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Experimental Section

Cyclic tensile—unloading engineering stress—strain curves

2%
4%

600 | 6%
P 8%

Specimen |

4 6

Strain (%)

2%
4%
600 | 6%
8%

Specimen |l

4 6

Strain (%)

800
2%
4%
600 | 6%
8%

700 |

© 500

MP

~ 400

300

tress

® 200

100

Specimen V

4 6

Strain (%)

(b)
800

700
600
500
400
300
@ 200

tress (MPa)

100

(d)

800
700
600
500
400
300

Stress (MPa)

200
100

800
700

=23
o O
o o

Stress (MPa)
- N w S [44]
(= [=3 o [=3
o o o (=]

o

2%
4%
6%
8%

Specimen Il

4 6 8
Strain (%)

2%
4%
6%
8%

Specimen IV

4 6 8
Strain (%)

2%
4%
6%
8%

Specimen VI

4 6 8
Strain (%)

Supplementary Fig. 1 | Cyclic tensile—unloading engineering stress—strain curves of NiTi

5 alloys under different annealing conditions. (a—f) correspond to specimens I-VI,

respectively, showing the cyclic test results under strain amplitudes of 2%, 4%, 6%, and 8%.



Residual strain statistics
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Supplementary Fig. 2 | Residual strain accumulation of NiTi alloys under various
annealing conditions. Evolution of residual strain with increasing cycle number at strain
5 amplitudes of (a) 2%, (b) 4%, (c) 6%, (d) 8%, (e) 10% and (f) 12%. The first four amplitudes
were employed for model training and validation. The latter two were used to evaluate

extensibility, where the material had fully entered the martensitic plastic deformation period.



Digital image correlation experiment
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Supplementary Fig. 3 | Schematic of the digital image correlation (DIC) setup used to
measure full-field strain during cyclic tensile loading. Dog bone specimens with a gauge
section of 25 mm <6 mm were sprayed with a random speckle pattern and recorded by a

5
stereo DIC system comprising two 5-megapixel CCD industrial cameras equipped with 35-
mm lenses. Image pairs were continuously acquired and processed to obtain the three-
dimensional displacement and strain fields. The target strain amplitudes for the subsequent
cyclic tensile unloading tests were first calibrated from monotonic uniaxial tensile
10 experiments using the same DIC system.



Expansion Multiple localizations Throughout the gauge
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Supplementary Fig. 4 | First cycle deformation analysis. DIC maps 1-8 mark key

deformation stages and correspond to the symbols on the stress strain curve in Fig. 5b. At 2%

strain, the specimen has entered the stress plateau and the initial martensitic transformation is
activated. The transformation evolves from local nucleation to multiple localization and
eventually to a fully transformed gauge section. Notably, the end of the plateau at 6.66%

strain does not coincide with the completion of transformation: by 6.82% the gauge section is

fully transformed, and at 8% strain martensitic plastic deformation emerges.
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Supplementary Fig. 5 | Cyclic deformation analysis. DIC maps for successive cycles show

the local deformation of the specimen at the end of each loading unloading loop,

corresponding to the blue markers on the stress strain curve in Fig. 5b and visualizing the

progressive accumulation of residual strain. As shown in the figure, the residual deformation

region continuously expands during the first five loading cycles, corresponding to the

observed orientation-dependent variant transfer phenomenon in the main text.



X-ray diffraction pattern
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Supplementary Fig. 6 | XRD patterns of NiTi alloys annealed under various short-term
annealing conditions. Specimens 1-V1 correspond to distinct annealing regimes: 1-50010
5 (500 <C, 10 min), 11-50030 (500 <C, 30 min), 111-60010 (600 <C, 10 min), IV-60030 (600 <C,
30 min), V-70010 (700 <C, 10 min), and VI-70030 (700 <C, 30 min). All specimens exhibit a
B2 austenitic matrix at room temperature, accompanied by different precipitate species. With
increasing annealing temperature, the fine NisTis precipitates dominant at 500 <C evolve into
a multiphase microstructure containing both Ni4sTis and NiTiz at 600 <C, and NiTiz becomes
10 the prevailing phase at 700 <C. Prolonging the holding time mainly promotes the coarsening
and redistribution of precipitates without altering their types.
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Electron backscatter diffraction: The EBSD results from Specimen IV are presented as
representative. The microstructure exhibits a multiphase configuration comprising the B2
matrix (yellow) together with uniformly dispersed NisTis (red) and NiTiz (blue) precipitates.
Due to cold rolling deformation prior to annealing, residual internal stresses were not
completely relieved, resulting in a pronounced {101} texture orientation. Nevertheless, the
overall structure remains predominantly uniform equiaxed grains with an average size of
approximately 10.3 um. In the phase image, NiTiz precipitates are generally identifiable, while
NisTiz can only be effectively resolved by EBSD when sufficiently large (>200 nm). EBSD
struggles to fully analyze smaller Ni4Tis precipitates. This is why we incorporated TEM results
into the numerical feature to achieve a more comprehensive microstructural characterization.
Furthermore, KMA analysis reveals the presence of certain orientation gradients within the

grains, which is also related to the retention of residual stresses from cold working.

Supplementary Fig. 7 | EBSD characterization of specimen IV annealed at 600 <C for 30
min. a Band contrast image. b Inverse pole figure (IPF) map showing an equiaxed grain
structure. ¢ Phase map indicating that the matrix is primarily B2 austenite. d Kernel average

misorientation (KAM) map revealing the local strain distribution and orientation gradients.



