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Supplementary Note 186 

Data sources 187 

To investigate the genetic similarity between DCM and HCM, we leveraged large-188 

scale genome-wide association (GWAS) data from two recent studies. Data for DCM 189 

were obtained from a large GWAS meta-analysis by Jurgens et al. (2024)1. In this 190 

study, case-control GWAS data were assembled from 6 European-ancestry 191 

datasets, including clinical case-control datasets (4,343 clinically ascertained DCM 192 

cases) and biobank datasets (5,022 DCM cases defined by billing-codes). This 193 

GWAS included Using a genome-wide significance threshold (P< 5x10-8), 38 distinct 194 

loci were reported. To maximize discovery, the GWAS data were subsequently 195 

integrated into a multi-trait GWAS (MTAG)2 with GWAS data for MRI-derived left 196 

ventricular (LV) traits (global circumferential strain, indexed left ventricle end-systolic 197 

volume (LVESVi), and ejection fraction ; N=36,083; ref.3). From this MTAG, 65 198 

significant loci were reported (P< 5x10-8). Of note, further details on the MTAG 199 

methodology are described below.  200 

 201 

Data for HCM were retrieved from a recent GWAS meta-analysis by Tadros et al. 202 

(2025)3. This study included a total of 5,900 clinically-ascertained HCM cases and 203 

68,359 controls of European genetic ancestry. At genome-wide significance (P< 204 

5x10-8), 34 distinct loci were reported. Similar to the DCM study, an MTAG approach 205 

was used to boost discovery: HCM GWAS was integrated with GWAS data for three 206 

LV traits (global circumferential strain, indexed left ventricle end-systolic volume 207 

(LVESVi), and LV concentricity). From this MTAG, 68 significant loci were reported 208 

(P< 5x10-8).  209 

In this study, we processed and utilized both the single-trait GWAS and MTAG 210 

summary statistics, for both DCM and HCM.  211 

Processing of GWAS summary statistics  212 

We processed the DCM and HCM GWAS summary statistics, aligning all datasets to 213 

genome build GRCh37. We then aimed to remove variants driven by 214 

disproportionately small sample sizes. To this end, for DCM GWAS, we restricted to 215 

variants with at least 70% of the total case number contributing to the meta-analysis. 216 

In the HCM GWAS summary statistics only the total sample size was available, and 217 

https://paperpile.com/c/dHxZks/DnAKG
https://paperpile.com/c/dHxZks/3NsA3
https://paperpile.com/c/dHxZks/Jojea
https://paperpile.com/c/dHxZks/Jojea


therefore variants were restricted to those with at least 96% of the total sample size 218 

contributing to the meta-analysis. Of note, the broad MYBPC3 locus in HCM GWAS 219 

is known to tag rare founder variants4; we therefore removed the extended region 220 

surrounding this locus (chr11: 29,978,453–80,288,956) from the summary statistics5. 221 

These filters left 6,635,031 variants for DCM GWAS, and 6,035,750 variants for 222 

HCM GWAS (Supplementary table 1).  223 

Processing of MTAG summary statistics 224 

DCM and HCM MTAG summary statistics were also reprocessed to ensure 225 

consistent loci annotation and gene prioritization across studies and approaches. 226 

The datasets were aligned to genome build GRCh37. For DCM MTAG, to remove 227 

variants with disproportionately small contributing sample size, we removed variants 228 

with effective sample size <70% of the maximum effective sample size. For HCM 229 

MTAG, we restricted to variants that passed all filters in the filtered HCM GWAS 230 

summary statistics above. Finally, we removed the extended MYBPC3 region from 231 

both datasets. These filters left 5,513,180 variants for DCM MTAG, and 5,117,470 232 

variants for HCM MTAG.    233 

Genetic correlation with LV traits 234 

To assess shared genetic architecture across the cardiomyopathy spectrum and 235 

quantitative cardiac traits, we estimated genetic correlations using bivariate LD score 236 

regression 6(Methods). Specifically, we computed genetic correlations between CC-237 

GWAS summary statistics and GWAS results for ten left ventricular (LV) traits 238 

relevant to cardiomyopathy, measured in 36,083 participants from the UK Biobank 239 

(UKB). 7 The strongest correlations were observed with LVESVi (rg,global = 0.624), 240 

global circumferential strain (Ecc) (rg,global = 0.705), and LV concentricity (LVconc) 241 

(rg,global = -0.575), indicating substantial genetic overlap. (Methods; Supplementary 242 

Figure 2; Supplementary Table 7) Interestingly, these correlations were notably 243 

stronger than those observed for previously published single trait case–control 244 

GWAS of DCM and HCM: the correlation between DCM GWAS and LVESVi was 245 

rg,global= 0.7, DCM GWAS and Ecc was rg,global= 0.747 and between HCM GWAS and 246 

LVconc was rg,global= 0.61(Supplementary Table 3). These findings suggest that CC-247 

GWAS captures a better genetic spectrum of cardiac traits as compared to the 248 

traditional approach. 249 

https://paperpile.com/c/dHxZks/mzTHZ
https://paperpile.com/c/dHxZks/pRA5Z
https://paperpile.com/c/dHxZks/MIiN2
https://paperpile.com/c/dHxZks/UqYhz


 250 

Novel regions identified by LAVA 251 

Three novel genomic regions exhibited significant regional genetic correlation 252 

