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Experimental procedures and methods
Preparation of SAP materials
The superabsorbent polymers (SAPs) used in this study, SAP1 and SAP2, were commercial resins purchased from Renqiu Quanxing Chemical Co., Ltd. (Hebei, China). Both materials were supplied as light-coloured granules/powders, transported in sealed original packaging. Upon receipt, batch information was recorded and the products were stored in a desiccator. To eliminate the influence of residual free moisture on dosage and absorption behaviour, all SAPs were subjected to a mild pre-treatment before use. The samples were spread in glass dishes and dried under vacuum at 40–50 °C for 24 h to constant mass. They were then gently ground and passed through an 80-mesh stainless-steel sieve (approximately 180 µm) to obtain a uniform particle-size distribution and to remove agglomerates. The treated powders were labelled SAP1 and SAP2, respectively, and stored in sealed HDPE bottles with desiccant at room temperature in the dark until use. No chemical modification or surface treatment was applied beyond the physical pre-treatment described above.
Sodium alginate/sodium lignosulfonate hydrogel (SAP3)：SAP3 was prepared by an in situ Ca²⁺ crosslinking method for sodium alginate/sodium lignosulfonate (SA/SLS) reported in the literature1, with the following formulation: sodium lignosulfonate (SLS) 0.02 g, sodium alginate (SA) 0.10 g, calcium carbonate (CaCO₃) 0.05 g, and glucono-δ-lactone (GDL) 0.10 g. The procedure was as follows. First, 0.10 g of SA and 0.02 g of SLS were dissolved in 10 mL of deionised water and magnetically stirred at 500 rpm for 1 h to obtain a clear and homogeneous polymer solution. Finely ground CaCO₃ (0.05 g) was then added and stirring was continued at 500 rpm for 30 min to ensure uniform dispersion. Subsequently, 0.10 g of GDL was introduced to gradually acidify the system and trigger controlled release of Ca²⁺ from CaCO₃, followed by an additional 30 min of stirring to obtain a uniform suspension. The mixture was poured into a flat mould and left to stand at room temperature for 12–24 h to complete gelation, yielding a Ca²⁺-crosslinked SA/SLS hydrogel. The gel was removed, rinsed with deionised water to near-neutral pH, and aged for 12 h. For incorporation into the soil, the hydrogel was dried at 40 °C to constant mass, gently ground, and sieved (≤0.30 mm) to obtain SAP3 particles. The resulting product was stored in a desiccator in sealed containers until use.
Starch-grafted/binary-copolymer poly(acrylic acid)-based superabsorbent resin (SAP4)：SAP4 was prepared following the synthesis route summarised by Cui et al2. for starch-grafted, binary-copolymer poly(acrylic acid)-based superabsorbent resins, with the specific formulation and procedure as follows. A four-necked flask was charged with 80 g of deionised water and 2 g of soluble starch, heated to 90 °C under a nitrogen atmosphere, and stirred for 30 min to complete gelatinisation. The system was then cooled to 65 °C while maintaining nitrogen protection and stirring. A monomer solution was prepared with acrylic acid (AA) and acrylamide (AM) at a molar ratio of 3:8, and AA was neutralised to 85% with 8 mol L⁻¹ NaOH, such that the total monomer-to-starch mass ratio was 8:1. At 65 °C, ammonium persulfate (APS, 2 wt% relative to starch) and N,N′-methylenebisacrylamide (MBA, 0.5 wt%) were added sequentially to the gelatinised starch. The neutralised monomer solution was then introduced into the flask in one portion, and the mixture was stirred for 2 h to complete polymerisation, yielding gel blocks. The gels were repeatedly exchanged with anhydrous ethanol to remove unreacted monomers and low-molecular-weight oligomers, coarsely crushed, and dried at 80 °C to constant mass. The dried material was ball-milled and passed through an 80–120 mesh sieve to obtain SAP4 powder. All reagents involved in the preparation of SAP3 and SAP4 are listed in Table 1.
Table 1 | Reagent information for SAPs.
	Reagent
	Formula
	Manufacturer
	City

	Sodium alginate (SA)
	(C6H7NaO6)n
	Tianjin Guangfu Fine Chemical Research Institute
	Tianjin, China

	Calcium carbonate (CaCO3)
	CaCO3
	Tianjin Guangfu Fine Chemical Research Institute
	Tianjin, China

	Sodium lignosulfonate (SLS)
	(C20H24Na2O10S2)n
	Macklin Biochemical Technology Co., Ltd.
	Shanghai, China

	D-Glucono-δ-lactone (GDL)
	C6H10O6
	Macklin Biochemical Technology Co., Ltd.
	Shanghai, China

	Soluble starch (SAP4)
	(C6H10O5)n
	Chengdu Kelong Chemical Co., Ltd.
	Chengdu, China