Pole figure of the selected region

(a)

(b) Y1-NiTi 1.99
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Supplementary Fig. 8 | EBSD results of the region selected for grain orientation analysis.
a Inverse pole figure (IPF) map of the NiTi alloy subjected to heat treatment at 600 <C for 10
min. The Y direction of the EBSD map is parallel to the tensile axis. The microstructure
consists of equiaxed B2 austenite grains. b The corresponding IPF along the Y direction
shows a relatively strong <111>g> fiber texture in the B2 grains, with a multiple of uniform
distribution (MUD) = 1.99, a texture commonly observed in NiTi sheets!.



Orientation analysis of NisTis precipitates
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Supplementary Fig. 9 | Orientation relationship between NisTiz precipitates and the B2
austenite matrix. a Orientation distribution map. b;—bs {123}, {110}, and {100} pole figures
5 of the B2 austenite matrix. ci—c3 {0001}, {10-10}, and {11-20} pole figures of the NisTis
precipitates. d Bright-field TEM image of the overall region, and (e) the selected area electron
diffraction (SAED) pattern taken from the red boxed area in (d). f Corresponding dark field
image, with (g) and (h) showing the SAED pattern and high-resolution TEM (HRTEM)

image from the red boxed region in (f), respectively. i Geometric phase analysis? (GPA) strain

<111>B2/ -0 L 21/nm 10nm

10  map corresponding to (h). No common-index crystal plane was identified between NisTis and
the B2 matrix in the pole figures. Nevertheless, the pole figure and SAED analyses reveal a
specific orientation relationship of {123}<111>g2 // {11-20}<0001>ni,1is. Dark field image

demonstrates that NisTis precipitates are uniformly distributed as nanoscale particles.
HRTEM and GPA strain mapping indicate that the formation of Ni4Tis precipitates induces
15 strain inhomogeneity in the NiTi matrix, with significant local tensile strain in continuous

distribution regions.

10



Statistical information of NisTiz precipitates
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Supplementary Fig. 10 | Quantitative statistics of NisTis precipitates under different

annealing conditions. a—d Aspect ratio—diameter distributions of Ni4Tis precipitates in

5

Specimens I-1V, corresponding to 500 <C <10 min, 500 T »%30 min, 600 <T =10 min and

600 <T >=30 min, respectively. Each symbol denotes one precipitate, and the insets give the

mean aspect ratio and equivalent diameter. From Specimen | to 1V, the data clouds shift

toward larger diameters and higher aspect ratios, and the distributions gradually broaden,

indicating progressive coarsening and slight elongation of Ni4Tis. The increase in average

10

diameter and aspect ratio is much more pronounced when the annealing temperature rises

from 500 <C to 600 <C than when the holding time is extended from 10 min to 30 min,

showing that temperature exhibits a stronger influence on the precipitation behavior than

time.

11
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Calculation and correction of the Schmitt factor: For multiphase NiTi alloys, traditional
Schmid theory struggles to accurately predict critical transformation stresses. The primary
limitation arises from the localized stress field introduced by precipitates, which modify the
effective resolved shear stress distribution within grains. As a result, the actual slip and
transformation behaviors depart from idealized crystallographic expectations. Previous studies
indicate that the coherency mismatch stress of Ni4Tis precipitates can elevate the critical stress
for dislocation slip while simultaneously lowering the onset stress required to martensitic
transformation®®. With NisTis precipitates distributed nearly uniformly and the analysis
centered on preferentially oriented grains that control superelastic degradation, the use of this
correction is well-justified and broadly applicable. In principle, the NisTis precipitates larger
than ~300 nm, once they lose coherency with the matrix, should contribute only weakly to the
internal stress field®, similar to NiTiz particles. However, TEM observations (Supplementary
Fig. 10) show that such oversized NisTis particles are extremely scarce, so the overall
adjustment is still formulated by treating the NisTis population as effectively coherent. The
specific derivation is as follows. We first assume that dislocation slip or SIMT is triggered when

the total resolved shear stress attains a critical threshold 7, such that:

Trss-total — M Tgpp t Trssi 2 Te (1)

Where denotes the total critical resolved shear stress. m represents the traditional

rss-total

Schmid factor, o,,, corresponds to the nominal stress under applied load, and 7 ; signifies
the local resolved shear stress introduced by the coherent stress field of the NisTis precipitates.
To analyze the activation behavior in different regions, the above relationship can be
equivalently expressed as a modified Schmid factor:

meﬁ 0,

app = M Ogpp T Trssei (2)

’T .
Mgy = M + 151 )
Tapp

Here, m,; denotes the corrected Schmid factor, which integrates the combined effects of the

external load and the local coherency stress field. For different deformation mechanisms, the
corrected form can be expressed as follows:

T

_ rss-i,slip
meff,slip - mslip - o
app,slip ( 4)
m -m _ Trss-i,trans
eff,trans — '''trans
app,trans

12
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Among these, mg, and m represent the conventional Schmid factors for slip and

slip trans

transformation, respectively. T, and 7 denote the local shear stress corrections

rss-i,slip rss-i,trans
for the precipitates, with the former corresponding to the slip inhibition effect and the latter to

the transformation promotion effect. o and  oa,uans  FEPresent the applied stress,

app,slip

respectively. For transformation, o, s €mploys the stress corresponding to the first tensile

transformation plateau. To quantify the local stress fields generated by precipitates, the Eshelby

approach is employed:

/
Trss-itrans — O‘ijCijkI Diimn (X)sr?wn (5)

Here, «; is the orientation tensor transformed into the principal coordinate system of the

precipitate from o

1
o :E(minj +mm;) (6)

m and n denote the shear direction and the habit plane normal associated with each martensitic
twin variant. Each martensite twin variant pair comprises two martensite single-crystal variants
Vi and Vj connected by a twin relationship, maintaining a specific volume fraction ratio x:(1-
X). Although the interface between the austenite and each individual martensite variant (Vi or
Vj) is not an invariant plane, the interface between the austenite and the martensite variant pair
(Vi-V)) is an invariant habit plane. In this study, we consider the only two types of martensitic
twins with invariant habit planes: the <011> type Il twin and the {11-1} type I twin, yielding a
total of 48 variant pairs’®. For the first type, the crystallographic parameters are m = [0.41145,
—0.76331, 0.49807] and n =[—0.88888, —0.21524, 0.40443]; for the second type, m =[—0.82044,
0.02068, 0.57136] and n = [0.27789, —0.85894, 0.43012]. The parameters for the other 46
variants can be obtained through cyclic permutation of the indices. Supplementary Table 1
and Table 2 summarize the theoretical solutions for all habit planes of these two twin types.

Additionally, Cy, represents the elastic constant tensor for the precipitate and the surrounding
matrix (assumed to be consistent). D,,,(x) denotes the Eshelby tensor describing the
transmission of lattice misfit strain from the precipitate within the matrix®, characterizing the
elastic field response at any position x. P represents the intrinsic misfit strain of the NiaTis

precipitate, reflecting its spontaneous lattice distortion in the absence of external loading®.
For slip-related correction, the Eshelby's calculation method remains consistent, employing
only the crystallographic parameters of the slip system in the orientation projection section.

Specifically, in Equations (6), the «a; no longer represents the orientation tensor of the

13



. =s.n., defined

transformation variant, but instead denotes the Schmid orientation tensor «; =s;n;,

by the slip direction s; and slip plane normal n;. The most representative slip systems in B2

NiTi, {011}<001> and {011}<111>, are selected. Moreover, the o, is the conventional

pp,slip
yield stress®®, extracted from tensile tests conducted at 200 <T (Supplementary Fig. 11), a
temperature at which no stress-induced transformation occurs and aging effects are still
negligible.

14



Supplementary Table 1 | Theoretical solutions of the habit plane system for <011> type

Il twin. The volume fraction ratio of the twinning x:(1-x)=0.72898:0.27102

Variant pairs

Invariant habit plane

Invariant shear direction

1-2
1-2'
1'-2
12"
2-1
2-1'
2'-1
21"
3-4
34
3-4
34
4-3
4-3
4-3
4-3
5-6
5-6'
5'-6
5/-6'
6-5
6-5'
6'-5
6'-5'

(—0.88888 —0.21524 0.40443)
(—0.88888 —0.40443 0.21524)
(0.88888 —0.40443 0.21524)
(0.88888 —0.21524 0.40443)
(—0.88888 —0.21524 —0.40443)
(—0.88888 —0.40443 —0.21524)
(0.88888 —0.40443 —0.21524)
(0.88888 —0.21524 —0.40443)
(0.40443 —0.88888 —0.21524)
(0.21524 —0.88888 —0.40443)
(0.21524 0.88888 —0.40443)
(0.40443 0.88888 —0.21524)
(—0.40443 —0.88888 —0.21524)
(—0.21524 —0.88888 —0.40443)
(—0.21524 0.88888 —0.40443)
(—0.40443 0.88888 —0.21524)
(—0.21524 0.40443 —0.88888)
(—0.40443 0.21524 —0.88888)
(—0.40443 0.21524 0.88888)
(—0.21524 0.40443 0.88888)
(—0.21524 —0.40443 —0.88888)
(—0.40443 —0.21524 —0.88888)
(—0.40443 —0.21524 0.88888)
(—0.21524 —0.40443 0.88888)

[0.41145 —0.76331 0.49807]
[0.41145 —0.49807 0.76331]
[-0.41145 —0.49807 0.76331]
[-0.41145 —0.76331 0.49807]
[0.41145 —0.76331 —0.49807]
[0.41145 —0.49807 —0.76331]
[-0.41145 —0.49807 —0.76331]
[-0.41145 —0.76331 —0.49807]
[0.49807 0.41145 —0.76331]
[0.76331 0.41145 —0.49807]
[0.76331 —0.41145 —0.49807]
[0.49807 —0.41145 —0.76331]
[-0.49807 0.41145 —0.76331]
[<0.76331 0.41145 —0.49807]
[-0.76331 —0.41145 —0.49807]
[-0.49807 —0.41145 —0.76331]
[-0.76331 0.49807 0.41145]
[<0.49807 0.76331 0.41145]
[-0.49807 0.76331 —0.41145]
[-0.76331 0.49807 —0.41145]
[-0.76331 —0.49807 0.41145]
[-0.49807 —0.76331 0.41145]
[-0.49807 —0.76331 —0.41145]
[-0.76331 —0.49807 —0.41145]

15



Supplementary Table 2 | Theoretical solutions of the habit plane system for {11-1} type |
twin. The volume fraction ratio of the twinning x:(1-x)=0.67994:0.32006

