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Supplementary Note

Data sources

To investigate the genetic similarity between DCM and HCM, we leveraged large-
scale genome-wide association (GWAS) data from two recent studies. Data for DCM
were obtained from a large GWAS meta-analysis by Jurgens et al. (2024)". In this
study, case-control GWAS data were assembled from 6 European-ancestry
datasets, including clinical case-control datasets (4,343 clinically ascertained DCM
cases) and biobank datasets (5,022 DCM cases defined by billing-codes). This
GWAS included Using a genome-wide significance threshold (P< 5x108), 38 distinct
loci were reported. To maximize discovery, the GWAS data were subsequently
integrated into a multi-trait GWAS (MTAG)? with GWAS data for MRI-derived left
ventricular (LV) traits (global circumferential strain, indexed left ventricle end-systolic
volume (LVESVi), and ejection fraction ; N=36,083; ref.3). From this MTAG, 65
significant loci were reported (P< 5x108). Of note, further details on the MTAG

methodology are described below.

Data for HCM were retrieved from a recent GWAS meta-analysis by Tadros et al.
(2025)3. This study included a total of 5,900 clinically-ascertained HCM cases and
68,359 controls of European genetic ancestry. At genome-wide significance (P<
5x10-8), 34 distinct loci were reported. Similar to the DCM study, an MTAG approach
was used to boost discovery: HCM GWAS was integrated with GWAS data for three
LV traits (global circumferential strain, indexed left ventricle end-systolic volume
(LVESVi), and LV concentricity). From this MTAG, 68 significant loci were reported
(P< 5x10%).

In this study, we processed and utilized both the single-trait GWAS and MTAG
summary statistics, for both DCM and HCM.

Processing of GWAS summary statistics

We processed the DCM and HCM GWAS summary statistics, aligning all datasets to
genome build GRCh37. We then aimed to remove variants driven by
disproportionately small sample sizes. To this end, for DCM GWAS, we restricted to
variants with at least 70% of the total case number contributing to the meta-analysis.
In the HCM GWAS summary statistics only the total sample size was available, and
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therefore variants were restricted to those with at least 96% of the total sample size
contributing to the meta-analysis. Of note, the broad MYBPC3 locus in HCM GWAS
is known to tag rare founder variants*; we therefore removed the extended region
surrounding this locus (chr11: 29,978,453-80,288,956) from the summary statistics®.
These filters left 6,635,031 variants for DCM GWAS, and 6,035,750 variants for
HCM GWAS (Supplementary table 1).

Processing of MTAG summary statistics

DCM and HCM MTAG summary statistics were also reprocessed to ensure
consistent loci annotation and gene prioritization across studies and approaches.
The datasets were aligned to genome build GRCh37. For DCM MTAG, to remove
variants with disproportionately small contributing sample size, we removed variants
with effective sample size <70% of the maximum effective sample size. For HCM
MTAG, we restricted to variants that passed all filters in the filtered HCM GWAS
summary statistics above. Finally, we removed the extended MYBPC3 region from
both datasets. These filters left 5,513,180 variants for DCM MTAG, and 5,117,470
variants for HCM MTAG.

Genetic correlation with LV traits

To assess shared genetic architecture across the cardiomyopathy spectrum and
quantitative cardiac traits, we estimated genetic correlations using bivariate LD score
regression 8(Methods). Specifically, we computed genetic correlations between CC-
GWAS summary statistics and GWAS results for ten left ventricular (LV) traits
relevant to cardiomyopathy, measured in 36,083 participants from the UK Biobank
(UKB). ” The strongest correlations were observed with LVESVi (rggiobal = 0.624),
global circumferential strain (Ecc) (rg,giobat = 0.705), and LV concentricity (LVconc)
(rg.global = -0.575), indicating substantial genetic overlap. (Methods; Supplementary
Figure 2; Supplementary Table 7) Interestingly, these correlations were notably
stronger than those observed for previously published single trait case—control
GWAS of DCM and HCM: the correlation between DCM GWAS and LVESVi was
rg,globai= 0.7, DCM GWAS and Ecc was rg,giobai= 0.747 and between HCM GWAS and
LVconc was rg giobai= 0.61(Supplementary Table 3). These findings suggest that CC-
GWAS captures a better genetic spectrum of cardiac traits as compared to the
traditional approach.
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Novel regions identified by LAVA

Three novel genomic regions exhibited significant regional genetic correlation

between DCM and HCM. Neither of these regions were captured by DCM or HCM

GWAS. These regions were located on:

e Region 924 — chromosome 5 (chr5:178,595,253-179,794,710; GRCh37):

Although univariately subthreshold for both DCM (P = 2.43 x 107®) and HCM
(P =6.05x10""), this region showed a significant negative local genetic
correlation (p = -0.52, P =2.07 x 107*). The lead variant in DCM GWAS was
rs4701067 (P = 0.03, B = 0.04), and in HCM GWAS, rs7733548 (P = 0.001,
= —0.09), both mapping to ADAMTS2, a gene associated with
dermatosparaxis-type Ehlers—Danlos syndrome (OMIM).

Region 1277 — Chromosome 8 (chr8:32,454,963-33,982,537; GRCh37): This
region showed moderate univariate association in DCM (P = 5.90 x 107®) and
strong association in HCM (P = 3.42 x 107""), with a robust inverse local
correlation (p = -0.61, P =4.54 x 10™). The lead DCM variant was
rs62510527 (P = 0.0001, B = —0.067; near POFUT3), and the top HCM
variant was rs17665441 (P = 0.7, B = -0.005; near NRG1), a gene previously
associated with schizophrenia susceptibility (OMIM).)

Region 1948 — chromosome 13 (chr13:109,813,577-110,995,432 (GRCh37)):
This region was also identified in both CC-MTAG and HCM-MTAG analyses
and prioritized to the COL4A1 locus, this region demonstrated significant
heritability in both traits (DCM P = 1.63 x 10™""; HCM P = 1.97 x 107°), with a
notable opposing effect direction (o = -0.64, P=1.10 x 107°).

Together, these findings underscore the power of local genetic correlation analyses
to uncover biologically relevant loci beyond conventional GWAS significance
thresholds, particularly those with antagonistic effects across disease subtypes.
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Genomic structural equation modeling

After having computed rg giobal between DCM and HCM, we then aimed to re-compute
rg,global accounting for the effect of other heritable traits. First, we aimed to account for
blood pressure and body habitus traits, given that these extracardiac traits have
been mentioned in literature as being risk factors for both DCM and HCM with
concordant directionality (high blood pressure and higher body weight have been
described as risk factors for DCM and HCM). To account for these heritable traits in
our analysis, we used genomic Structural Equation Modeling, implemented in the
GenomicSEM R-package. We first used the Idsc() function to compute pairwise
rq.global Values for all pairs of traits from DCM, HCM, systolic blood pressure® (SBP),
diastolic blood pressure® (DBP), body-weight® and body-mass-index® (BMI). We then
used the usermodel() function to fit a Structural Equation model using the following

approach:
DCM ~ a1*SBP + a2*DBP + a3*BMI + a4*weight

HCM ~ b1*SBP + b2*DBP + b3*BMI + b4*weight

DCM ~~ r*HCM
SBP ~~ SBP
SBP ~~ DBP
SBP ~~ BMI
SBP ~~ weight
DBP ~~ BMI
DBP ~~ weight
DBP ~~ DBP
BMI ~~ BMI

BMI ~~ weight


https://paperpile.com/c/dHxZks/J8kNQ
https://paperpile.com/c/dHxZks/J8kNQ
https://paperpile.com/c/dHxZks/J8kNQ
https://paperpile.com/c/dHxZks/pogVU
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weight ~~ weight
DCM ~~ DCM

HCM ~~ HCM

Essentially, this model regresses the four risk factors on DCM, and separately also
on HCM, while allowing for covariance between each of the risk factors and between
DCM and HCM. From the resulting model fit, we extracted the scaled covariance
between DCM and HCM representing the rg giobal between DCM and HCM conditional
on the heritable components of SBP, DBP, weight and BMI.