between DCM and HCM. Neither of these regions were captured by DCM or HCM 253 

GWAS. These regions were located on: 254 

● Region 924 – chromosome 5 (chr5:178,595,253–179,794,710; GRCh37): 255 

Although univariately subthreshold for both DCM (P = 2.43 × 10⁻⁸) and HCM 256 

(P = 6.05 × 10⁻¹⁴), this region showed a significant negative local genetic 257 

correlation (ρ = –0.52, P = 2.07 × 10⁻⁴). The lead variant in DCM GWAS was 258 

rs4701067 (P = 0.03, β = 0.04), and in HCM GWAS, rs7733548 (P = 0.001, β 259 

= –0.09), both mapping to ADAMTS2, a gene associated with 260 

dermatosparaxis-type Ehlers–Danlos syndrome (OMIM). 261 

Region 1277 – Chromosome 8 (chr8:32,454,963–33,982,537; GRCh37): This 262 

region showed moderate univariate association in DCM (P = 5.90 × 10⁻⁶) and 263 

strong association in HCM (P = 3.42 × 10⁻¹¹), with a robust inverse local 264 

correlation (ρ = –0.61, P = 4.54 × 10⁻⁴). The lead DCM variant was 265 

rs62510527 (P = 0.0001, β = –0.067; near POFUT3), and the top HCM 266 

variant was rs17665441 (P = 0.7, β = –0.005; near NRG1), a gene previously 267 

associated with schizophrenia susceptibility (OMIM).) 268 

● Region 1948 – chromosome 13 (chr13:109,813,577–110,995,432 (GRCh37)): 269 

This region was also identified in both CC-MTAG and HCM-MTAG analyses 270 

and prioritized to the COL4A1 locus, this region demonstrated significant 271 

heritability in both traits (DCM P = 1.63 × 10⁻¹¹; HCM P = 1.97 × 10⁻⁹), with a 272 

notable opposing effect direction (ρ = –0.64, P = 1.10 × 10⁻⁵). 273 

Together, these findings underscore the power of local genetic correlation analyses 274 

to uncover biologically relevant loci beyond conventional GWAS significance 275 

thresholds, particularly those with antagonistic effects across disease subtypes. 276 

 277 



Genomic structural equation modeling 278 

After having computed rg,global between DCM and HCM, we then aimed to re-compute 279 

rg,global accounting for the effect of other heritable traits. First, we aimed to account for 280 

blood pressure and body habitus traits, given that these extracardiac traits have 281 

been mentioned in literature as being risk factors for both DCM and HCM with 282 

concordant directionality (high blood pressure and higher body weight have been 283 

described as risk factors for DCM and HCM). To account for these heritable traits in 284 

our analysis, we used genomic Structural Equation Modeling, implemented in the 285 

GenomicSEM R-package. We first used the ldsc() function to compute pairwise 286 

rg,global values for all pairs of traits from DCM, HCM, systolic blood pressure8 (SBP), 287 

diastolic blood pressure8 (DBP), body-weight8 and body-mass-index9 (BMI). We then 288 

used the usermodel() function to fit a Structural Equation model using the following 289 

approach: 290 

DCM ~ a1*SBP + a2*DBP + a3*BMI + a4*weight 291 

HCM ~ b1*SBP + b2*DBP + b3*BMI + b4*weight 292 

DCM ~~ r*HCM 293 

SBP ~~ SBP 294 

SBP ~~ DBP 295 

SBP ~~ BMI 296 

SBP ~~ weight 297 

DBP ~~ BMI 298 

DBP ~~ weight 299 

DBP ~~ DBP 300 

BMI ~~ BMI 301 

BMI ~~ weight 302 

https://paperpile.com/c/dHxZks/J8kNQ
https://paperpile.com/c/dHxZks/J8kNQ
https://paperpile.com/c/dHxZks/J8kNQ
https://paperpile.com/c/dHxZks/pogVU


weight ~~ weight 303 

DCM ~~ DCM 304 

HCM ~~ HCM 305 

 306 

Essentially, this model regresses the four risk factors on DCM, and separately also 307 

on HCM, while allowing for covariance between each of the risk factors and between 308 

DCM and HCM. From the resulting model fit, we extracted the scaled covariance 309 

between DCM and HCM representing the rg,global between DCM and HCM conditional 310 

on the heritable components of SBP, DBP, weight and BMI.  311 

 312 

In a similar fashion, we also computed the rg,global between DCM and HCM, 313 

conditional on cardiac endophenotypes from MRI - namely those most strongly 314 

associated with DCM and HCM including LVESVi, LV concentricity (LVconc) and 315 

global circumferential strain (Ecc)3. The input model was specified as follows: 316 

DCM ~ a1*Ecc + a2*LVESVi + a3*LVconc 317 

HCM ~ b1*Ecc + b2*LVESVi + b3*LVconc 318 

DCM ~~ r*HCM 319 

Ecc ~~ Ecc 320 

Ecc ~~ LVESVi 321 

Ecc ~~ LVconc 322 

LVESVi ~~ LVconc 323 

LVESVi ~~ LVESVi 324 

LVconc ~~ LVconc 325 

DCM ~~ DCM 326 

HCM ~~ HCM 327 

https://paperpile.com/c/dHxZks/Jojea


 328 

Case-case GWAS 329 

To identify genetic variants that differentiate between DCM and HCM, we applied 330 

CC-GWAS, a summary-statistics-based method that estimates genetic divergence 331 

between cases of two disorders using case–control GWAS results. To construct CC-332 

GWAS from our available GWAS summary statistics, we used the CCGWAS R-333 

package (v0.1.0) 10 This method calculates allele frequency differences between 334 

DCM and HCM cases (A1 vs. B1) by leveraging the observed effects in DCM vs. 335 

controls (A1A0) and HCM vs. controls (B1B0). Central to this approach is the genetic 336 

distance measure FST,causal, defined as the average normalized squared difference in 337 

allele frequencies at causal SNPs across case-controls GWAS, which reflects the 338 

degree of genetic separation between the two phenotypes.  339 

CC-GWAS estimates the case–case effect size (𝛽"!"#") for each SNP using a 340 

weighted linear combination of the case–control GWAS effect sizes: 341 

𝛽"!"#" = 𝜔!"!$ ∙ 𝛽'!"!$ + 𝜔#"#$ ∙ 𝛽'#"#$ 342 

where 𝜔!"!$ and 𝜔#"#$ are trait-specific weights. Two weighting schemes are 343 

implemented: 344 

 (1) CC-GWASOLS weights, optimized to minimize the expected squared error 345 

between the estimated and true A1B1 effect sizes, accounting for SNP heritabilities, 346 

disease prevalences, genetic correlation, sample sizes, and sample overlap; and 347 