Variant pairs

Invariant habit plane

Invariant shear direction

14
1-5'
1-3
16
2-3'
2-5
24
26’
3-1'
3-6
32
35
4-1
4-5'
4-2'
4-6'
5-2
5-3'
51
54
6-1'
6-3
62"
64’

(0.27789 —0.85894 0.43012)
(0.27789 —0.43012 0.85894)
(—0.27789 —0.85894 0.43012)
(—0.27789 —0.43012 0.85894)
(0.27789 —0.85894 —0.43012)
(0.27789 —0.43012 —0.85894)
(—0.27789 —0.85894 —0.43012)
(—0.27789 —0.43012 —0.85894)
(0.85894 0.27789 —0.43012)
(0.43012 0.27789 —0.85894)
(0.85894 —0.27789 —0.43012)
(0.43012 —0.27789 —0.85894)
(—0.85894 0.27789 —0.43012)
(—0.43012 0.27789 —0.85894)
(—0.85894 —0.27789 —0.43012)
(—0.43012 —0.27789 —0.85894)
(—0.85894 0.43012 0.27789)
(—0.43012 0.85894 0.27789)
(—0.85894 0.43012 —0.27789)
(—0.43012 0.85894 —0.27789)
(—0.85894 —0.43012 0.27789)
(—0.43012 —0.85894 0.27789)
(—0.85894 —0.43012 —0.27789)
(—0.43012 —0.85894 —0.27789)

[—0.82044 0.02068 0.57136]
[-0.82044 —0.57136 —0.02068]
[0.82044 0.02068 0.57136]
[0.82044 —0.57136 —0.02068]
[—0.82044 0.02068 —0.57136]
[—0.82044 —0.57136 0.02068]
[0.82044 0.02068 —0.57136]
[0.82044 —0.57136 0.02068]
[—0.02068 —0.82044 —0.57136]
[0.57136 —0.82044 0.02068]
[—0.02068 0.82044 —0.57136]
[0.57136 0.82044 0.02068]
[0.02068 —0.82044 —0.57136]
[—0.57136 —0.82044 0.02068]
[0.02068 0.82044 —0.57136]
[—0.57136 0.82044 0.02068]
[0.02068 0.57136 —0.82044]
[-0.57136 —0.02068 —0.82044]
[0.02068 0.57136 0.82044]
[—0.57136 —0.02068 0.82044]
[0.02068 —0.57136 —0.82044]
[—0.57136 0.02068 —0.82044]
[0.02068 —0.57136 0.82044]
[—0.57136 0.02068 0.82044]

16
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Supplementary Fig. 11 | Tensile testing at 200 <T is used to determine the critical stress

Oappsip fOT slip (conventional yield strength). At this temperature, no stress-induced

transformation occurs and aging effects are still negligible.
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Transmission electron microscope characterization after cyclic loading

10

Supplementary Fig. 12 | TEM characterization of NiTi after cyclic loading at different
strain amplitudes. a, b The bright field images of the specimen cycled at 4% strain
amplitude under different diffraction conditions, revealing a high density of dislocations but
no discernible austenite twins or retained martensite plates. ¢ SAED pattern from the region
marked in (b). d—f TEM results for the specimen cycled at 6% strain amplitude, showing the
appearance of {114} B2 austenite twins. g BF image of the specimen cycled at 8% strain,
displaying extensive austenite twins. h Local observation of a representative twin band, and
(i) corresponding HRTEM image from the boxed region in (h), where the twin boundaries are
clearly resolved. Overall, superelastic degradation of the NiTi alloy under cyclic loading is
primarily governed by dislocation accumulation and austenite twinning, with no retained
martensite detected over the entire strain amplitude range.

18



EBSD characterization after cyclic loading (n=5)

>3 1.26%
25 0.10%

37 0.32%

2 |9 38.4%

Supplementary Fig. 13 | EBSD characterization of the NiTi alloy annealed at 700 <C for
30 min after 5 cycles at 8% strain amplitude. a IPF map showing the development of a

5 pronounced {101} texture after annealing. b Band contrast image, where dense deformation

bands aligned along specific orientations traverse the grains after high strain cycling. ¢
Coincidence site lattice (CSL) boundary map revealing the extensive formation of X9
boundaries, reaching 38.4%, indicative of substantial grain boundary reconfiguration during
deformation. We provide a schematic illustration of the formation mechanism of £9 special
10 boundaries in B2 austenite during cyclic phase transformation. d The initial B2 phase
(schematized using the {011} plane) exhibits a regular lattice. e Cyclic loading induces the
formation of a composite B19" martensite twin structure. f Subsequent reverse transformation
produces two newly formed B2 regions with a relative lattice rotation that satisfies the £9

relation, thereby generating high densities of 29 boundaries at the microscale.
15
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EBSD characterization after cyclic loading (n=10)
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Supplementary Fig. 14 | EBSD characterization of the NiTi alloy annealed at 700 <C for
30 min after 10 cycles at 8% strain amplitude. a IPF orientation map, with Line 1-3
5 indicating the paths used for subsequent misorientation profiles. b Corresponding BC image
on the RD-TD section, showing numerous deformation twin bands traversing the grains along
specific orientations after high strain cyclic loading. ¢ CSL boundary map, revealing a high
density of X9 special deformation boundaries with an area fraction of 25.1%. d Intragrain
misorientation profiles extracted along Line 1-3 in (a, b) show the mismatch angle of
10 approximately 36 “when passing through the grain boundary, confirming the existence of

deformation twins.