In a similar fashion, we also computed the rg giobal between DCM and HCM,
conditional on cardiac endophenotypes from MRI - namely those most strongly
associated with DCM and HCM including LVESVi, LV concentricity (LVconc) and
global circumferential strain (Ecc)®. The input model was specified as follows:

DCM ~ a1*Ecc + a2*LVESVi + a3*LVconc

HCM ~ b1*Ecc + b2*LVESVi + b3*LVconc

DCM ~~ r*HCM
Ecc ~~ Ecc
Ecc ~~ LVESVi

Ecc ~~ LVconc

LVESVi ~~ LVconc

LVESVi ~~ LVESVi

LVconc ~~ LVconc

DCM ~~ DCM

HCM ~~ HCM


https://paperpile.com/c/dHxZks/Jojea

328

329

330
331
332
333
334
335
336
337
338
339

340
341

342

343
344

345
346
347
348
349

350

351
352
353
354
355

Case-case GWAS

To identify genetic variants that differentiate between DCM and HCM, we applied
CC-GWAS, a summary-statistics-based method that estimates genetic divergence
between cases of two disorders using case—control GWAS results. To construct CC-
GWAS from our available GWAS summary statistics, we used the CCGWAS R-
package (v0.1.0) '° This method calculates allele frequency differences between
DCM and HCM cases (A1 vs. B1) by leveraging the observed effects in DCM vs.
controls (A1A0) and HCM vs. controls (B1B0). Central to this approach is the genetic
distance measure Fsr causal, defined as the average normalized squared difference in
allele frequencies at causal SNPs across case-controls GWAS, which reflects the
degree of genetic separation between the two phenotypes.

CC-GWAS estimates the case—case effect size (B 11p1) for each SNP using a

weighted linear combination of the case—control GWAS effect sizes:

Baip1 = Wa140 * Parao + Wp1go * Beiso

where wy140 and wgqpo are trait-specific weights. Two weighting schemes are

implemented:

(1) CC-GWASo.s weights, optimized to minimize the expected squared error
between the estimated and true A1B1 effect sizes, accounting for SNP heritabilities,
disease prevalences, genetic correlation, sample sizes, and sample overlap; and
(2) CC-GWAS-.xact Weights, a conservative, sample-size-independent formulation
based only on population prevalences:

B a1 = A =KBu— A= Ke)B,a0Psiso
While the OLS weights provide higher power, they may be susceptible to type | error
at so-called stress test SNPs—variants with significant and similarly directed effects
in both case—control GWASs (nonzero A1A0 and B1B0) but no true case—case
difference (A1B1 = 0). These variants can appear falsely significant due to random
sampling variation. To address this, CC-GWAS applies a dual-threshold strategy: a
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SNP is declared significant only if it passes genome-wide significance (P <5 x 1078)
with OLS weights and a secondary threshold (P < 107™*) with exact weights, thereby
maximizing power while controlling type | error. This approach enhances sensitivity
to opposite-direction genetic effects, while suppressing signals that are shared
between diseases.

For this analysis, we used the processed summary statistics from DCM and HCM
GWAS, along with the following input parameters: i) the assumed population
prevalences (0.4% for DCM, 0.2% for HCM); ii) the case/control numbers in DCM
GWAS and HCM GWAS, with some attenuation for potential missingness (see
below); iii) the heritabilities from LDSC (14.2% for DCM, 18% for HCM); iv) the rg giobal
between DCM and HCM, and its intercept, from LDSC (rg giobi=-0.56 and
elMoreovariance=0.012)8; and v) the number of effectively independent causal variants
for DCM (1200; see below)™. Naturally, CC-GWAS was restricted to genetic variants
found in the processed DCM and HCM GWAS summary statistics; after additional
automatic filtering by the CCGWAS package, 4987309 high-quality variants
remained in the CC-GWAS analysis and resulting summary statistics. Genome-wide

significance was defined as P<5x10-8, and all hypothesis tests were two-sided.

To account for some degree of per-variant sample missingness, we adjusted the
input case/control numbers - used as input to CCGWAS. Notably, because the meta-
analytical case/control numbers in the summary statistics were based on the
maximum sample size of contributing cohorts, the provided numbers reflect
maximum values and are therefore broadly overestimated. This is relevant because
CCGWAS computes expected effect sizes based on the case/control numbers.
Indeed, CCGWAS raised warnings indicating that the expected effect sizes were not
well-calibrated. Consistent with some overestimation of case/control numbers, we
found that CCGWAS gave well-calibrated effect sizes when we assumed some
attenuation of case/control numbers across all variants. For DCM GWAS, we
attenuated case/control numbers to 90% of the maximum numbers, while for HCM
GWAS we attenuated the numbers by 85%, when inputted to the CCGWAS

software.
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To estimate the number of independent causal variants, we used stratified fourth
moments regression (https://github.com/lukejoconnor/SLD4M)'. This method

computes from a GWAS the polygenicity, expressed as the effective number of
independently associated causal variants (where the ‘effective’ clause accounts not
only for the potential number of causal variants but also the relative effect size of
causal variants). Assuming DCM to be more polygenic than HCM, we put forward
the polygenicity statistic estimated from DCM GWAS (1223) to the CCGWAS

software.
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Locus definitions, variant annotation and gene prioritization

Locus definition, variant annotation, and gene prioritization were performed using a
unified pipeline across all summary statistics, including DCM GWAS, DCM MTAG,
HCM GWAS, HCM MTAG, CC-GWAS, and CC-MTAG. (Code availability)

Processing of summary statistics using FUMA
Each set of summary statistics was first processed using Functional Mapping and Annotation
(FUMA)" v1.6.1 (https:/fuma.ctglab.nl/). Among other analyses, FUMA applies Multi-marker

Analysis of GenoMic Annotation (MAGMA,; v.1.08) to perform an initial gene-based
association analysis, by aggregating variant-level signals into gene-level statistics while
accounting for linkage disequilibrium. The MAGMA gene-level scores were also used by
FUMA to test for tissue-specific enrichment of RNA expression profiles, based on
transcriptomic profiles across dozens of tissues from the GTEx v8 dataset
(GTEx/v8/gtex_v8 ts_general_avg_log2TPM)". The MAGMA gene scores and tissue
enrichment statistics were used as input for our gene prioritization pipeline, as described in

detail below.

Fine-mapping and credible set formatting

Our gene nomination pipeline required finding credible sets that likely include the causal
variants from the respective GWAS. To identify such credible sets, we performed fine-
mapping using the SUSIER algorithm (v0.12.35)">"®. For each GWAS dataset, the SUSIER
algorithm was run within separate LD blocks derived from UK Biobank European-ancestry
reference data."” The minimum squared correlation was set to 0.5 (the default), unless the
algorithm failed to converge, in which case we relaxed the threshold to 0.25. If SuSIE
continued to fail in a region harboring genome-wide significant variants, we flagged the
respective LD region and generated an artificial credible set using only the most significant

variant in the region (Supplementary Tables 24-36)

Gene prioritization using FLAMES

To perform gene prioritization, we used the recently-described ‘fine-mapped locus
assessment model of effector genes’ (FLAMES) approach (v1.1.1)"®. FLAMES combines two
main approaches to gene prioritization in a weighted framework to compute causal gene
predictions that outperform prior methods. In particular, FLAMES first uses pre-fit machine
learning models (based on XG-Boost) to link fine-mapped variants to likely effector genes
based on various parameters including variant-to-gene distance, epigenomic context, and

quantitative trait loci. Second, FLAMES uses the Polygenic Priority Score (PoPS'?) method
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to learn gene features associated with the trait based on functional networks; features
consist of cell-type-specific gene expression, biological pathways and protein—protein
interactions (PPIs).