	Acrylic acid (AA)
	C3H4O2
	Shanghai Aladdin Biochemical Technology Co., Ltd.
	Shanghai, China

	Acrylamide (AM)
	C3H5NO
	Shanghai Aladdin Biochemical Technology Co., Ltd.
	Shanghai, China

	Ammonium persulfate (APS)
	(NH4)2S2O8
	Shanghai Aladdin Biochemical Technology Co., Ltd.
	Shanghai, China

	N,N′-Methylenebisacrylamide (MBA)
	C7H10N2O2
	Shanghai Aladdin Biochemical Technology Co., Ltd.
	Shanghai, China

	Sodium hydroxide (NaOH)
	NaOH
	Tianjin Benchmark Chemical Reagent Co., Ltd.
	Tianjin, China


Other tests
Disintegration test
After drying to constant mass, the specimens were fully immersed in water, and their morphological evolution was recorded using a camera. A disintegration coefficient and a disintegration rate were defined to quantify the influence of SAP on the disintegration behaviour of the rammed-earth specimens. The apparatus is shown in Fig. 1a. The experimental setup is shown in the figure, and the calculation formulas are as follows:

		
According to the force analysis in Fig. 1a:

		

		
Substituting Eq. (3) into Eq. (1) yields:

		
where  is the disintegration coefficient at time ; is the mass of the intact (non-disintegrated) specimen (g);  is the mass of the dried specimen (g);  is the balance reading (g);  is the mass of the disintegrated specimen (g);  is the volume of the intact specimen (cm³);  is the volume of air, including the volume of unfilled pores (cm³); and  is the density of the compacted soil, approximated as 2.65 g cm⁻³.
The disintegration rate  is calculated as follows:

		
where  is the disintegration coefficient when disintegration has ceased,  is the disintegration coefficient at the onset of disintegration,  is the time when disintegration equilibrium is first reached, and is the time at which disintegration begins.
[image: ]
Fig. 1 | Experimental setups. (a) Disintegration test apparatus. (b) Water vapour permeability test apparatus.
Water vapour permeability
Specimens after completion of the drying tests were used for water vapour permeability measurements. The experimental setup is shown in the figure. Silicone moulds were used as containers, into which a fixed amount of water was added. The mass of each container was recorded every 24 h over a total period of 168 h, and the change in mass was used to quantify the rate of water vapour transmission through the specimens. The apparatus was placed in a constant temperature and humidity chamber maintained at 23 °C and 50% relative humidity. The apparatus is shown in Fig. 1b. The water vapour permeability coefficient  was calculated using the following equation:

		

		

		
where and are the container masses (kg) at times  and , respectively;  is the slope of the linear regression;  is the saturated vapour pressure at 23 °C (Pa);  and  are the relative humidities on the high and low vapour-pressure sides, respectively;  is the water vapour pressure difference (Pa);  is the specimen area (m²); and  is the specimen thickness (m).
Colour difference
In this study, a spectrophotometer (VS3200WB) was used to record the colourimetric values of the specimens during drying. Measurements were taken at 0, 24, 72, 168, and 336 h. For each specimen, the average of three measurement points was used as the effective value, and the blank specimen was taken as the reference. The colour difference ΔE of SAP-amended specimens was calculated as follows:

		
where , , and  are the colourimetric values of the SAP-treated specimen, and , , and  are those of the CK specimen.
Surface hardness and compressive strength
In this study, a Shore hardness tester was used to record the surface hardness of the specimens during drying. Measurements were taken at 0, 24, 72, 168, and 336 h, and for each specimen the mean of three measurement points was taken as the effective value.
Compressive strength was measured using a universal testing machine (model WDW-100, Taiwan Suter Instruments Co., Ltd.) at a loading rate of 1 mm min⁻¹. Loading was terminated when the bearing capacity of the soil specimen reached its maximum and clear signs of failure (such as through-cracks, fragmentation, or a marked load drop) appeared, and the peak load was recorded.
PLS-MCDM evaluation method
Indicator mapping
To bring performance indices with different units and opposite “benefit directions” onto a comparable scale, we adopted a piecewise mapping function with a specified “target value–tolerance band” to transform each raw observation  into a dimensionless score . The basic idea is as follows: indices located near the target value  are assigned high scores (close to 1), whereas those far from the target or beyond the permissible bounds are assigned low scores (close to 0). At both extremes, a small safety margin  is reserved to avoid exact full or zero scores, which could otherwise destabilise subsequent calculations.
The mapping function used for the indicators is:

		
where  is the raw value to be mapped, and  is the dimensionless score after mapping, with . and  are the lower and upper bounds of the indicator, with ;  is the target (peak) position, .  denotes a strictly monotonic transformation function. is a margin parameter for the boundary/peak, .  and  are the half-widths of the “tolerance band/plateau” around , with , such that  and  are the left and right admissible limits, respectively.  is the left-side scale factor used to map  onto ;  is the right-side scale factor used to map  onto .  and  are the shape exponents for the left and right sides, respectively. In the calculations of this paper,  and .
Redundancy check and block definition
Before performing PLS-SEM modelling, we first examined whether any indices carried “nearly identical” information. Including two (or more) highly correlated indices simultaneously in the comprehensive evaluation would lead to double-counting during weighted aggregation, thereby exaggerating the influence of a particular performance dimension and reducing model robustness. To avoid this, a redundancy screening based on dimensionless, unit-independent correlation coefficients was conducted prior to modelling.
A two-sided significance test was performed for the null hypothesis of no association, , yielding the corresponding q-values (or p-values). Based on engineering judgement and robustness considerations, the following criteria were adopted:
· Highly redundant:  and . The two indices convey largely overlapping information; it is recommended to merge them, retain only one, or down-weight them without loss of explanatory power.
· Potentially redundant: . Treatment should be decided case by case, with reference to engineering meaning and subsequent model diagnostics (e.g., outer loadings/cross-loadings).
· Non-redundant: . Both indices can be retained for subsequent modelling.
Note that when the sample size is small (e.g., ), the thresholds may be moderately relaxed and interval estimates of the correlation should be reported concurrently to reduce the risk of mistakenly discarding informative indices.
After redundancy cleaning, the remaining indices were grouped into several performance dimensions (blocks) on the basis of mechanistic relevance and statistical association, with each block corresponding to one latent variable in the subsequent PLS analysis. Block construction followed four principles—conceptual primacy, separability, parsimony, and testability. Specifically, each block must have a clear physical/engineering meaning (e.g., moisture regulation, mechanical performance, durability, appearance/colour difference, permeability), with members within a block as homogeneous as possible and blocks mutually independent as far as practicable; redundant indices are minimised without sacrificing explanatory power, and each block must be verifiable using statistical criteria. The detailed procedure was as follows. An initial block scheme was first proposed based on expert knowledge. This draft was then refined using the –q correlation matrix: highly redundant indices within a block were merged, replaced, or down-weighted; indices showing strong cross-block correlations were preferentially assigned to the dimension that was more appropriate from a mechanistic standpoint. After a candidate scheme was formed, the outer model was evaluated in SmartPLS (reflective/formative specification, outer loadings, HTMT, etc.). If substantial overlap within or between blocks was still detected, the previous step was revisited and the grouping was iteratively adjusted until a conceptually clear and statistically robust block structure was obtained, providing reliable inputs for subsequent PLS-MCDM weighting and aggregation.
SmartPLS modelling and computation
In this study, SmartPLS 4 was used to perform partial least squares structural equation modelling (PLS-SEM), extracting latent variables (LVs) from the block-wise observed indicators and obtaining robust, reusable weights and scores. The model includes two types of outer measurement. For reflective constructs (Mode A, where indicators are manifestations of the latent variable), a correlation-weighted outer model is estimated, with preferred outer loadings >0.70 (0.40–0.70 treated as a range for further consideration). Convergent validity and internal consistency are assessed using AVE > 0.50 and CR > 0.70, while discriminant validity is examined through HTMT < 0.85 (or, more leniently, 0.90). For formative constructs (Mode B, where indicators jointly “form” the latent variable), a regression-type outer model is estimated, with priority given to controlling multicollinearity (VIF < 3.3, and in any case not exceeding 5). Outer weights must have bootstrap confidence intervals that do not cross zero; decisions on retention are made by jointly considering weight significance and loading magnitude, thereby avoiding instability caused by multicollinearity.
The inner structural model was specified mechanistically, with each performance dimension (e.g., moisture regulation, mechanical behaviour, durability, and appearance) pointing to a latent variable representing “overall material performance/risk”; where causal precedence among dimensions was expected, the corresponding directed paths were defined. Prior to modelling, all raw indicators were transformed to the [0,1] range and aligned in a “higher-is-better” direction using the indicator-mapping procedure, and missing values were imputed by mean substitution without outlier truncation. The PLS algorithm employed the path weighting scheme, with a maximum of 300 iterations and a convergence tolerance of . Bootstrap resampling (5,000 draws, two-tailed tests, 95% confidence level) was used to estimate BCa confidence intervals for path coefficients, outer loadings/weights, and indirect effects.
Model diagnostics followed a “minimal intervention, stepwise revision” principle. For reflective constructs, any indicator with a loading < 0.40 was directly removed; for loadings between 0.40 and 0.70, AVE/CR and content validity were jointly examined, removing at most one indicator at a time and re-estimating the model until all constructs met the AVE, CR, and HTMT thresholds. For formative constructs, AVE/CR were not used as criteria; instead, VIF and weight significance were prioritised. Indicators with non-significant weights and weak loadings/weights were deleted or merged, depending on multicollinearity and interpretability. At the structural level, path significance, , and predictive relevance  from blindfolding were examined; where necessary, paths were slightly adjusted without violating mechanistic rationale.
Once the model converged and passed reliability and validity checks, the latent variable scores of each specimen in each dimension were exported and again min–max normalised to [0,1] to enforce a consistent “larger-is-better” interpretation. These SmartPLS-derived and statistically validated LV scores were then used as inputs for subsequent multi-criteria aggregation: on one hand, subjective composite scores were obtained by linear weighting according to the research priority; on the other, objective composite scores were calculated using TOPSIS, VIKOR, and related methods. In this way, PLS-SEM provides a traceable and robust quantitative basis for PLS-MCDM weighting and ranking, particularly suited to small-sample, multi-indicator settings.
Normalisation of LV scores
To place the latent variable (LV) scores output by PLS-SEM on a common scale with the multi-criteria decision-making (MCDM) methods, we introduced an interval-scaling normalisation step after model estimation, using the raw LV scores  obtained for each dimension. The rationale is twofold. First, LVs in different dimensions are derived from different sets of observed indicators and externally learned weights, so their units, value ranges, and variance magnitudes are generally inconsistent; direct cross-dimensional weighting or ranking would therefore introduce bias driven by “scale dominance”. Second, all subsequent objective methods in this study (such as TOPSIS and VIKOR), as well as subjective linear weighting, operate under the convention that “larger values indicate better performance”. It is thus necessary to map the LV scores  for each dimension onto the [0,1] interval and to standardise their interpretation as “the larger, the better”. The normalisation is computed as follows:

		
where  and  are the minimum and maximum values of that dimension within the current set of specimens under comparison, respectively.
VIKOR/TOPSIS calculation methods
To obtain an objective ranking of the normalised LV scores (specimen ; dimension/criterion ), two commonly used multi-criteria decision-making methods—TOPSIS and VIKOR—were employed. Because all indices have been standardised as benefit-type (“larger is better”) and rendered dimensionless in the previous steps, both methods can be applied directly using the formulas given below.
TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). The computational steps and formulas are as follows:
1) Construction of the weighted matrix. Given the normalised weights, the weighted decision matrix is obtained as:

		
2) Ideal and negative-ideal solutions

		
3) Distances to the two ideal solutions (Euclidean distance)

		
4) Closeness coefficient and ranking

		
A larger  indicates better performance, and the specimens can therefore be ranked directly according to . As an optional stability check, the gaps between  and  may be inspected to avoid extreme ties.
where:
· : index of candidate schemes/specimens, with being the total number of specimens.
· : index of evaluation criteria (dimensions, LVs), with being the total number of criteria.
· : normalised score of specimen under criterion .
· : normalised weight of criterion , with .
· : element of the weighted decision matrix.
· : ideal solution (best weighted value) for criterion .
· : negative-ideal solution (worst weighted value) for criterion .
· : Euclidean distance of specimen from the ideal solution.
· : Euclidean distance of specimen from the negative-ideal solution.
· : closeness coefficient, where larger values indicate better performance and are used for ranking.
VIKOR (Vlse Kriterijumska Optimizacija I Kompromisno Resenje). The computational steps and formulas for the VIKOR method are as follows:
1) Best and worst reference values (for benefit-type criteria on , where larger is better)

		
2) Group utility and individual regret

		
3) Compromise index 
Define：

		
Then the compromise index  is given by：

		
A commonly used choice is , which reflects a balanced preference between “group utility” and “maximum regret”, and can be adjusted for sensitivity analysis.
4) Ranking and acceptability criteria
The alternatives are first ranked in ascending order of , yielding the primary candidate solution. This solution is regarded as the “compromise optimal solution” if it additionally satisfies:
Acceptable advantage:

		
where  and  are the smallest and second smallest  values, respectively, and  is the total number of alternatives;
Acceptable stability:
the same alternative also ranks first in the ordering based on either  or .
If these conditions are not met, a tie or a set of candidate solutions can be reported instead, typically by selecting the top few alternatives according to  that also satisfy the stability condition.
where:
· , : the best and worst reference values for criterion (in the present normalised setting, the maximum and minimum values, respectively).
· : group-utility measure of specimen , representing the weighted overall deviation (smaller is better).
· 
：maximum-regret measure of specimen , representing the most unfavourable deviation on any single criterion (smaller is better).
· , : the best and worst values of among all specimens.
· , : the best and worst values of among all specimens.
· : compromise composite index for specimen (smaller is better).
· : trade-off parameter indicating the relative importance attached to group utility ; corresponds to the weight given to maximum regret (a balanced preference is typically represented by ).
· : the smallest and second smallest values of after sorting in ascending order.
· : the VIKOR acceptability threshold for advantage, used to assess the significance of the top-ranked solution.
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