 (2) CC-GWASexact weights, a conservative, sample-size-independent formulation 348 

based only on population prevalences: 349 

𝛽# 𝐴1𝐵1
𝑒𝑥𝑎𝑐𝑡 = (1 − 𝐾𝐴 )𝛽$𝐴1𝐴0 − (1 − 𝐾𝐵 )𝛽$𝐴1𝐴0𝛽$𝐵1𝐵0 350 

While the OLS weights provide higher power, they may be susceptible to type I error 351 

at so-called stress test SNPs—variants with significant and similarly directed effects 352 

in both case–control GWASs (nonzero A1A0 and B1B0) but no true case–case 353 

difference (A1B1 = 0). These variants can appear falsely significant due to random 354 

sampling variation. To address this, CC-GWAS applies a dual-threshold strategy: a 355 

https://paperpile.com/c/dHxZks/2EQqE


SNP is declared significant only if it passes genome-wide significance (P < 5 × 10⁻⁸) 356 

with OLS weights and a secondary threshold (P < 10⁻⁴) with exact weights, thereby 357 

maximizing power while controlling type I error. This approach enhances sensitivity 358 

to opposite-direction genetic effects, while suppressing signals that are shared 359 

between diseases. 360 

For this analysis, we used the processed summary statistics from DCM and HCM 361 

GWAS, along with the following input parameters: i) the assumed population 362 

prevalences (0.4% for DCM, 0.2% for HCM); ii) the case/control numbers in DCM 363 

GWAS and HCM GWAS, with some attenuation for potential missingness (see 364 

below); iii) the heritabilities from LDSC (14.2% for DCM, 18% for HCM); iv) the rg,global 365 

between DCM and HCM, and its intercept, from LDSC (rg,globl=-0.56 and 366 

errorcovariance=0.012)6; and v) the number of effectively independent causal variants 367 

for DCM (1200; see below)10. Naturally, CC-GWAS was restricted to genetic variants 368 

found in the processed DCM and HCM GWAS summary statistics; after additional 369 

automatic filtering by the CCGWAS package, 4987309 high-quality variants 370 

remained in the CC-GWAS analysis and resulting summary statistics. Genome-wide 371 

significance was defined as P<5×10−8, and all hypothesis tests were two-sided.  372 

 373 

To account for some degree of per-variant sample missingness, we adjusted the 374 

input case/control numbers - used as input to CCGWAS. Notably, because the meta-375 

analytical case/control numbers in the summary statistics were based on the 376 

maximum sample size of contributing cohorts, the provided numbers reflect 377 

maximum values and are therefore broadly overestimated. This is relevant because 378 

CCGWAS computes expected effect sizes based on the case/control numbers. 379 

Indeed, CCGWAS raised warnings indicating that the expected effect sizes were not 380 

well-calibrated. Consistent with some overestimation of case/control numbers, we 381 

found that CCGWAS gave well-calibrated effect sizes when we assumed some 382 

attenuation of case/control numbers across all variants. For DCM GWAS, we 383 

attenuated case/control numbers to 90% of the maximum numbers, while for HCM 384 

GWAS we attenuated the numbers by 85%, when inputted to the CCGWAS 385 

software.  386 

 387 

https://paperpile.com/c/dHxZks/MIiN2
https://paperpile.com/c/dHxZks/2EQqE


To estimate the number of independent causal variants, we used stratified fourth 388 

moments regression (https://github.com/lukejoconnor/SLD4M)11. This method 389 

computes from a GWAS the polygenicity, expressed as the effective number of 390 

independently associated causal variants (where the ‘effective’ clause accounts not 391 

only for the potential number of causal variants but also the relative effect size of 392 

causal variants). Assuming DCM to be more polygenic than HCM, we put forward 393 

the polygenicity statistic estimated from DCM GWAS (1223) to the CCGWAS 394 

software. 395 

  396 

https://github.com/lukejoconnor/SLD4M
https://paperpile.com/c/dHxZks/KkD3j


Locus definitions, variant annotation and gene prioritization 397 

Locus definition, variant annotation, and gene prioritization were performed using a 398 

unified pipeline across all summary statistics, including DCM GWAS, DCM MTAG, 399 

HCM GWAS, HCM MTAG, CC-GWAS, and CC-MTAG. (Code availability)  400 

Processing of summary statistics using FUMA 401 

Each set of summary statistics was first processed using Functional Mapping and Annotation 402 

(FUMA)12 v1.6.1 (https://fuma.ctglab.nl/). Among other analyses, FUMA applies Multi-marker 403 

Analysis of GenoMic Annotation (MAGMA; v.1.08) to perform an initial gene-based 404 

association analysis, by aggregating variant-level signals into gene-level statistics while 405 

accounting for linkage disequilibrium13. The MAGMA gene-level scores were also used by 406 

FUMA to test for tissue-specific enrichment of RNA expression profiles, based on 407 

transcriptomic profiles across dozens of tissues from the GTEx v8 dataset 408 

(GTEx/v8/gtex_v8_ts_general_avg_log2TPM)14. The MAGMA gene scores and tissue 409 

enrichment statistics were used as input for our gene prioritization pipeline, as described in 410 

detail below.  411 

Fine-mapping and credible set formatting 412 

Our gene nomination pipeline required finding credible sets that likely include the causal 413 

variants from the respective GWAS. To identify such credible sets, we performed fine-414 

mapping using the SuSiER algorithm (v0.12.35)15,16. For each GWAS dataset, the SuSiER 415 

algorithm was run within separate LD blocks derived from UK Biobank European-ancestry 416 

reference data.17 The minimum squared correlation was set to 0.5 (the default), unless the 417 

algorithm failed to converge, in which case we relaxed the threshold to 0.25. If SuSiE 418 

continued to fail in a region harboring genome-wide significant variants, we flagged the 419 

respective LD region and generated an artificial credible set using only the most significant 420 

variant in the region (Supplementary Tables 24-36) 421 

Gene prioritization using FLAMES 422 

To perform gene prioritization, we used the recently-described ‘fine-mapped locus 423 

assessment model of effector genes’ (FLAMES) approach (v1.1.1)18. FLAMES combines two 424 

main approaches to gene prioritization in a weighted framework to compute causal gene 425 

predictions that outperform prior methods. In particular, FLAMES first uses pre-fit machine 426 

learning models (based on XG-Boost) to link fine-mapped variants to likely effector genes 427 

based on various parameters including variant-to-gene distance, epigenomic context, and 428 