20



10

15

20

25

30

Machine learning framework construction

Dataset Description: During dataset construction, EBSD maps obtained under various
annealing conditions were segmented and augmented offline, then paired with the
corresponding Ni4Tis descriptor, cycle number, and strain amplitude, yielding 31,536 labeled
sequences. The dataset was divided into training, validation, and test sets in a ratio of 8:1:1.
The test set contained only original data to ensure independent evaluation. Images were
partitioned by field of view to avoid splitting the same region across subsets.

Framework Description: In this study, pronounced modality gaps and semantic misalignment
exist between microstructural features and loading conditions. Handling cross-modal
entanglement and semantic inconsistency remains a central challenge for effective multimodal
feature fusion. For clarity, we take KAM maps and Euler angle matrices (EAM) as a
representative pair of modalities. Most existing approaches*! simply concatenate these features

and then perform feature extraction, which can be expressed as:
P = hpred(R | Ficam (Biam ): Feam (Beam ) ) (7
Here, Fqam(Bkan) and Fgay (Beaw) represent KAM and EAM features, respectively. []

denotes the concatenation operation. R denotes the extracted feature representation, which is

subsequently fed into the prediction head h,., to obtain the prediction result P. Although

concatenating multimodal features followed by unified feature extraction simplifies the
modeling process, this strategy overlooks the latent inconsistencies between modalities, leaving
the intrinsic conflicts in complex tasks unresolved. On the other hand, Wu et al.*? explicitly
accounts for such cross-modal inconsistencies by decomposing the feature encoding process

into multiple coordinated subtasks, which can be formulated as:
P= hpred([RKAM |FKAM (Bkam ), Ream |FEAM (Beam)D) (8)
Among them, Ry, and Rgay represent the KAM and EAM feature representations,

respectively. Apparently, this method only segregates feature exraction through two
independent networks, while failing to explore and utilize their mutual cooperation. Distinct
from above methods, the construction of our model accommodates the disentanglement and
modulation of signal, which is enlightened by cognitive neuroscience®®. From the perspective

of feature learning, it can be expressed as:

feam = €xam (Riam |FKAM (Bkam ) Ream |FEAM (Beam))
feam = eam (Ream |FEAM (Beam ) Ricam |FKAM (Bkam)) (9)
P= hpred (¢(fKAM ’fEAM )
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Here, ¢ and ¢ denote the feature alignment and mergence operations, respectively.

Specifically, we first employ two backbone networks to extract KAM and EAM features
independently, as illustrated in Fig. 1 of the main text. Since features learned by different
backbones may exhibit semantic misalignment, we develop a feature synergy module to align
and merge these disentangled representations. Note that the design inspiration of this module
derives from visual center that focuses on integrating multipartite information, but the specific
mechanism is still unknown. Therefore, the method proposed in this paper emphasizes on
drawing lessons from its cogitation, while the technical details are incompletely corresponding.
Feature synergy module: We designed a feature synergy module to mitigate the contextual
misalignment between modalities. This module comprises feature alignment and mergence,
which are detailed in this section. As illustrated in Supplementary Fig. 15 and Eqg. (10), the
alignment step primarily involves estimating an offset and applying it to the corresponding

feature representations:

A; = T3 ([Riam| Ficam (Bram ) Reamt | Feam (Bean D), | € {KAM,EAM}

X (10)
F =f/(R|F(B),A)i € {KAM,EAM}

where f, and f represent functions that learn coordinate offsets of the features and align

the features with offsets, respectively. In this work, they are implemented using 3>3 deformable
convolution, activation and standard convolutions with the same kernel size. In the feature
mergence stage, we emphasize the significant feature maps which contains a large amount of
spatial information, while suppressing redundant information to achieve precise allocation. The
process is shown in Equation (11):

U = GAP([Ryaw:Reau])

R =R +0(W, @u)®R,,i € {KAM,EAM} (11)

R= RIZAM b RI;AM

where u is obtained by global average pooling after the concat of Ry,, and Rgyy. o
represents the Sigmoid function, and W, refers to the 11 convolution kernel. Besides, we

add residual connections to prevent any response of particular channel from being overly

amplified or suppressed. Ultimately, the obtained feature R is used for prediction.
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Supplementary Fig. 15 | Illustration of the feature synergy module consisting of both

feature alignment (i.e., e, and egny ) and feature mergence operations (i.e., ¢).

Refer to the text description for more details.
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Deep learning model structure: Each branch uses the same feature extraction backbone. The
input tensor of size HXW>3 is first passed sequentially through five stacked ConvBlocks. Each
ConvBlock consists of a 2D convolution, batch normalization, ReLU, dropout, and a pooling
layer; downsampling pooling is enabled only in selected blocks to moderately compress spatial
resolution and expand the receptive field while controlling network depth, and batch
normalization together with dropout helps suppress overfitting. A DilConvBlock is then
introduced to reinforce multi-scale context modeling: this module applies four parallel 3>3
dilated convolutions with dilation rates of 1, 2, 3, and 4 to the same feature map, concatenates
their outputs along the channel dimension (dim = 1). The output of the DilConvBlock is
compressed into a 1D vector by global adaptive average pooling and mapped to three scalar
features through several fully connected layers. Applying this pipeline to the Euler, KAM, and
phase branches yields three sets of matrix features, which are combined with numerical features

and fed into the feature synergy module of the main network.
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Supplementary Fig. 16 | Schematic of the single branch network architecture. a
Structure of the ConvBlock, consisting of convolution, batch normalizationn, ReLU, dropout,
and pooling layers in sequence. b Structure of the DilConvBlock, comprising four parallel
3>3 dilated convolutions with dilation rates of 1, 2, 3, and 4; their outputs are concatenated
along the channel dimension (dim = 1) and followed by batch normalization. c Illustration of
the sampling pattern and effective receptive field of the dilated convolutions, showing the

number of times each spatial location is used.
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Hyper-parameter setting