We then applied the FLAMES framework to each of our GWAS datasets. To this end, for a
given GWAS dataset, we first ran PoPS (v0.2)," using the MAGMA Z-scores as input and
using the full feature matrix provided by the PoPS developers. We then annotated each
credible set using the annotate module from FLAMES, which combines variant-to-gene

mappings, MAGMA Z-scores, PoPS scores, and GTEXx tissue enrichment data.

FLAMES then returned a ranked list of genes per locus in FLAMES_scores.preds, including

raw and scaled FLAMES scores, XG-Boost scores, PoPS scores, and estimated precision.

Locus definition and consolidation across studies

For each credible set, we selected the top variant based on the highest posterior inclusion
probability (PIP), or, in cases where fine-mapping failed, the variant with the lowest P-value.
All index variants were then sorted by chromosome and genomic position. Index variants
located within 1Mb of one another were merged into one locus, to define non-overlapping
genomic loci. Each locus was assigned a unique identifier based on its genomic position,

with consistent numbering maintained across all analyses (Supplementary Table 2).

Gene prioritization across studies

Despite applying a harmonized pipeline for gene prioritization across the various GWAS
datasets, it was possible for the FLAMES algorithm to nominate different causal genes within
the same locus in different GWAS datasets. To consolidate gene-level evidence within and
across datasets, we therefore applied a scoring framework to prioritize effector genes at
each locus. For each study, genes identified as top-ranked by either PoPS or FLAMES were
assigned 0.5 points per method per study. Scores were then aggregated across all studies.
For example, locus 12 (chr1:212,107,306-212,277,107) appeared in both DCM MTAG and
CC MTAG. In DCM MTAG, DTL was prioritized by both PoPS and FLAMES (score = 1),
while in CC MTAG, BATF3 was prioritized by PoPS and DTL again by FLAMES. This
resulted in cumulative rank scores of DTL = 1.5 and BATF3 = 0.5. Accordingly, DTL was

selected as the reported gene for this locus.
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For each locus, the gene(s) with the highest total score were designated as lead candidates.
In cases where multiple genes had equal scores, or where the difference between top-
scoring genes was <1.0, all were retained as joint candidates. This strategy enabled the
identification of both study-specific and consensus lead genes across DCM, HCM, and
case—case analyses. While we acknowledge that the approach is to an extent arbitrary, we
applied this approach to transparently indicate instances where gene prioritization produced
potentially inconsistent results. Reassuringly, we found that a single effector gene was
nominated in the vast majority of loci using this approach (Extended Data Figure 3). The
final locus-level summary included genomic coordinates, contributing studies, top-ranked

genes, prioritization scores, and selected lead gene(s).(Supplementary Table 2).

Functional enrichment analysis

We used the g:Profiler platform? (v. February 2025) to test for enrichment of gene
sets from several predefined sources for genes curated from CC-GWAS and CC-
MTAG. The g:Profiler algorithm uses one-sided Fisher’s exact tests to test for
enrichment of a prespecified list of genes across many gene sets, and subsequently
adjusts one-sided P values for multiple testing while taking into account the
correlation between gene sets (g:SCS method76). We used default settings with a
multiple testing correction based on the Benjamini-Hochberg FDR and retained
terms with adjusted P-values < 0.05. Gene set categories included Gene Ontology
(GO: Biological Process, Molecular Function, and Cellular Component), KEGG,
Reactome, WikiPathways, CORUM, Human Protein Atlas, Human Phenotype
Ontology, transcription factor targets, and miRNA—target interactions.

First we tested all genes from CC-GWAS, then genes unique for CC-GWAS or CC-
MTAG for loci that were not significant in other DCM and HCM GWAS and MTAG.
To quantify the strength of association for each term, we computed the odds ratio
(OR) using a custom function based on contingency table parameters derived from
term size, query size, and domain background size. Continuity correction was
applied to avoid division by zero where needed.

To reduce redundancy in GO terms and annotate broader biological themes, we
used REVIGO?" to group enriched GO terms by semantic similarity. We parsed
REVIGO output and linked each original term to a representative parent term, which
was then used to group and annotate terms across GO:BP, GO:CC, and GO:MF

domains.
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A custom R workflow was developed to integrate enrichment results with REVIGO
clusters, calculate ORs, and visualize results. We generated a volcano plot with odds
ratio on the x-axis and —log,(adjusted P-value) on the y-axis. Select representative
terms were labeled using the REVIGO group name.

This approach allowed us to highlight key functional pathways enriched among
prioritized genes, including protein binding (GO:MF), sarcomeric and cytoskeletal
structure (GO:CC), and cell junction organization and signal transduction (GO:BP).
Since our prioritized genes may have been preselected towards genes with high
cardiac expression (that is, through gene features learnt by PoPS), we performed a
sensitivity analysis using nearest genes.

To generate a nearest-gene annotation for loci identified in the CC GWAS and CC
MTAG analyses, we used the get_nearest_gene() function from the gwasRtools
package (v0.1.0; available via GitHub: Icpilling/gwasRtools). For each lead SNP, the
nearest protein-coding gene within £500 kb (500,00 base pairs) was identified using
coordinates aligned to human genome build GRCh37. This approach was applied
separately to loci from CC GWAS and CC MTAG, producing two corresponding gene
lists. These lists were used for pathway enrichment analysis alongside genes
prioritized using the FLAMES/PoPS framework.

Pathway enrichment of nearest-gene sets (Extended Data Figure 6b,d) revealed
broadly consistent biological pathways compared to functionally informed
prioritization (Extended Data Figure 6a,c), including strong enrichment for muscle
structure development, actin binding, cytoskeletal organization, and myofibril
assembly. Notably, terms such as "actin binding", "cytoskeleton", and "myofibril"
remained significant under both strategies, suggesting that core cardiomyocyte

structural processes are recurrently implicated across methods.

However, enrichment significance was generally reduced when using nearest-gene
annotation, and several key terms observed with FLAMES/PoPS—such as

sarcomere organization or transcriptional regulation—were absent. This may reflect
the limited precision of proximity-based gene assignment, especially in regions with

multiple genes or regulatory elements acting at a distance.
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Taken together, these results support the robustness of the key functional pathways
implicated in our study while highlighting the additional specificity provided by

functionally informed gene prioritization.

Cell type enrichment methods

Using the snRNA-seq data obtained from Reichart et al., 2022 (ref.??), we performed
cell type enrichment analyses. The dataset consisted of samples from several
anatomical locations (including several locations across the left and right ventricle)
from 61 cardiomyopathy patients - of which 52 with DCM - and 18 non-failing
controls. We focused on the 18 non-failing donors, and generated cell type-specific
and cell state-specific annotations for enrichment testing using stratified linkage

disequilibrium score regression within the sc-linker framework?>.

First, we defined cell types from cell type and cell state annotations provided with the
publicly-available dataset. We removed variants flagged as ‘native’ or ‘low-QC’.
Nuclei with cell state ‘PC1’, ‘PC2’ or ‘PC3’ were then collapsed into ‘Pericytes’.
Nuclei with cell state ‘SMC1.1°, ‘'SMC1.2’, or ‘SMC2’ were collapsed into ‘VSMC'.
Nuclei with cell state ‘EC7’ were assigned ‘Endocardial’. Nuclei with cell state ‘Meso’
were assigned ‘Epicardial’. Nuclei

with cell state ‘EC8’ were assigned ‘Lymphatic endothelial’. Nuclei with cell state
‘EC1.0°, ‘/EC2.0’, ‘ECS5.0’, or ‘EC6.0’ were assigned ‘Cardiac endothelial’. For
remaining nuclei (those with cell states not mentioned above) the cell type
annotations provided with the original dataset were retained. This approach left 11

distinct cardiac cell types.