quantitative trait loci. Second, FLAMES uses the Polygenic Priority Score (PoPS19) method 429 
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to learn gene features associated with the trait based on functional networks; features 430 

consist of cell-type-specific gene expression, biological pathways and protein–protein 431 

interactions (PPIs).  432 

We then applied the FLAMES framework to each of our GWAS datasets. To this end, for a 433 

given GWAS dataset, we first ran PoPS (v0.2),19 using the MAGMA Z-scores as input and 434 

using the full feature matrix provided by the PoPS developers. We then annotated each 435 

credible set using the annotate module from FLAMES, which combines variant-to-gene 436 

mappings, MAGMA Z-scores, PoPS scores, and GTEx tissue enrichment data. 437 

 438 

FLAMES then returned a ranked list of genes per locus in FLAMES_scores.preds, including 439 

raw and scaled FLAMES scores, XG-Boost scores, PoPS scores, and estimated precision. 440 

 441 

Locus definition and consolidation across studies 442 

 443 
For each credible set, we selected the top variant based on the highest posterior inclusion 444 

probability (PIP), or, in cases where fine-mapping failed, the variant with the lowest P-value. 445 

All index variants were then sorted by chromosome and genomic position. Index variants 446 

located within 1Mb of one another were merged into one locus, to define non-overlapping 447 

genomic loci. Each locus was assigned a unique identifier based on its genomic position, 448 

with consistent numbering maintained across all analyses (Supplementary Table 2). 449 

 450 

Gene prioritization across studies 451 

Despite applying a harmonized pipeline for gene prioritization across the various GWAS 452 

datasets, it was possible for the FLAMES algorithm to nominate different causal genes within 453 

the same locus in different GWAS datasets. To consolidate gene-level evidence within and 454 

across datasets, we therefore applied a scoring framework to prioritize effector genes at 455 

each locus. For each study, genes identified as top-ranked by either PoPS or FLAMES were 456 

assigned 0.5 points per method per study. Scores were then aggregated across all studies. 457 

For example, locus 12 (chr1:212,107,306–212,277,107) appeared in both DCM MTAG and 458 

CC MTAG. In DCM MTAG, DTL was prioritized by both PoPS and FLAMES (score = 1), 459 

while in CC MTAG, BATF3 was prioritized by PoPS and DTL again by FLAMES. This 460 

resulted in cumulative rank scores of DTL = 1.5 and BATF3 = 0.5. Accordingly, DTL was 461 

selected as the reported gene for this locus. 462 

https://paperpile.com/c/dHxZks/2mNto


For each locus, the gene(s) with the highest total score were designated as lead candidates. 463 

In cases where multiple genes had equal scores, or where the difference between top-464 

scoring genes was <1.0, all were retained as joint candidates. This strategy enabled the 465 

identification of both study-specific and consensus lead genes across DCM, HCM, and 466 

case–case analyses. While we acknowledge that the approach is to an extent arbitrary, we 467 

applied this approach to transparently indicate instances where gene prioritization produced 468 

potentially inconsistent results. Reassuringly, we found that a single effector gene was 469 

nominated in the vast majority of loci using this approach (Extended Data Figure 3). The 470 

final locus-level summary included genomic coordinates, contributing studies, top-ranked 471 

genes, prioritization scores, and selected lead gene(s).(Supplementary Table 2). 472 

Functional enrichment analysis 473 

We used the g:Profiler platform20 (v. February 2025) to test for enrichment of gene 474 

sets from several predefined sources for genes curated from CC-GWAS and CC-475 

MTAG. The g:Profiler algorithm uses one-sided Fisher’s exact tests to test for 476 

enrichment of a prespecified list of genes across many gene sets, and subsequently 477 

adjusts one-sided P values for multiple testing while taking into account the 478 

correlation between gene sets (g:SCS method76). We used default settings with a 479 

multiple testing correction based on the Benjamini–Hochberg FDR and retained 480 

terms with adjusted P-values < 0.05. Gene set categories included Gene Ontology 481 

(GO: Biological Process, Molecular Function, and Cellular Component), KEGG, 482 

Reactome, WikiPathways, CORUM, Human Protein Atlas, Human Phenotype 483 

Ontology, transcription factor targets, and miRNA–target interactions. 484 

First we tested all genes from CC-GWAS, then genes unique for CC-GWAS or CC-485 

MTAG for loci that were not significant in other DCM and HCM GWAS and MTAG.  486 

To quantify the strength of association for each term, we computed the odds ratio 487 

(OR) using a custom function based on contingency table parameters derived from 488 

term size, query size, and domain background size. Continuity correction was 489 

applied to avoid division by zero where needed. 490 

To reduce redundancy in GO terms and annotate broader biological themes, we 491 

used REVIGO21 to group enriched GO terms by semantic similarity. We parsed 492 

REVIGO output and linked each original term to a representative parent term, which 493 

was then used to group and annotate terms across GO:BP, GO:CC, and GO:MF 494 

domains. 495 
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A custom R workflow was developed to integrate enrichment results with REVIGO 496 

clusters, calculate ORs, and visualize results. We generated a volcano plot with odds 497 

ratio on the x-axis and –log₁₀(adjusted P-value) on the y-axis. Select representative 498 

terms were labeled using the REVIGO group name.  499 

This approach allowed us to highlight key functional pathways enriched among 500 

prioritized genes, including protein binding (GO:MF), sarcomeric and cytoskeletal 501 

structure (GO:CC), and cell junction organization and signal transduction (GO:BP). 502 

Since our prioritized genes may have been preselected towards genes with high 503 

cardiac expression (that is, through gene features learnt by PoPS), we performed a 504 

sensitivity analysis using nearest genes. 505 

To generate a nearest-gene annotation for loci identified in the CC GWAS and CC 506 