Supplementary Table 3 | Hyper-parameters and their descriptions

Hyper-parameter

Description

Data configuration

num_images=3
num_parameters=3
num_outputs=1

image_size=336

Number of input images, the matrix is treated as similar
Number of input numerical parameters
Number of predicted outputs

Input image size

Model configuration

backbone
num_blocks=5
feature_dim=512
num_feature=3
dropout=0.5

RelLLU

Custom CNN backbone; optional pretrained ResNet-18/34/50
Number of convolution blocks
Feature dimension after convolution
Number of features extracted from a single input image
Dropout rate for regularization

Activation function

Training configuration

batch size = 32
epochs = 150
Loss = MSE

Adam
LR =0.001
WD=0.0001

Cosine

early_stopping=10

Number of samples used in each iteration
Number of model iterations
Loss function
Adaptive moment estimation optimizer
Initial learning rate
Weight decay
Learning rate scheduler

Early stopping patience
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Parameter configuration

Supplementary Table 4 | Initialization parameters of different ML models. For each
comparative network (MCC-Net, ECMMF-Net, Base-w/0SM, MBNI-Net), we conducted a

small grid search over the Adam hyperparameters on the validation set, while keeping all

other optimizer settings at their default values. The final configuration for each model is

summarized
Model Batch size Optimizer  Loss function  Initial LR~ Weight decay
MCC-Net 32 Adam MSE 1.0 <1073 1.0 <10
ECMMF-Net 32 Adam MSE 50%10%  2.0x10*
Base-w/oSM 32 Adam MSE 1.5 %1073 5.0 x107°
MBNI-Net 32 Adam MSE 5.0 x10™* 2.0 x10™*
Ours 32 Adam MSE 1.0 <1073 1.0 <10
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Data augmentation: Given the limited size of the dataset in this study, we adopted offline data
augmentation to expand the effective sample size. Images were preprocessed using the Imgaug
Python library, and the augmented samples were then fed into the network for training. Seven
augmentation strategies were used, including geometric transforms (horizontal flipping, small-
angle random rotation of approximately #10=-15< and shear affine transformation) and
photometric perturbations (Gaussian blur with Gaussian noise, random brightness adjustment,
and contrast/gamma perturbation), as well as Mosaic augmentation, in which four images were
randomly cropped and stitched into composite scenes.

Horizontal flipping, small-angle rotation, and shear primarily enhance the robustness to
variations in orientation and pose, whereas blur+noise, brightness, and contrast/Gamma
perturbations enrich the distribution of imaging conditions and appearance. Mosaic
augmentation further increases the diversity of spatial compositions and structural patterns.
Together, these seven strategies provide a balanced and semantically consistent expansion of

rm

the small-scale dataset, as illustrated in Supplementary Fig. 17.

(b) Brightness (c) Horizontal flip

(e) Gaussian blur (f) Rotation (g) Shear transform (h) Mosaic

Supplementary Fig. 17 | Schematic illustration of the data augmentation effect on the
KAM map.

27



5

Supplementary Table 5 | Statistical comparison of model performance in terms of MSE
(><10?) and MAE (x<10?) for six specimens tested at strain amplitudes of 2 %, 4 %, 6 %,
and 8 %. The best result is represented in bold, followed by underline. Our model achieves
the best overall accuracy with an average rank of 1.521. After removing the feature synergy
module (BMN-w/0SM), the errors increase to 7.39 <102 and 2.43 <10, corresponding to
14.9 % and 21.5 % degradations, respectively, which highlights the essential role of this

module in enhancing overall predictive reliability

Models MBFFA Base-w/oSM MBNI-Net MCC-Net ECMMF-Net

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

2 0.124 0.256 0.158 0.345 0.149 0.298 0.183 0.412 0.201 0.455
4 2.620 1.315 3.351 1.897 2.764 1.462 3.213 1.843 4512 2.771
Specimen [
6 7.851 2.278 9.112 3.045 7.743 2.113 10.94 3.681 12.37 4.268

8 10.27 2.646 11.30 3.154 13.94 3.721 14.97 4.742 14.83 5.325

2 0.128 0.264 0.165 0.361 0.152 0.329 0.168 0.358 0.245 0.538
4 2.703 1.357 2.654 1.329 3.387 1.742 3.223 1.812 5.032 2.391
Specimen 11
6 8.599 2.350 8.524 2.983 8.342 2.203 9.964 3.252 13.86 4.422

8 10.60 2.726 10.81 3.025 13.74 3.505 14.28 3.792 14.24 4.783

2 0.133 0.275 0.126 0.249 0.175 0.333 0.131 0.412 0.233 0.564

4 2.813 1412 2.851 1.603 3.411 1.773 2.745 1.389 5.376 2.642
Specimen 11
6 8.429 2.446 9.524 3.246 10.38 3.201

o]
[o]
\S}
i
(0]
\O

13.15 3.893

8 11.03 2.833 10.92 2.698 14.32 4.186 15.42 4.284 15.13 4.732

2 0.137 0.283 0.144 0.322 0.128 0.279 0.157 0.353 0.282 0.598
4 2.896 1.453 3.016 1.734 3.509 1.811 2.852 1.452 7.421 2.672
Specimen IV