To test for enrichment of cell type specific gene programs in our GWAS/MTAG
datasets, we created cell-type specific gene programs. To this end, we performed
‘pseudo-bulk’ aggregation by summing gene counts across nuclei for each
donor/tissue region combination, by cell type. We only retained a given donor/tissue
region combination if they had at least 50 nuclei of that cell type. Lowly expressed
genes identified with the filterByExpr() function in edgeR were removed. We
normalized the pseudo-bulk expression with DESeqg2 and fit the differential
expression model ~0+cell_type+donor_tissue using limma-voom. Notably, we

included a covariate for the donor/tissue region combination because each
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donor/tissue region will be represented across most cell types. We then extracted
contrasts comparing gene expression in each focal cell type to all other cell types.
Cell type-specific gene programs were subsequently computed by ranking and
scoring genes based on their enrichment statistics, as described in previous work?3.
Notably, however, we adapted the algorithm to set all genes with negative
enrichment scores (ie, those depleted within the focal cell type as compared to the
other cell types) to 0; this was applied to avoid cell type enrichments driven by genes

that were in fact enriched in other cell types.

Using the cell type-specific gene expression profiles, we then performed heritability
enrichment analyses using the sc-linker pipeline (https:/github.com/kkdey/GSSG)?3.

To this end, we used the epigenomic variant-to-gene mapping data for heart and
fetal heart, which were provided with the software, as input. We used the CC-GWAS
dataset as GWAS input. We then used the provided scripts to apply stratified LD-
score regression to compute heritability enrichment statistics for the cell type-specific
gene programs?*. As recommended?*, we report test statistics and corresponding
one-sided P-values from the tau ‘coefficient’ - which is conditional on all other
annotations included in the model including the ‘baseline LD’ annotations. To
account for the 11 cell types tested, we applied a Bonferroni significance cutoff by
setting significance at 0.05/11=0.0.0045.

Partitioned heritability of CC loci using LDSC

To evaluate the contribution of loci identified through case—case GWAS (CC GWAS
and CC MTAG) to overall SNP-based heritability of DCM and HCM, we performed
partitioned heritability analysis using LDSC?. First, we selected genome-wide
significant variants (P <5 x 1078) from both CC GWAS and CC MTAG, then defined
500 kb flanking windows upstream and downstream of each lead SNP. These
regions were merged using bedtools merge?® to create a non-redundant set of
genomic intervals (LD regions) comprising all CC-significant loci.

These merged regions were used to generate binary annotation files according to
LDSC documentation?s. To estimate partial heritability, we applied LDSC --h2 with
both baselineLD v2.2 annotations provided by LDSC developers and the newly
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defined CC locus annotations. Heritability estimates were calculated separately for
DCM and HCM GWAS summary statistics, and enrichment was quantified as the
proportion of heritability explained divided by the proportion of SNPs annotated in

each category.

CC-significant loci comprised only 2.7% of genome-wide SNPs but explained a large
fraction of heritability for both cardiomyopathies. In DCM, CC loci captured 34.6% of
total SNP-based heritability (Enrichment = 12.7-fold; P=6.88%x107"8). In HCM, the
same loci explained 53.4% of SNP-based heritability (Enrichment = 19.6-fold;
P=9.26x107"°). (Supplementary Table 9)

Genetic correlation between the DCM—-HCM shared meta-analysis and
cardiometabolic traits

We applied linkage disequilibrium score regression (LDSC)® to assess genetic
correlations (rg)?” between the shared-effects meta-analysis and a set of 65
quantitative traits.8° Analyses were performed using the European ancestry LD

reference panel and the default Idsc.py --rg settings using tutorials from developers.

Among all tested traits, four phenotypes remained significantly correlated with the
DCM-HCM meta-analysis after Bonferroni correction (P < 0.05/65): diastolic and
systolic blood pressure (DBP: rg=0.415, P = 5.00 x 107°, SBP: ry = 0.375, P = 1.50 %
107*), body mass index (BMI) (ry = 0.407, P = 1.00 x 1074), body weight (ry = 0.392,
P =1.50 x 10™) and C reactive protein (CRP) (ry = 0.268, P = 6.00 x
107%).(Supplementary Table 19) Several other traits were nominally significant,
including C-reactive protein, urate, creatinine, and multiple red blood cell indices
(e.g., nucleated RBC percentage, reticulocyte counts), suggesting shared polygenic

mechanisms related to inflammation, renal function, and hematopoiesis.

Some traits showed negative correlations (e.g., sex hormone-binding globulin
(SHBG), HDL cholesterol, basophil count), particularly in the shared model, though
these did not reach Bonferroni significance.

If compared to DCM and HCM, shared meta-analysis showed stronger and more
consistent genetic correlations with cardiometabolic risk traits. DCM and HCM

GWAS, when assessed separately, showed fewer Bonferroni-significant correlations.
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While many traits trended in the same direction, effect sizes were attenuated and P-
values were less robust, underscoring the increased power of the shared meta-
analysis to detect shared polygenic architecture.

Despite the strong negative correlation, certain extracardiac risk factors - including
hypertension and obesity - have been linked to both DCM and HCM'"328.29_ |Indeed,
when accounting for the genetic components of blood pressure and body habitus
(Methods)?, the inverse genetic correlation between DCM and HCM became
nominally stronger (rg giobai=-0.63, SE=0.07, P=9.4x107"). In contrast, when
conditioned on the LV endophenotypes related to contractility and chamber size, the
genetic correlation was substantially weakened, but not abolished (rg,giobai=-0.26,
SE=0.07, P=9.4x102). These findings indicate that the genetic pathways intrinsic to
myocardial function/structure may be largely inverse between DCM and HCM, while
certain extracardiac pathways may be concordant.

Genetic correlations between cardiomyopathy GWAS and other
cardiovascular diseases

We performed pairwise genetic correlation analyses using LDSC to evaluate shared
polygenic architecture between cardiomyopathy GWAS/MTAG results and other
cardiovascular traits®!, including coronary artery disease (CAD)3?, atrial fibrillation
(AF)33, and subtypes of heart failure (HF)34.

The shared-effects meta-analysis correlations

The shared-effects meta-analysis of DCM and HCM demonstrated positive genetic
correlation with all tested traits: HF types34, AF33, CAD*2. The strongest correlations
that also reached Bonferroni corrected statistical significance level was observed
with non-ischemic heart failure (niHF)3 (ry = 0.69, P = 3.05 x 107"°), all-cause HF3*
(rg=0.677, P = 7.87 x 107%*4). (Supplementary Figure 9, Supplementary Table
19,20)
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Case—case analyses (CC GWAS/MTAG) genetic correlations

In contrast, the cardiomyopathy spectrum derived from CC GWAS and CC MTAG
showed little or no genetic correlation with any of the tested cardiovascular traits (AF,

CAD, HF)3233 (Supplementary Figure 9, Supplementary Table 20)

This lack of correlation suggests that the genetic signals captured by CC-based
analyses represent distinct axes of trait differentiation, rather than shared
susceptibility loci contributing broadly to cardiovascular disease. Notably, while CC
MTAG and CC GWAS were highly correlated with each other (ry = 1.09, P<0.01),
they remained largely orthogonal to external cardiac disease traits. (Supplementary
Figure 9)
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Replication of CC-GWAS

Source for replication datasets

HCM cases were recruited from the Sarcomeric Human Cardiomyopathy Registry
(SHaRe). The registry’s structure and initial findings have been detailed by Ho et al.
(2018)%°. HCM was diagnosed by each SHaRe site and is defined as unexplained
left ventricular (LV) hypertrophy with a maximal LV wall thickness exceeding 15 mm,
or over 13 mm in family members with HCM (or an equivalent LV wall thickness z
score in pediatric patients).