MTAG analyses, we used the get_nearest_gene() function from the gwasRtools 507 

package (v0.1.0; available via GitHub: lcpilling/gwasRtools). For each lead SNP, the 508 

nearest protein-coding gene within ±500 kb (500,00 base pairs) was identified using 509 

coordinates aligned to human genome build GRCh37. This approach was applied 510 

separately to loci from CC GWAS and CC MTAG, producing two corresponding gene 511 

lists. These lists were used for pathway enrichment analysis alongside genes 512 

prioritized using the FLAMES/PoPS framework. 513 

Pathway enrichment of nearest-gene sets (Extended Data Figure 6b,d) revealed 514 

broadly consistent biological pathways compared to functionally informed 515 

prioritization (Extended Data Figure 6a,c), including strong enrichment for muscle 516 

structure development, actin binding, cytoskeletal organization, and myofibril 517 

assembly. Notably, terms such as "actin binding", "cytoskeleton", and "myofibril" 518 

remained significant under both strategies, suggesting that core cardiomyocyte 519 

structural processes are recurrently implicated across methods. 520 

However, enrichment significance was generally reduced when using nearest-gene 521 

annotation, and several key terms observed with FLAMES/PoPS—such as 522 

sarcomere organization or transcriptional regulation—were absent. This may reflect 523 

the limited precision of proximity-based gene assignment, especially in regions with 524 

multiple genes or regulatory elements acting at a distance. 525 



Taken together, these results support the robustness of the key functional pathways 526 

implicated in our study while highlighting the additional specificity provided by 527 

functionally informed gene prioritization.  528 

Cell type enrichment methods 529 

Using the snRNA-seq data obtained from Reichart et al., 2022 (ref.22), we performed 530 

cell type enrichment analyses. The dataset consisted of samples from several 531 

anatomical locations (including several locations across the left and right ventricle) 532 

from 61 cardiomyopathy patients - of which 52 with DCM - and 18 non-failing 533 

controls. We focused on the 18 non-failing donors, and generated cell type-specific 534 

and cell state-specific annotations for enrichment testing using stratified linkage 535 

disequilibrium score regression within the sc-linker framework23.  536 

 537 

First, we defined cell types from cell type and cell state annotations provided with the 538 

publicly-available dataset. We removed variants flagged as ‘native’ or ‘low-QC’. 539 

Nuclei with cell state ‘PC1’, ‘PC2’ or ‘PC3’ were then collapsed into ‘Pericytes’. 540 

Nuclei with cell state ‘SMC1.1’, ‘SMC1.2’, or ‘SMC2’ were collapsed into ‘VSMC’. 541 

Nuclei with cell state ‘EC7’ were assigned ‘Endocardial’. Nuclei with cell state ‘Meso’ 542 

were assigned ‘Epicardial’. Nuclei 543 

with cell state ‘EC8’ were assigned ‘Lymphatic endothelial’. Nuclei with cell state 544 

‘EC1.0’, ‘EC2.0’, ‘EC5.0’, or ‘EC6.0’ were assigned ‘Cardiac endothelial’. For 545 

remaining nuclei (those with cell states not mentioned above) the cell type 546 

annotations provided with the original dataset were retained. This approach left 11 547 

distinct cardiac cell types. 548 

 549 

To test for enrichment of cell type specific gene programs in our GWAS/MTAG 550 

datasets, we created cell-type specific gene programs. To this end, we performed 551 

‘pseudo-bulk’ aggregation by summing gene counts across nuclei for each 552 

donor/tissue region combination, by cell type. We only retained a given donor/tissue 553 

region combination if they had at least 50 nuclei of that cell type. Lowly expressed 554 

genes identified with the filterByExpr() function in edgeR were removed. We 555 

normalized the pseudo-bulk expression with DESeq2 and fit the differential 556 

expression model ~0+cell_type+donor_tissue using limma-voom. Notably, we 557 

included a covariate for the donor/tissue region combination because each 558 
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donor/tissue region will be represented across most cell types. We then extracted 559 

contrasts comparing gene expression in each focal cell type to all other cell types. 560 

Cell type-specific gene programs were subsequently computed by ranking and 561 

scoring genes based on their enrichment statistics, as described in previous work23. 562 

Notably, however, we adapted the algorithm to set all genes with negative 563 

enrichment scores (ie, those depleted within the focal cell type as compared to the 564 

other cell types) to 0; this was applied to avoid cell type enrichments driven by genes 565 

that were in fact enriched in other cell types. 566 

 567 

Using the cell type-specific gene expression profiles, we then performed heritability 568 

enrichment analyses using the sc-linker pipeline (https://github.com/kkdey/GSSG)23. 569 

To this end, we used the epigenomic variant-to-gene mapping data for heart and 570 

fetal heart, which were provided with the software, as input. We used the CC-GWAS 571 

dataset as GWAS input. We then used the provided scripts to apply stratified LD-572 

score regression to compute heritability enrichment statistics for the cell type-specific 573 

gene programs24. As recommended24, we report test statistics and corresponding 574 

one-sided P-values from the tau ‘coefficient’ - which is conditional on all other 575 

annotations included in the model including the ‘baseline LD’ annotations. To 576 

account for the 11 cell types tested, we applied a Bonferroni significance cutoff by 577 

setting significance at 0.05/11=0.0.0045.  578 

 579 

Partitioned heritability of CC loci using LDSC 580 

To evaluate the contribution of loci identified through case–case GWAS (CC GWAS 581 

and CC MTAG) to overall SNP-based heritability of DCM and HCM, we performed 582 

partitioned heritability analysis using LDSC25. First, we selected genome-wide 583 

significant variants (P < 5 × 10⁻⁸) from both CC GWAS and CC MTAG, then defined 584 

500 kb flanking windows upstream and downstream of each lead SNP. These 585 

regions were merged using bedtools merge26 to create a non-redundant set of 586 

genomic intervals (LD regions) comprising all CC-significant loci. 587 

These merged regions were used to generate binary annotation files according to 588 

LDSC documentation25. To estimate partial heritability, we applied LDSC --h2 with 589 

both baselineLD v2.2 annotations provided by LDSC developers and the newly 590 
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defined CC locus annotations. Heritability estimates were calculated separately for 591 