6 8.677 2.518 8.764 3.063 9.684 2.423 8.989 2.893 11.34 4.462

8 11.36 2914 10.77 2.739 13.54 4.352 13.28 4.882 14.90 5.431

2 0.143 0.297 0.142 0.333 0.145 0.317 0.205 0.545 0.264 0.621
4 3.034 1.523 2.904 1.653 3.107 1.644 3.364 1.918 7.506 2.745
Specimen V

6 9.090 2.637 9.765 3.003 9.344 2.825 10.81 3.664 11.67 3.892

8 11.90 2.948 15.03 4.566 11.68 3.125 14.32 3.808 14.51 5.324

2 0.117 0.243 0.119 0.266 0.181 0.381 0.112 0.243 0.238 0.594

4 2.482 1.246 3.501 1.945 3.352 1.812 4.283 2.474 4.762 2.876

Specimen VI
6 7.438 2.158 9.352 2.742 9.452 2.902 10.45 3.341 11.98 3.538
8 9.733 2.512 14.91 3.874 11.36 2.973 14.46 4.163 12.88 4.511
Avg Rank 1.521 2.521 2.583 3.417 4.938
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Local interpretability
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Supplementary Fig. 18 | Local interpretability of residual strain predictions for six
annealing conditions at 6% strain after 10 cycles. a—f SHAP waterfall plots for specimens
5 I-VI, respectively. Overall, strain amplitude and cycle number act as the dominant positive
contributors across all specimens. The Ni4Tis feature generally provides a strong negative
contribution, indicating that fine, dispersed NisTis precipitates mitigate degradation,
consistent with previous results. In contrast, KAM1 contributes more strongly in lightly
annealed specimens, where larger residual stresses and lattice distortion more readily trigger
10 superelastic degradation, but its influence diminishes in more heavily annealed states, where

recovery lowers stored energy and moderates local damage.
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Feature correlation analysis

a Mild degradation a7 b Moderate degradation o_—
0- 0.7847 ' ‘ 0- 0.4518 :
1- 1 083 1- 1 0.71
2- 2.

-0.68 0.54
3 £ 3
4- 054 4. 0.36
5 -039 5 0.19
6- 6-

0.25 0.02
C  Severe degradation Biga d B Strai litud
0. 0.1164 : rain amplitude
1 069 1 —— Cycle number
2. 653 2 — Ni,Ti, feature
3- 3 — Euler1
4- [ 58 4 — Euler2
5- -0.20 5 — Phase
6- —_

0.03 6 KAM

Supplementary Fig. 19 | Feature interaction matrices across different levels of
superelastic degradation. a—c Feature interaction matrices corresponding to mild, moderate,
and severe degradation. Colors denote the normalized interaction intensity between feature
pairs. Black circles highlight the term between cycle number and orientation features, whose
magnitude decreases progressively from 0.7847 (mild) to 0.4518 (moderate) and 0.1164
(severe). This systematic decline indicates that cyclically accumulated local damage and
irreversible deformation increasingly dominate the material response, diminishing the
influence of initial orientation and thereby weakening the coupling between cycle number and
Euler orientation features as degradation advances. d Mapping between matrix indices and

specific feature definitions.
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Ablation experiments

Assess the impact of number of blocks and dataset allocation
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Supplementary Fig. 20 | Influence of data-splitting ratios and network block numbers on
5 model accuracy. Training, validation, and test accuracies are shown under three dataset
partitions: (a) 6:3:1, (b) 7:2:1, and (c) 8:1:1. Accuracy was computed following the method
reported in our previous study®®. The test set was kept fixed, while the remaining samples
were allocated to training and validation according to each ratio. Increasing the proportion of
training data led to a progressive improvement in performance, with the 8:1:1 split achieving
10 the highest accuracy. The effect of network depth exhibited a characteristic non-monotonic
trend: performance peaked when the network comprised approximately 3-5 blocks, whereas
further increasing the number of blocks did not yield additional gains. Instead, excessive
depth caused feature representations to become increasingly redundant and saturated,
resulting in reduced model stability and a decline in predictive accuracy.
15
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Why Euler orientation matrix instead of IPF map? We encode the three Euler angles into
three channels to construct the Euler matrix that represents the actual crystal orientation, rather
than directly using the more readily available IPF map. The IPF map essentially compresses the
orientation of a selected reference direction in the crystal frame into RGB colors, where a single
color may correspond to multiple crystallographically orientations (Supplementary Fig. 21a).
In contrast, the Euler matrix fully describes all three degrees of freedom. Interestingly, this
approach unexpectedly introduces a new modality, yet it can still be processed in the same
manner as an image matrix.

re-1PF: In this ablation variant, we replace the Euler matrix with the IPF map as the orientation
input.

Why is PCA used to reduce the dimensionality of NisTis features? We extract multiple
descriptors of NisTis from TEM, including diameter, aspect ratio, and area, and then compress
them into a single principal component via PCA. Similar strategies have been applied in other
material systems. For instance, researchers have used PCA to reduce the dimensionality of y'-
phase morphological descriptors, improving the robustness of creep strain prediction in Ni-
based superalloys®®. For the present work, if all precipitate features are directly concatenated
into the numerical input rows, the performance degrades significantly (Supplementary Table
6). This likely occurs because the inflated dimensionality of the numerical branch interferes
with weight allocation among other dominant factors.

w/o-PCA: We omit the PCA step and directly concatenate all individual NisTis precipitate
features into the numerical input branch.