Whole genome sequencing samples were collected from DCM patients across
multiple cohorts and studies (GO-DCM (N=565), Bratislava (N=15), RBH Biobank
(N=596), SMARTER-DCM (N=29), TRED-HF2 (N=22), MATCH and MATCH2
(N=179), the Heart Hive (N=109) and MitoDCM (N=10)) which have been described
in detail elsewhere. Briefly, the GO-DCM study was a whole genome sequencing
initiative that aimed to recruit 2000 patients with DCM, collecting blood samples,
from 2020 to 2027 across England (London, Leeds, Oxford, Leicester, Liverpool,
Southampton and Manchester) and Scotland (Glasgow)
(clinicaltrials.gov/study/NCT03843255). Additional whole genome sequencing

samples were obtained from Bratislava, approved by the Ethics Committee of
Narodny ustav srdcovych a cievnych chordb, a.s. The RBH Biobank is a biobank of
patients recruited from heart, lung and critical care departments of the Royal
Brompton & Harefield NHS Foundation Trust. Patients were invited to give biological
samples including whole blood, serum and plasma (IRAS ID 264059.;
www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-
summaries/royal-brompton-harefield-cardiovascular-research-centre-biobank.). The
SMARTER study aimed to further the genetic understanding of cardiomyopathy and
patients were invited to give samples for whole genome sequencing (IRAS ID

313058; www.hra.nhs.uk/planning-and-improving-research/application-

summaries/research-summaries/the-smarter-cm-study). The TRED-HF2 study aimed

to recruit recovered DCM patients between 2023 and 2026 to determine the
therapies required to maintain heart failure remission
(clinicaltrials.gov/study/NCT06091475) . The MATCH and MATCH2 studies recruited

DCM patients to establish the relationship between heart failure and type 2 diabetes

(IRAS ID 228222; www.hra.nhs.uk/planning-and-improving-research/application-
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summaries/research-summaries/myocardial-tissue-characteristics-and-glycaemic-

status. IRAS ID 273547; www.hra.nhs.uk/planning-and-improving-

research/application-summaries/research-summaries/myocardial-tissue-

characteristics-and-glycaemic-status-2). The Heart Hive is an online portal for

individuals with cardiomyopathy to actively engage with researchers and research
studies. Participants were invited to provide saliva samples for whole genome
sequencing, and indicate studies they would like to engage in (IRAS ID 246395;

www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-

summaries/the-heart-hive). The MitoDCM study was a double blind randomised

controlled trial of mitoquinol mesylate on patients with DCM to assess the effect of
reducing oxidative stress on the heart (clinicaltrials.gov/study/NCT05410873)

Sequencing reads were aligned to the hg38 reference genome and variants were
called using the lllumina DRAGEN pipeline (v3.10.12). Individual gVCF files were
joint-called in Hail (v0.2.128). Genotypes were set to missing if genotype quality
(GQ) < 20, depth (DP) < 10, or allele balance (AB) in heterozygotes < 0.2.

Analyses were restricted to individuals of non-Finnish European (NFE) ancestry.
Ancestry assignment was performed by projecting study samples onto the gnomAD
v4.1 principal component (PC) space and clustering with NFE reference individuals.
Variant- and sample-level quality control was carried out in Hail (v0.2.128). Sample
QC was performed first, excluding individuals with call rate < 98.5%, mean depth <
10, or mean genotype quality < 20. Genome-wide SNVs were also used to compute
the heterozygous/homozygous variant ratio and the transition/transversion (Ti/Tv)
ratio. Samples deviating by more than six median absolute deviations (MAD) from
the median het/hom ratio, or with Ti/Tv ratios outside the expected range of 1.8-2.2,
were excluded. Additional exclusions were applied for relatedness (pi-hat > 0.125) or
sex discordance. After sample filtering, variant QC was restricted to biallelic
autosomal SNPs. Variants were excluded if call rate < 0.98, Hardy—Weinberg
equilibrium p <1 x 107°, or minor allele frequency < 0.01. Following QC,
approximately 7.9 million SNPs across 1,158 HCM and 1,525 DCM cases were
retained for analysis.
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Replication CC-GWAS

The case—case GWAS (HCM vs DCM) was performed in Hail using an additive
genetic model with SNP dosage. HCM cases were treated as “cases” and DCM
cases as “controls.” Covariates included sex and the top 20 principal components.
Association statistics were reported as log-odds ratios per effect allele with
corresponding standard errors and p-values.

Validation of novel loci

Novel lead SNPs were defined from the discovery case—case GWAS and MTAG
analyses (see manuscript Methods). For each locus, the discovery beta and
standard error were taken from the analysis in which the SNP was originally
reported. When a lead SNP appeared in both the case—case GWAS and MTAG, the
MTAG estimate was used. The corresponding SNPs were extracted from our
individual-level case—case GWAS (with positions lifted over from GRCh37 to
GRCh38). Alleles were harmonized so that effect estimates correspond to the same
effect allele across datasets.
Concordance between discovery and validation was assessed using several
complementary approaches:
1. Direction concordance
o The proportion of SNPs with the same direction of effect was tested
against the null expectation of 50% using a binomial test.
2. One-sided look-ups
o For each lead SNP, the one-sided p-value was evaluated in the
validation dataset in the discovery-predicted direction of effect, testing
whether the SNP showed enrichment of association beyond chance.
3. Effect-size concordance
o Discovery and validation effect estimates were compared directly using
correlation and linear regression (validation ~ discovery).
o Both raw betas (log-odds scale) and standardized Z-scores (B/SE)
were considered to account for differences in effect size scaling.

Seventeen novel loci with 18 corresponding lead SNPs were identified in the

discovery analysis (locus 99, mapped to NFATC3, was tagged by two distinct variants:
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rs8059305 in CC-GWAS and rs12599178 in CC-MTAG), Of these, 17 lead SNPs were
present in the validation cohort, corresponding to 16 novel loci. For the 17 lead
SNPs, we first assessed concordance in the direction of effect between discovery
and validation. Sixteen of the 17 SNPs (94.1%) shared the same direction of effect,
significantly greater than the 50% expected under the null (binomial test, p =
0.000137).

We next performed one-sided look-ups for the 17 lead SNPs to test whether the
validation GWAS showed enrichment of association in the discovery-predicted
direction. Under the null hypothesis of 5% replication by chance, fewer than one
SNP would be expected to reach nominal significance. In contrast, 11 of the 17
SNPs (64.7%) did so in the validation dataset, representing a highly significant
enrichment (binomial test, p = 4.6 x 107"").

To further evaluate concordance, we compared effect sizes between discovery and
validation. Effect directions were highly correlated (r = 0.83, p = 3.3e-5), although
effect estimates were generally larger in the validation dataset due to differences in
scale (Supplementary Figure 7 and Supplementary Figure 8). Forest plots of
individual loci illustrate the consistency in direction of effect across discovery and

validation.