DCM and HCM GWAS summary statistics, and enrichment was quantified as the 592 

proportion of heritability explained divided by the proportion of SNPs annotated in 593 

each category. 594 

CC-significant loci comprised only 2.7% of genome-wide SNPs but explained a large 595 

fraction of heritability for both cardiomyopathies. In DCM, CC loci captured 34.6% of 596 

total SNP-based heritability (Enrichment = 12.7-fold; P=6.88×10⁻¹⁸). In HCM, the 597 

same loci explained 53.4% of SNP-based heritability (Enrichment = 19.6-fold; 598 

P=9.26×10⁻¹⁶). (Supplementary Table 9) 599 

Genetic correlation between the DCM–HCM shared meta-analysis and 600 
cardiometabolic traits 601 

We applied linkage disequilibrium score regression (LDSC)6 to assess genetic 602 

correlations (rg)27 between the shared-effects meta-analysis and a set of 65 603 

quantitative traits.8,9 Analyses were performed using the European ancestry LD 604 

reference panel and the default ldsc.py --rg settings using tutorials from developers. 605 

Among all tested traits, four phenotypes remained significantly correlated with the 606 

DCM–HCM meta-analysis after Bonferroni correction (P < 0.05/65): diastolic and 607 

systolic blood pressure (DBP: rg=0.415, P = 5.00 × 10⁻⁵, SBP: rg = 0.375, P = 1.50 × 608 

10⁻⁴), body mass index (BMI) (rg = 0.407, P = 1.00 × 10⁻⁴), body weight (rg =  0.392, 609 

P = 1.50 × 10⁻⁴) and C  reactive protein (CRP) (rg = 0.268, P = 6.00 × 610 

10⁻⁴).(Supplementary Table 19) Several other traits were nominally significant, 611 

including C-reactive protein, urate, creatinine, and multiple red blood cell indices 612 

(e.g., nucleated RBC percentage, reticulocyte counts), suggesting shared polygenic 613 

mechanisms related to inflammation, renal function, and hematopoiesis. 614 

Some traits showed negative correlations (e.g., sex hormone-binding globulin 615 

(SHBG), HDL cholesterol, basophil count), particularly in the shared model, though 616 

these did not reach Bonferroni significance. 617 

If compared to DCM and HCM, shared meta-analysis showed stronger and more 618 

consistent genetic correlations with cardiometabolic risk traits. DCM and HCM 619 

GWAS, when assessed separately, showed fewer Bonferroni-significant correlations. 620 
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While many traits trended in the same direction, effect sizes were attenuated and P-621 

values were less robust, underscoring the increased power of the shared meta-622 

analysis to detect shared polygenic architecture. 623 

Despite the strong negative correlation, certain extracardiac risk factors - including 624 

hypertension and obesity - have been linked to both DCM and HCM1,3,28,29. Indeed, 625 

when accounting for the genetic components of blood pressure and body habitus 626 

(Methods)30, the inverse genetic correlation between DCM and HCM became 627 

nominally stronger (rg,global=-0.63, SE=0.07, P=9.4×10-16). In contrast, when 628 

conditioned on the LV endophenotypes related to contractility and chamber size, the 629 

genetic correlation was substantially weakened, but not abolished (rg,global=-0.26, 630 

SE=0.07, P=9.4×10-2). These findings indicate that the genetic pathways intrinsic to 631 

myocardial function/structure may be largely inverse between DCM and HCM, while 632 

certain extracardiac pathways may be concordant.       633 

 634 

Genetic correlations between cardiomyopathy GWAS and other 635 
cardiovascular diseases 636 

We performed pairwise genetic correlation analyses using LDSC to evaluate shared 637 

polygenic architecture between cardiomyopathy GWAS/MTAG results and other 638 

cardiovascular traits31, including coronary artery disease  (CAD)32, atrial fibrillation 639 

(AF)33, and subtypes of heart failure (HF)34. 640 

The shared-effects meta-analysis correlations 641 

The shared-effects meta-analysis of DCM and HCM demonstrated positive genetic 642 

correlation with all tested traits: HF types34, AF33, CAD32. The strongest correlations 643 

that also reached Bonferroni corrected statistical significance level was observed 644 

with non-ischemic heart failure (niHF)34 (rg = 0.69, P =  3.05 × 10⁻¹⁹), all-cause HF34 645 

(rg = 0.677, P =  7.87 × 10⁻³⁴). (Supplementary Figure 9, Supplementary Table 646 

19,20) 647 
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Case–case analyses (CC GWAS/MTAG) genetic correlations 648 

In contrast, the cardiomyopathy spectrum derived from CC GWAS and CC MTAG 649 

showed little or no genetic correlation with any of the tested cardiovascular traits (AF, 650 

CAD, HF)32,33 (Supplementary Figure 9, Supplementary Table 20) 651 

This lack of correlation suggests that the genetic signals captured by CC-based 652 

analyses represent distinct axes of trait differentiation, rather than shared 653 

susceptibility loci contributing broadly to cardiovascular disease. Notably, while CC 654 

MTAG and CC GWAS were highly correlated with each other (rg = 1.09, P < 0.01), 655 

they remained largely orthogonal to external cardiac disease traits. (Supplementary 656 

Figure 9) 657 

  658 
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Replication of CC-GWAS  659 

Source for replication datasets  660 

HCM cases were recruited from the Sarcomeric Human Cardiomyopathy Registry 661 

(SHaRe). The registry’s structure and initial findings have been detailed by Ho et al. 662 

(2018)35. HCM was diagnosed by each SHaRe site and is defined as unexplained 663 

left ventricular (LV) hypertrophy with a maximal LV wall thickness exceeding 15 mm, 664 

or over 13 mm in family members with HCM (or an equivalent LV wall thickness z 665 

score in pediatric patients). 666 

Whole genome sequencing samples were collected from DCM patients across 667 

multiple cohorts and studies (GO-DCM (N=565), Bratislava (N=15), RBH Biobank 668 

(N=596), SMARTER-DCM (N=29), TRED-HF2 (N=22), MATCH and MATCH2 669 

(N=179), the Heart Hive (N=109) and MitoDCM (N=10)) which have been described 670 

in detail elsewhere. Briefly, the GO-DCM study was a whole genome sequencing 671 

initiative that aimed to recruit 2000 patients with DCM, collecting blood samples, 672 

from 2020 to 2027 across England (London, Leeds, Oxford, Leicester, Liverpool, 673 