Importance of KAM and phase maps. For NiTi alloys, high KAM regions are prone to
damage evolution and functional degradation. Here KAM is used as a scalar field to quantify
local damage, while detailed mechanistic discussion is beyond the scope of this study. NiTi.
appears as incoherent, brittle second-phase particles along grain boundaries or within grains,
acting as stress concentrators, promoting dislocation slip and microcrack initiation, and thereby
degrading superelastic stability”8; our observations align with this view (Supplementary Fig.
21Db). Ablation experiments show that removing either the KAM or phase map input leads to a
marked drop in accuracy.

w/o-KAM: we remove the KAM channel and retain only the Euler matrices and phase maps as
matrix inputs.

w/0-Phase: we remove the phase map channel and retain only the Euler matrices and KAM

maps as matrix inputs.
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Other available microstructural information. BC maps mainly capture the contrast and
sharpness of backscattered electron patterns (Supplementary Fig. 21d), allowing visualization
of grain morphology, grain boundaries and surface condition. We tested BC as a fourth image
channel, but the gain in prediction accuracy was negligible, so it was not retained in the main
framework. A plausible explanation is that degradation-related information is already encoded
in the existing inputs, whereas BC contributes little independent signal and is highly sensitive
to sample preparation and imaging conditions, thus introducing task-irrelevant noise.

ad/BC: we additionally feed the BC map as a fourth image channel, with the remaining network
architecture and training configuration unchanged.

Feature synergy module. The extracted matrix features and numerical features are projected
into a shared embedding space to mitigate cross-modal context misalignment, thereby
improving the effectiveness and stability of multimodal fusion.

re-FSM: in this ablation variant, the feature synergy module is replaced with a multi-head self-
attention module®.
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Supplementary Fig. 21 | Supplementary illustration of different input modalities. a IPF
map and crystallographic orientation schematics of four selected grains A-D, illustrating how
grains A/B or C/D differ markedly in orientation yet still exhibit similar colours, reflecting the
information simplification in the IPF representation. b Phase map, where green denotes NiTiz
precipitates and the light background the matrix, together with the corresponding response
heatmap derived from this map. ¢ Mean KAM values for specimens 1-V1 subjected to various
heat treatments, with representative KAM maps for each specimen shown above. d BC image
highlighting the grain morphology and grain boundaries. e Schematic of the self-attention
mechanism. The Q matrix of each element is dot-producted with the K matrix of the other
elements, and then the result of the dot-product is scaled and fed into the Softmax function for
normalization. Finally, the V matrix is multiplied by the output of the Softmax function to

determine the relative importance of each element.
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Supplementary Table 6 | Ablation study of model components in MBFFA

Method MSE (10 MAE R%(1072)
w/0-PCA 0.647 0.318 84.91
w/0-KAM 0.634 0.307 86.26
w/0-Phase 0.587 0.207 89.79

re-FSM 0.579 0.201 93.48

re-IPF 0.567 0.190 94.35

ad/BC 0.556 0.178 97.11

Base 0.552 0.172 98.02
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Molecular dynamics
Load

Supplementary Fig. 22 | Atomistic models used in this study (sliced at 1/2 along the x-
axis). a NiTi without NisTis precipitates. b NiTi with NisTis precipitates.
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Supplementary Fig. 23 | Atomistic configurations of NiTi after each cycle in the cyclic

simulation.

37



Rapid damage

e e e e ., —— .

Stable damage

Supplementary Fig. 24 | Atomistic configurations of NiTi with NisTis precipitates after
each cycle in the cyclic simulation.
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Supplementary Fig. 25 | Atomic strain maps of NiTi after each cycle in the cyclic

simulation.
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Atomic strain distribution map during cyclic tension of NiTi !
with Ni,Ti, :

Stable damage

Supplementary Fig. 26 | Atomic strain maps of NiTi with NisTiz precipitates after each

cycle in the cyclic simulation.
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Visualization results

Raw heatmap used for visual illustration

Supplementary Fig. 27 | Schematic of the heatmap visualization workflow. a Response

5 heatmap obtained by applying the channel separation strategy proposed in this work to
visualize features from the Euler orientation matrix. b Reference heatmap generated using the
conventional channel stacking strategy. ¢ IPF orientation map of the corresponding region. In

the main text (Fig. 2), panels (a) and (b) are respectively overlaid with (c) to illustrate how
high response regions in the heatmaps align with grain morphology and crystallographic

10 orientation.
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Raw heatmap used to elucidate degradation mechanism
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Supplementary Fig. 28 | Euler matrix response heatmaps. a—g Response heatmaps

%

obtained by feature visualization of the Euler orientation matrices in the same region,

5 corresponding to different strain amplitudes and cycle numbers: (a) 2%-1 cycle; (b) 2%-3
cycles; (c) 2%-10 cycles; (d) 8%—1 cycle; (e) 8%-3 cycles; (f) 8%—10 cycles; (g) 6.38%-1
cycle. h Grain boundary map of the same region. In Fig. 4 of the main text, the heatmaps in

(a—g) are spatially superimposed with the grain boundary contours in (h), and the high
response regions are further compared with the Schmid factor distribution to identify the grain

10 orientations and associated deformation mechanisms that dominate superelastic degradation.
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