Validation of CASQ2 variant

The enrichment of the CASQ2 lead SNP was assessed separately in individuals in
the HCM and DCM cohorts that pass QC (described above) relative to non-Finnish
European (NFE) population controls from gnomAD (v4.1). Enrichment was evaluated
using Fisher’s exact tests (one sided p-value) under three genetic models: (i) an
additive model, testing enrichment of the effect allele in cases versus controls; (ii) a
dominant model, testing enrichment of effect-allele carriers (heterozygous +
homozygous) versus non-carriers; and (iii) a recessive model, testing enrichment of
homozygous effect-allele carriers versus all other genotypes.

The discovery GWAS identified a novel locus associated with increased risk of both
HCM and DCM, with the lead variant corresponding to a missense substitution in
CASQ2 (p.Thr66Ala). We validated this signal by comparing allele and genotype
counts in HCM and DCM cases with population reference data from non-Finnish
European individuals in gnomAD (v4.1).
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Across 1,158 HCM and 1,525 DCM cases, we observed enrichment of the effect
allele relative to gnomAD controls under multiple inheritance models. In an additive
model, the effect allele was significantly enriched in both HCM (OR = 1.14, one-sided
p = 0.002) and DCM (OR = 1.07, one-sided p = 0.037). Interestingly, however, the
strength of association differed under dominant and recessive models. In a dominant
model, carriers of the effect allele (heterozygotes and homozygotes) were
significantly enriched in HCM cases compared with gnomAD (OR = 1.20, one-sided
p = 0.001), whereas DCM cases were not significantly enriched. By contrast, under a
recessive model, homozygous carriers were significantly enriched in DCM relative to
gnomAD (OR = 1.19, one-sided p = 0.027), but not in HCM.

Together, these results suggest a dosage-dependent relationship: heterozygous
carriers of the CASQ2 variant appear more likely to develop HCM, whereas
homozygous carriers are enriched among DCM cases.

Validation of case-case PGS

Polygenic scores (PGS) were calculated for 1,158 HCM cases and 1,525 DCM
cases that passed sample and variant quality control and were included in the
validation GWAS, together with 7,296 population control individuals from the UK
Biobank. Three PGS were derived for each individual: an HCM PGS, a DCM PGS,
and a case—case (CC) PGS. Each score was generated by summing the number of
effect alleles carried, weighted by per-allele effect sizes estimated using SBayesRC
from the respective MTAG summary statistics. The first 20 genetic principal
components (PCs) were calculated for each individual using gnomAD loadings. To
minimise confounding by population structure, ancestry adjustment was performed in
two stages using UK Biobank controls only. First, a linear model was fitted with the
PGS as the outcome and the first 20 PCs as predictors to model ancestry-related
differences in the PGS mean. The squared residuals from this model were then
regressed on the same PCs to capture ancestry-related differences in variance. Both
models were applied to all samples to predict the expected mean and variance of the
PGS given ancestry, and each raw PGS was adjusted by subtracting the predicted
mean and dividing by the predicted standard deviation. The resulting ancestry-
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adjusted scores were then standardised using the mean and standard deviation of
the control group, yielding z-scored values with mean 0 and variance 1 in controls.
To validate whether each PGS could discriminate DCM cases from HCM cases, we
fitted logistic regression models with DCM versus HCM status as the outcome. All
models were adjusted for the first 20 ancestry PCs; sex was included as a covariate
except in univariate models. From these models, we derived performance metrics
including: (i) the log-odds ratio per standard deviation increase in PGS, (ii) the area
under the receiver operating characteristic curve (AUC, univariate model), (iii) the
area under the precision—-recall curve (AUPRC, univariate model), and (iv) the
improvement in Nagelkerke’s pseudo-R2.

We assessed whether case—case GWAS data could be leveraged to position
individuals along the polygenic spectrum of cardiomyopathy using genome-wide
genetic data. To this end, we constructed polygenic scores (PGS) from MTAG
summary statistics for DCM (PGS-DCM), HCM (PGS-HCM), and the case—case
analysis (PGS-CC), and tested their performance in an independent validation cohort
comprising 1,158 HCM cases, 1,525 DCM cases, and 7,296 controls from the UK
Biobank. PGS-CC provided the strongest discrimination between DCM and HCM,
with an odds ratio of 3.12 per standard deviation (95% CIl 2.83-3.44; p = 3.1 x 10-
132), and the highest predictive performance (AUC = 0.85, AUPRC = 0.84) (Figure
5).
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Drugability

To assess the therapeutic potential of prioritized genes, we performed a
comprehensive druggability annotation by integrating tractability profiles from the
Open Targets Platform (queried April 2025)% with quantitative predictions from
DrugnomeAl*” (Methods). Among the 146 prioritized genes across 113 loci identified
across all summary statistics (DCM, HCM, CC GWAS/MTAG) and the shared-effects
meta-analysis, 12 (8.2%) were classified as “Very High tractability” due to existing
approved drugs, and an additional 6 (4.1%) had “High tractability” based on late-
stage clinical development. Another 49 genes (33.6%) showed moderate to low—
moderate tractability, supported by structural or mechanistic features, and represent
promising targets for preclinical investigation. A large proportion of genes (69, or
47.3%) had only minimal supportive evidence, and 10 genes (6.8%) lacked any
tractability annotation—potentially reflecting unexplored biology rather than true
undruggability. (Supplementary Table 13) In addition to categorical annotations,
we incorporated DrugnomeAl, a machine learning framework that predicts
druggability using 324 gene-level features across 15 data sources, including protein—
protein interaction networks, expression profiles, and functional annotations. For
each gene, we extracted Tier 1, Tclin, and combined Tier1+Tclin probability scores
from DrugnomeAl. The Tclin score reflects the likelihood that a gene encodes a
target of a drug with established clinical evidence—namely, compounds that have
entered human clinical trials. The Tier 1 score estimates the probability that a gene
encodes a target of an FDA-approved therapeutic agent. These probabilities are
derived using a semi-supervised learning framework trained on the features of
known drug targets, integrating 324 gene-level features across 15 biological and
pharmacological data domains (e.g., protein interaction networks, gene expression,
structural data, and functional annotations). Higher scores in either category suggest
greater alignment with attributes of clinically validated targets and thus higher
potential for successful pharmacologic intervention. Quantitative scores from
DrugnomeAl highly correlated with therapeutic profiles from OpenTargets, with
median scores ranging from 0.975 in the approved drug category to 0.027 among
genes with no tractability annotation. This concordance across different scoring
systems supports the robustness of our prioritization framework and identifies a set

of gene targets with strong translational potential.
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To identify the most translationally promising targets, we first focused on genes with
either existing pharmacological agents or high druggability likelihood (Tclin+Tier1
probability > 0.4, DrugnomeAl). In total, 35 prioritized genes met these criteria, of
which 18 have been previously targeted in drug development efforts. Notably, drugs
for 12 of these genes have reached the market.(Extended Data Figure 9a,b).