Southampton and Manchester) and Scotland (Glasgow) 674 

(clinicaltrials.gov/study/NCT03843255). Additional whole genome sequencing 675 

samples were obtained from Bratislava, approved by the Ethics Committee of 676 

Národný ústav srdcových a cievnych chorôb, a.s. The RBH Biobank is a biobank of 677 

patients recruited from heart, lung and critical care departments of the Royal 678 

Brompton & Harefield NHS Foundation Trust. Patients were invited to give biological 679 

samples including whole blood, serum and plasma (IRAS ID 264059.; 680 

www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-681 

summaries/royal-brompton-harefield-cardiovascular-research-centre-biobank.). The 682 

SMARTER study aimed to further the genetic understanding of cardiomyopathy and 683 

patients were invited to give samples for whole genome sequencing (IRAS ID 684 

313058; www.hra.nhs.uk/planning-and-improving-research/application-685 

summaries/research-summaries/the-smarter-cm-study). The TRED-HF2 study aimed 686 

to recruit recovered DCM patients between 2023 and 2026 to determine the 687 

therapies required to maintain heart failure remission 688 

(clinicaltrials.gov/study/NCT06091475) . The MATCH and MATCH2 studies recruited 689 

DCM patients to establish the relationship between heart failure and type 2 diabetes 690 

(IRAS ID 228222; www.hra.nhs.uk/planning-and-improving-research/application-691 
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summaries/research-summaries/myocardial-tissue-characteristics-and-glycaemic-692 

status. IRAS ID 273547; www.hra.nhs.uk/planning-and-improving-693 

research/application-summaries/research-summaries/myocardial-tissue-694 

characteristics-and-glycaemic-status-2). The Heart Hive is an online portal for 695 

individuals with cardiomyopathy to actively engage with researchers and research 696 

studies. Participants were invited to provide saliva samples for whole genome 697 

sequencing, and indicate studies they would like to engage in (IRAS ID 246395; 698 

www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-699 

summaries/the-heart-hive). The MitoDCM study was a double blind randomised 700 

controlled trial of mitoquinol mesylate on patients with DCM to assess the effect of 701 

reducing oxidative stress on the heart (clinicaltrials.gov/study/NCT05410873) 702 

  703 

Sequencing reads were aligned to the hg38 reference genome and variants were 704 

called using the Illumina DRAGEN pipeline (v3.10.12). Individual gVCF files were 705 

joint-called in Hail (v0.2.128). Genotypes were set to missing if genotype quality 706 

(GQ) < 20, depth (DP) < 10, or allele balance (AB) in heterozygotes < 0.2. 707 

Analyses were restricted to individuals of non-Finnish European (NFE) ancestry. 708 

Ancestry assignment was performed by projecting study samples onto the gnomAD 709 

v4.1 principal component (PC) space and clustering with NFE reference individuals. 710 

Variant- and sample-level quality control was carried out in Hail (v0.2.128). Sample 711 

QC was performed first, excluding individuals with call rate < 98.5%, mean depth < 712 

10, or mean genotype quality < 20. Genome-wide SNVs were also used to compute 713 

the heterozygous/homozygous variant ratio and the transition/transversion (Ti/Tv) 714 

ratio. Samples deviating by more than six median absolute deviations (MAD) from 715 

the median het/hom ratio, or with Ti/Tv ratios outside the expected range of 1.8–2.2, 716 

were excluded. Additional exclusions were applied for relatedness (pi-hat > 0.125) or 717 

sex discordance. After sample filtering, variant QC was restricted to biallelic 718 

autosomal SNPs. Variants were excluded if call rate < 0.98, Hardy–Weinberg 719 

equilibrium p < 1 × 10⁻¹⁰, or minor allele frequency < 0.01. Following QC, 720 

approximately 7.9 million SNPs across 1,158 HCM and 1,525 DCM cases were 721 

retained for analysis. 722 

 723 
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Replication CC-GWAS 724 

The case–case GWAS (HCM vs DCM) was performed in Hail using an additive 725 

genetic model with SNP dosage. HCM cases were treated as “cases” and DCM 726 

cases as “controls.” Covariates included sex and the top 20 principal components. 727 

Association statistics were reported as log-odds ratios per effect allele with 728 

corresponding standard errors and p-values. 729 

Validation of novel loci 730 

Novel lead SNPs were defined from the discovery case–case GWAS and MTAG 731 

analyses (see manuscript Methods). For each locus, the discovery beta and 732 

standard error were taken from the analysis in which the SNP was originally 733 

reported. When a lead SNP appeared in both the case–case GWAS and MTAG, the 734 

MTAG estimate was used. The corresponding SNPs were extracted from our 735 

individual-level case–case GWAS (with positions lifted over from GRCh37 to 736 

GRCh38). Alleles were harmonized so that effect estimates correspond to the same 737 

effect allele across datasets. 738 

Concordance between discovery and validation was assessed using several 739 

complementary approaches: 740 

1. Direction concordance 741 

○ The proportion of SNPs with the same direction of effect was tested 742 

against the null expectation of 50% using a binomial test. 743 

2. One-sided look-ups 744 

○ For each lead SNP, the one-sided p-value was evaluated in the 745 

validation dataset in the discovery-predicted direction of effect, testing 746 

whether the SNP showed enrichment of association beyond chance. 747 

3. Effect-size concordance 748 

○ Discovery and validation effect estimates were compared directly using 749 

correlation and linear regression (validation ~ discovery). 750 

○ Both raw betas (log-odds scale) and standardized Z-scores (β/SE) 751 

were considered to account for differences in effect size scaling. 752 

 753 

Seventeen novel loci with 18 corresponding lead SNPs were identified in the 754 

discovery analysis (locus 99, mapped to NFATC3, was tagged by two distinct variants: 755 



rs8059305 in CC-GWAS and rs12599178 in CC-MTAG),  Of these, 17 lead SNPs were 756 

present in the validation cohort, corresponding to 16 novel loci. For the 17 lead 757 

SNPs, we first assessed concordance in the direction of effect between discovery 758 

and validation. Sixteen of the 17 SNPs (94.1%) shared the same direction of effect, 759 

significantly greater than the 50% expected under the null (binomial test, p = 760 

