig. 21a). 5 

In contrast, the Euler matrix fully describes all three degrees of freedom. Interestingly, this 

approach unexpectedly introduces a new modality, yet it can still be processed in the same 

manner as an image matrix. 

re-IPF: In this ablation variant, we replace the Euler matrix with the IPF map as the orientation 

input. 10 

Why is PCA used to reduce the dimensionality of Ni4Ti3 features? We extract multiple 

descriptors of Ni4Ti3 from TEM, including diameter, aspect ratio, and area, and then compress 

them into a single principal component via PCA. Similar strategies have been applied in other 

material systems. For instance, researchers have used PCA to reduce the dimensionality of γ′-

phase morphological descriptors, improving the robustness of creep strain prediction in Ni-15 

based superalloys16. For the present work, if all precipitate features are directly concatenated 

into the numerical input rows, the performance degrades significantly (Supplementary Table 

6). This likely occurs because the inflated dimensionality of the numerical branch interferes 

with weight allocation among other dominant factors. 

w/o-PCA: We omit the PCA step and directly concatenate all individual Ni4Ti3 precipitate 20 

features into the numerical input branch. 

Importance of KAM and phase maps. For NiTi alloys, high KAM regions are prone to 

damage evolution and functional degradation. Here KAM is used as a scalar field to quantify 

local damage, while detailed mechanistic discussion is beyond the scope of this study. NiTi₂ 

appears as incoherent, brittle second-phase particles along grain boundaries or within grains, 25 

acting as stress concentrators, promoting dislocation slip and microcrack initiation, and thereby 

degrading superelastic stability17,18; our observations align with this view (Supplementary Fig. 

21b). Ablation experiments show that removing either the KAM or phase map input leads to a 

marked drop in accuracy. 

w/o-KAM: we remove the KAM channel and retain only the Euler matrices and phase maps as 30 

matrix inputs. 

w/o-Phase: we remove the phase map channel and retain only the Euler matrices and KAM 

maps as matrix inputs. 
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Other available microstructural information. BC maps mainly capture the contrast and 

sharpness of backscattered electron patterns (Supplementary Fig. 21d), allowing visualization 

of grain morphology, grain boundaries and surface condition. We tested BC as a fourth image 

channel, but the gain in prediction accuracy was negligible, so it was not retained in the main 

framework. A plausible explanation is that degradation-related information is already encoded 5 

in the existing inputs, whereas BC contributes little independent signal and is highly sensitive 

to sample preparation and imaging conditions, thus introducing task-irrelevant noise. 

ad/BC: we additionally feed the BC map as a fourth image channel, with the remaining network 

architecture and training configuration unchanged. 

Feature synergy module. The extracted matrix features and numerical features are projected 10 

into a shared embedding space to mitigate cross-modal context misalignment, thereby 

improving the effectiveness and stability of multimodal fusion. 

re-FSM: in this ablation variant, the feature synergy module is replaced with a multi-head self-

attention module19. 

  15 
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Supplementary Fig. 21 | Supplementary illustration of different input modalities. a IPF 

map and crystallographic orientation schematics of four selected grains A–D, illustrating how 

grains A/B or C/D differ markedly in orientation yet still exhibit similar colours, reflecting the 

information simplification in the IPF representation. b Phase map, where green denotes NiTi2 5 

precipitates and the light background the matrix, together with the corresponding response 

heatmap derived from this map. c Mean KAM values for specimens I–VI subjected to various 

heat treatments, with representative KAM maps for each specimen shown above. d BC image 

highlighting the grain morphology and grain boundaries. e Schematic of the self-attention 

mechanism. The Q matrix of each element is dot-producted with the K matrix of the other 10 

elements, and then the result of the dot-product is scaled and fed into the Softmax function for 

normalization. Finally, the V matrix is multiplied by the output of the Softmax function to 

determine the relative importance of each element. 
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Supplementary Table 6 | Ablation study of model components in MBFFA 

Method MSE (10-1) MAE R2 (10-2) 

w/o-PCA 0.647 0.318 84.91 

w/o-KAM 0.634 0.307 86.26 

w/o-Phase 0.587 0.207 89.79 

re-FSM 0.579 0.201 93.48 

re-IPF 0.567 0.190 94.35 

ad/BC 0.556 0.178 97.11 

Base 0.552 0.172 98.02 
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Molecular dynamics 

 

Supplementary Fig. 22 | Atomistic models used in this study (sliced at 1/2 along the x-

axis). a NiTi without Ni4Ti3 precipitates. b NiTi with Ni4Ti3 precipitates. 

  5 
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Supplementary Fig. 23 | Atomistic configurations of NiTi after each cycle in the cyclic 

simulation. 
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Supplementary Fig. 24 | Atomistic configurations of NiTi with Ni4Ti3 precipitates after 

each cycle in the cyclic simulation. 
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Supplementary Fig. 25 | Atomic strain maps of NiTi after each cycle in the cyclic 

simulation. 
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Supplementary Fig. 26 | Atomic strain maps of NiTi with Ni4Ti3 precipitates after each 

cycle in the cyclic simulation. 

 

  5 
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Visualization results 

Raw heatmap used for visual illustration 

 

Supplementary Fig. 27 | Schematic of the heatmap visualization workflow. a Response 

heatmap obtained by applying the channel separation strategy proposed in this work to 5 

visualize features from the Euler orientation matrix. b Reference heatmap generated using the 

conventional channel stacking strategy. c IPF orientation map of the corresponding region. In 

the main text (Fig. 2), panels (a) and (b) are respectively overlaid with (c) to illustrate how 

high response regions in the heatmaps align with grain morphology and crystallographic 

orientation. 10 
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Raw heatmap used to elucidate degradation mechanism 

 

Supplementary Fig. 28 | Euler matrix response heatmaps. a–g Response heatmaps 

obtained by feature visualization of the Euler orientation matrices in the same region, 

corresponding to different strain amplitudes and cycle numbers: (a) 2%–1 cycle; (b) 2%–3 5 

cycles; (c) 2%–10 cycles; (d) 8%–1 cycle; (e) 8%–3 cycles; (f) 8%–10 cycles; (g) 6.38%–1 

cycle. h Grain boundary map of the same region. In Fig. 4 of the main text, the heatmaps in 

(a–g) are spatially superimposed with the grain boundary contours in (h), and the high 

response regions are further compared with the Schmid factor distribution to identify the grain 

orientations and associated deformation mechanisms that dominate superelastic degradation. 10 
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