While many of the known drugs targeting prioritized genes were developed for
cancer (e.g., regorafenib for RAF 138, afatinib for ERBB43%°), a subset also
demonstrates direct relevance to cardiovascular and neuromuscular
diseases.(Supplementary table 11, Extended Data Figure 7a,b) For instance,
PDES3A is the target of milrinone, a phosphodiesterase inhibitor approved for acute
heart failure, where it enhances myocardial contractility and reduces afterload.*°
ADM (Adrenomedullin) is another cardiovascular-relevant target; a non-neutralizing
antibody (adrecizumab) has advanced to phase Il trials in heart failure and sepsis,*’
and circulating levels of its prohormone (MR-proADM) are used as a biomarker of
hemodynamic stress*243. Additionally, some drugs, that has initially been used for
non-cardiac reasons, might also hold promise to be applied in cardiovascular
treatment. For example, PGR (Progesterone receptor) is primarily known for its role
in reproductive physiology, however genetic variation near the PGR locus—
particularly in the intergenic region between PGR and TRPC6—has been associated
with hypertensive disorders of pregnancy (HDPs), including preeclampsia. TRPC6
encodes a calcium-permeable channel involved in renal function and blood pressure
regulation. Nearby, ARHGAP42, which modulates vascular tone, has shown reduced
expression in preeclamptic placentas. Together, these findings suggest that the
broader PGR region may contribute to vascular regulation and highlight it as a
potential target for therapeutic exploration in cardiovascular and hypertensive
conditions. * GNRHR, which emerged as a prioritized gene in our CC-GWAS
analysis, encodes the gonadotropin-releasing hormone receptor and is the molecular
target of abarelix, a GnRH antagonist developed for prostate cancer. While there is
currently no direct evidence linking GNRHR itself to cardiovascular disease, related
hormonal pathways may be relevant. Notably, GNRH1, which encodes the ligand for
GNRHR, has been shown in Mendelian randomization studies to be positively
associated with increased risk of ischemic heart disease (IHD). This suggests that
pharmacologic modulation of the GnRH axis—while originally intended for oncologic


https://paperpile.com/c/dHxZks/wsLm7
https://paperpile.com/c/dHxZks/Qdms3
https://paperpile.com/c/dHxZks/4Wg31
https://paperpile.com/c/dHxZks/OLrki
https://paperpile.com/c/dHxZks/WheRN+okvdN
https://paperpile.com/c/dHxZks/5Hktx

908
909

910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940

indications—could have broader systemic effects, including potential relevance in

cardiovascular contexts. 4°

Notably, RPL22 exhibits low tractability and druggability based on both structural and
clinical evidence. However, it has been listed among the targets of ataluren, a drug
approved for Duchenne muscular dystrophy. Rather than acting selectively on
RPL22, ataluren is believed to exert a broad mechanism of action by modulating the
translational machinery. It affects multiple ribosomal components, including RPL22,
with a total of 78 annotated protein targets. This suggests that RPL22 may not be the
primary pharmacologic target, and its inclusion likely reflects the pleiotropic effects of
ataluren on ribosomal function. (Supplementary Table 13)

Among the prioritized genes without clinically developed drugs, several nonetheless
demonstrated high tractability based on the availability of chemical probes
(Extended Data Figure 9d-f). A chemical probe is a highly potent, selective, and
cell-permeable compound that binds to a target protein and modulates its function in
a predictable and reversible way. It serves as a tool to study the biology of that
target. If a high-quality chemical probe exists for a gene product, it's strong evidence
that the protein is ligandable (i.e., it can bind a small molecule), which supports the
tractability of that target for drug development.

Notably, targets such as PLK2, MAP3K7, and KAT2B were supported by multiple
probes, including high-quality entries as defined by established scoring frameworks
(Methods). This provide valuable opportunities for early-phase preclinical
investigation, offering routes for target validation, mechanistic dissection, and
pharmacological modulation in the absence of approved compounds. For instance,
MAP3K7 (TAK1), a serine/threonine kinase central to stress and inflammatory
signaling, represents a compelling druggable candidate in cardiomyopathy. It is
supported by two validated chemical probes and has been shown to regulate key
signaling pathways downstream of TGF-f3, IL-1, and TNF-a. Recent evidence
highlights its cardioprotective role in restraining inflammasome activation and
pyroptosis under pressure overload, suggesting potential therapeutic relevance in
hypertrophy and heart failure. Pathogenic variants in MAP3K7 have been implicated
in congenital syndromes with structural cardiac manifestations. (Supplementary
Table 13)46
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Supplementary Figure 1: Tissue enrichment of heritability for
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cardiomyopathy traits from bulk RNA sequencing data in GTEx v8.
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Bar plots represent the —log1o(P) values from tissue-specific enrichment analyses,
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with tissues from GTEx v8 shown on the x-axis. Each panel corresponds to a
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different GWAS or MTAG result: CC GWAS and CC MTAG (top row), DCM GWAS
and DCM MTAG (middle row), and HCM GWAS and HCM MTAG (bottom row).
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Tissues surpassing the Bonferroni-corrected significance threshold are shown in red;
the horizontal dashed line marks the significance cutoff. Tissues are ordered by their
significance within each panel.

Enrichment P-values were obtained using a stratified LD score regression
framework; they are unadjusted and can be interpreted as one-sided.
Abbreviations: GWAS, genome-wide association study; MTAG, multi-trait analysis
of GWAS; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; CC,
case-case analysis
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Supplementary Figure 2: Matrix of genetic correlations between
cardiomyopathy spectrum (from CC GWAS) and left ventricular traits

from cardiac MRI

A heatmap of bivariate genetic correlations estimated from GWAS data, showing CC
GWAS and relevant cardiac MR traits. The color represents the level of genetic
correlation, with red and blue representing positive and negative correlation,
respectively.

Note: CC-GWAS, case-case genome-wide association study; Ecc, global
circumferential strain; Ell, global longitudinal strain; Err, global radial strain; LVEF,
left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume indexed
to body-mass index; LVESVi, left ventricular end-systolic volume indexed to body-
mass index; LVMi, left ventricular mass indexed to body-mass index; LVconc, left
ventricular concentricity; maxWT, maximum wall thickness; meanWT, mean wall
thickness. Since Ecc and Ell are always negative values, -Ecc and -Ell are plotted to
facilitate interpretation of effect direction.
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Supplementary Figure 3: Manhattan plots for DCM MTAG, HCM MTAG
and CC MTAG
All panels are Manhattan plots where each dot represents a genetic variant, with

genomic positions on the x-axis and -log10 of the association P-value on the y-axis.
Panels a and b show results for published DCM MTAG (63 loci) and HCM MTAG (67
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loci), respectively. Panel ¢ shows results for a case-case MTAG (included CC
GWAS and MR traits MTAG), where DCM and HCM are statistically modeled as

opposites on a singular genetic spectrum, yielding 95 significant loci.



995 Supplementary Figures 4a-s. PheWAS for prioritized gene from 17 novel
996 CC GWAS/CCMTAG (below)

997
998 Panels below show broader results from PheWAS for lead variants of 17 novel CC
999 GWAS/CCMTAG loci using data from the Cardiovascular Disease Knowledge Portal,
1000 specifically showing results from cardiovascular-related traits. The x-axis represents
1001  different traits grouped by trait clusters, while the y-axis represents the -log10 P-
1002  value for the association between the selected variant and the respective traits.
1003  The Variant Page summarizes variant impact predictions and genetic associations.
1004  The variant ID is in the format Chromosome:Position (hg19 genome build):Reference
1005 allele:Alternate allele.
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1009  Supplementary Figure 4a: 1:3199217:C:T / rs16823802 PheWAS associations (locus
1010 2, PRDM16)
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1014  Supplementary Figure 4b: 1:22248881:G:A / rs10799719 PheWAS associations
1015 (locus 5, HSPG2)
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1040 Supplementary Figure 4i: 8:141740868:A:C / rs6994744 PheWAS associations
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1044  Supplementary Figure 4j: 9:111865232:C:A / rs7028081 PheWAS associations
1045 (locus 66, TMEM245)
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Supplementary Figure 4m

(locus 76, ADM)

1056
1057




1058

Ofjel SWN|OA 21|0)SEIP-pUd JB[NOLJUSA }§3| O} SWIN|OA o__oﬂmmﬁ.ucw JejnowjuaA Y6y

W yody wnieg
pioe oune-
ones IOI.S.mu:mozm_ﬁ
| joseysajoyo [ejoL
sajeqelp Z adA} Jnoyym s|enpiAIpul Ul BaAS) wo:muzm_;,//
moa< wnieg //
SppUBdA|Bu /
01188040 17
[049359j0y0 figH-UON |
|018}s8I0Yd TaH -«
|
|

eaje|wnwiuiw [euje ybry,

UONEDLYIP|ED OILOE [BUIIOPQY

paxepul ySg ‘eaie,wnwiuiw [euje Jybry

paxepul ySg ‘BWnjoA u__o_m\,tu:m JenoujuaA by |

QWN|OA oS JeNoLUBA Yo §

pexapul ysg ‘(wo) Aispe Aeuownf oljojselp sixe-Joys

?_mao?ro_n_mo olydospadAH Ji

ajojselp ‘ones epoe o) Aiape Aieuow|ng

Ayo0]aA o10E piemio) yead

(wo) Aiape bmcoE_:a olj0)seIp m,xm‘to;w;

aupssaud |euspe uesjy [

SSOUNDIL) BIPBLUTEWIAUI PIOJEO UEBJN

uoisuspadAy [euspe Ateuow|ng

paxapul ySg ‘eale wnwixew [euje jybry

Oljes BWN|OA 21|0}SAS-PUB JEINDLIUBA Yo] O} BWN|OA d1jo}sAs-plia Jejnoujuan Jybry
| ajes as|nd

| SuleA 8s00LEA

Paxapul ySg ‘(ju) 1001 sixe-uous I

uoisuspedAy

ease whwixew [eue ybry

(yuo) Jo0u sixe-poys

ojes yeaH
aseupy auneas)
:o;muc.o_mo Kispe Aieiouo)

uiejold danoeas-) ewseld

SSBUNDIY) BIPAW-BWIUI[PIOJED WNWIXEN

\

el d o P

11

f

uono.J UONOA(B JBINDLYUSA Yo,
ainssald poojq 9 _o,m\ﬂw,,

binssaud asind, /
BLIN|OA 91j0}SBIP-pUB eINOLIUBA Yo7 | /
(Pexapul-ySg) 8Wn|oA JI|0]SEIp-pud JEINOLUBA Y8, ||
uonuyep peolq ‘Ayjedolwoipies paje|iq \
BWIN|OA 21|0}SAS-pua JejhoLjuBA Yo /

uoniuyep s ‘AyredoAwolp.es pejejg
(pexapul-ySg) SWn|oA 210)SAS-puUs JeNdUsA Yo
(avD) eseasip liape %m:oboo B

\

*su uone|uqy [ewe padipaid [apow IV-903
I uonenuay ey €

sieak g e :Tmu Xxapu| ssew Apog

(6%) sso| ybiam |ejo,

yuiq e (Jg) xepul ssew Apo

| 92UBIBJWNIID ISIEAN

| Ohel 149 0} IVA

INg [pe @ouaiajwnolo diH

biay pue |NG Joj pajsnipe |YSY

IWg [pe sbuaiajwnald Isiep

9WIN|OA BNsSl} 8SOGIPE [BIOWBJ0BIN|D),

snjejs Bupjows-|Ng Ipe m,ﬁ_m@E:u_G 1stem |

onet 149 0} LYSY
Wbley pue |Ng 0} pajsnipe LY4D /
snjejs Bupjows-jng [pe bnes diy-isiep . \
oneu diy-isiem
»>

INg [pe ones diy-isiem p
-

©

,

!

- -

N © °
- ~ el

14.4 4
10.8

(enjea-d)oL607-

beta

1059

ions

T /rs10891299 PheWAS associat

G

111787962

11:

Supplementary Figure 4n
(locus 80, CRYAB)
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1063  Supplementary Figure 40: 12:32980161:G:T / rs2045172 PheWAS associations
1064  (locus 83, PKP2)
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1067  Supplementary Figure 4p: 16:68036666:A:C / rs8059305 PheWAS associations
1068  (locus 99, NFATC3)
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Supplementary Figure 4r
(locus 99, NFATC3)
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Supplementary Figure 4s: 22:26162902:A:G / rs4820654 PheWAS associations
(locus 112, MYO18B)
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1080 Supplementary Figure 5: Manhattan plot of the replication case-case
1081 GWAS

QQ Plot for HCM (1158) vs DCM (1525)
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1082 Figure 2: QQ plot of the case—case GWAS (HCM vs DCM).

1083  Supplementary figure 6: QQ plot of the case—case GWAS (HCM vs
1084 DCM).
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1087 Supplementary figure 7: Scatterplots showing concordance of novel SNP

1088 effect estimates between discovery and validation.

1089 A) correlation of raw betas (log-odds ratios per allele). B) correlation of standardized
1090 effect sizes (Z-scores, B/SE). The solid line shows the fitted regression through the

1091  origin.
1092
A Effect sizes at novel lead SNPs B Standardised effect sizes (Z-scores)
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1093

1094 Supplementary Figure 8: Forest plots showing effect estimates for novel

1095 lead SNPs in discovery and validation.

1096 A) raw betas (log-odds ratios per allele) with 95% confidence intervals. B)

1097  standardized effect sizes (Z-scores, B/SE) with 95% confidence intervals. SNPs are



1098 ordered by discovery effect size. Discovery and validation estimates are shown side
1099 by side for each SNP.



1100

niHFrEF
niHFpEF
niHF

HF _all
CC_MTAG
CC_GWAS
CAD

AF

b

shared
meta_analysis
DCM_HCM

niHFrEF

niHFpEF

niHF

HF_all

CAD

AF

.- 0.33** 0.24*

0.13*




1101
1102
1103

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

Supplementary Figure 9: Pairwise genetic correlations between

cardiomyopathy analyses and related cardiovascular phenotypes.

a, Genetic correlations (rg) between case—case analyses (CC GWAS and CC
MTAG), non-ischemic heart failure subtypes, coronary artery disease (CAD), and
atrial fibrillation (AF).

b, Genetic correlations between the shared-effects DCM-HCM meta-analysis and
the same cardiovascular phenotypes.

Pairwise correlations were estimated using linkage disequilibrium score regression
(LDSC). Cell color reflects the magnitude and direction of (rg (red = positive
correlation, blue = negative correlation), and values are annotated in each cell.

Asterisks indicate significance (P <0.05: *, P <0.002: ** (Bonferroni correction).
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Supplementary Figure 10a: Cell-type-specific expression of the top
prioritized genes for cardiomyopathies

Bubble heatmap showing gene expression data for prioritized genes across major
cardiac cell types, based on integration of three published single-nucleus and single-
cell RNA sequencing (sn/scRNA-seq) datasets of human left ventricles (LV) from
non-failing control donors (maximum n = 18; Supplementary Table 13). The y-axis
displays a shortlist of 76 highly prioritized genes from CC GWAS and MTAG
analyses (with an additional 70 genes shown in Supplementary Figure 10b), while
the x-axis shows 16 harmonized LV cell types. For each gene—cell type pair, dot size
indicates the percentage of nuclei or cells expressing the gene at nonzero levels,
and dot color represents the scaled, relative normalized expression within that cell
type (compared to all other cell types). Expression values were aggregated after
data harmonization and scaling. Note: VSMC, vascular smooth muscle cell; Pericyte,
mural cell associated with microvasculature; Epicardial, epicardial-derived cells;



Endocardial, inner lining endothelial cells; Capillary Endothelial, capillary-associated
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endothelial cells; Lymphatic Endothelial, lymphatic vessel endothelial cells;

Cardiomyocyte, cardiac muscle cells; Scaled mean expression, relative gene

expression per cell type; % nuclei expressing, proportion of cells/nuclei with

detectable gene expression; Padj, multiple-testing-adjusted two-sided P-value from

DESeq?2 differential expression
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Supplementary Figure 10b: Cell-type-specific expression and DE of the top
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prioritized genes for cardiomyopathies
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