0.000137). 761 

We next performed one-sided look-ups for the 17 lead SNPs to test whether the 762 

validation GWAS showed enrichment of association in the discovery-predicted 763 

direction. Under the null hypothesis of 5% replication by chance, fewer than one 764 

SNP would be expected to reach nominal significance. In contrast, 11 of the 17 765 

SNPs (64.7%) did so in the validation dataset, representing a highly significant 766 

enrichment (binomial test, p = 4.6 × 10⁻¹¹). 767 

To further evaluate concordance, we compared effect sizes between discovery and 768 

validation. Effect directions were highly correlated (r = 0.83, p = 3.3e-5), although 769 

effect estimates were generally larger in the validation dataset due to differences in 770 

scale (Supplementary Figure 7 and Supplementary Figure 8). Forest plots of 771 

individual loci illustrate the consistency in direction of effect across discovery and 772 

validation. 773 

Validation of CASQ2 variant 774 

The enrichment of the CASQ2 lead SNP was assessed separately in individuals in 775 

the HCM and DCM cohorts that pass QC (described above) relative to non-Finnish 776 

European (NFE) population controls from gnomAD (v4.1). Enrichment was evaluated 777 

using Fisher’s exact tests (one sided p-value) under three genetic models: (i) an 778 

additive model, testing enrichment of the effect allele in cases versus controls; (ii) a 779 

dominant model, testing enrichment of effect-allele carriers (heterozygous + 780 

homozygous) versus non-carriers; and (iii) a recessive model, testing enrichment of 781 

homozygous effect-allele carriers versus all other genotypes. 782 

The discovery GWAS identified a novel locus associated with increased risk of both 783 

HCM and DCM, with the lead variant corresponding to a missense substitution in 784 

CASQ2 (p.Thr66Ala). We validated this signal by comparing allele and genotype 785 

counts in HCM and DCM cases with population reference data from non-Finnish 786 

European individuals in gnomAD (v4.1). 787 



Across 1,158 HCM and 1,525 DCM cases, we observed enrichment of the effect 788 

allele relative to gnomAD controls under multiple inheritance models. In an additive 789 

model, the effect allele was significantly enriched in both HCM (OR = 1.14, one-sided 790 

p = 0.002) and DCM (OR = 1.07, one-sided p = 0.037). Interestingly, however, the 791 

strength of association differed under dominant and recessive models. In a dominant 792 

model, carriers of the effect allele (heterozygotes and homozygotes) were 793 

significantly enriched in HCM cases compared with gnomAD (OR = 1.20, one-sided 794 

p = 0.001), whereas DCM cases were not significantly enriched. By contrast, under a 795 

recessive model, homozygous carriers were significantly enriched in DCM relative to 796 

gnomAD (OR = 1.19, one-sided p = 0.027), but not in HCM. 797 

Together, these results suggest a dosage-dependent relationship: heterozygous 798 

carriers of the CASQ2 variant appear more likely to develop HCM, whereas 799 

homozygous carriers are enriched among DCM cases. 800 

 801 

Validation of case-case PGS 802 

Polygenic scores (PGS) were calculated for 1,158 HCM cases and 1,525 DCM 803 

cases that passed sample and variant quality control and were included in the 804 

validation GWAS, together with 7,296 population control individuals from the UK 805 

Biobank. Three PGS were derived for each individual: an HCM PGS, a DCM PGS, 806 

and a case–case (CC) PGS. Each score was generated by summing the number of 807 

effect alleles carried, weighted by per-allele effect sizes estimated using SBayesRC 808 

from the respective MTAG summary statistics. The first 20 genetic principal 809 

components (PCs) were calculated for each individual using gnomAD loadings. To 810 

minimise confounding by population structure, ancestry adjustment was performed in 811 

two stages using UK Biobank controls only. First, a linear model was fitted with the 812 

PGS as the outcome and the first 20 PCs as predictors to model ancestry-related 813 

differences in the PGS mean. The squared residuals from this model were then 814 

regressed on the same PCs to capture ancestry-related differences in variance. Both 815 

models were applied to all samples to predict the expected mean and variance of the 816 

PGS given ancestry, and each raw PGS was adjusted by subtracting the predicted 817 

mean and dividing by the predicted standard deviation. The resulting ancestry-818 



adjusted scores were then standardised using the mean and standard deviation of 819 

the control group, yielding z-scored values with mean 0 and variance 1 in controls. 820 

To validate whether each PGS could discriminate DCM cases from HCM cases, we 821 

fitted logistic regression models with DCM versus HCM status as the outcome. All 822 

models were adjusted for the first 20 ancestry PCs; sex was included as a covariate 823 

except in univariate models. From these models, we derived performance metrics 824 

including: (i) the log-odds ratio per standard deviation increase in PGS, (ii) the area 825 

under the receiver operating characteristic curve (AUC, univariate model), (iii) the 826 

area under the precision–recall curve (AUPRC, univariate model), and (iv) the 827 

improvement in Nagelkerke’s pseudo-R². 828 

 829 

We assessed whether case–case GWAS data could be leveraged to position 830 

individuals along the polygenic spectrum of cardiomyopathy using genome-wide 831 

genetic data. To this end, we constructed polygenic scores (PGS) from MTAG 832 

summary statistics for DCM (PGS-DCM), HCM (PGS-HCM), and the case–case 833 

analysis (PGS-CC), and tested their performance in an independent validation cohort 834 

comprising 1,158 HCM cases, 1,525 DCM cases, and 7,296 controls from the UK 835 

Biobank. PGS-CC provided the strongest discrimination between DCM and HCM, 836 

with an odds ratio of 3.12 per standard deviation (95% CI 2.83–3.44; p = 3.1 × 10-837 

132), and the highest predictive performance (AUC = 0.85, AUPRC = 0.84) (Figure 838 

5). 839 

 840 

  841 



Drugability 842 

To assess the therapeutic potential of prioritized genes, we performed a 843 

comprehensive druggability annotation by integrating tractability profiles from the 844 

Open Targets Platform (queried April 2025)36 with quantitative predictions from 845 

DrugnomeAI37 (Methods). Among the 146 prioritized genes across 113 loci identified 846 

across all summary statistics (DCM, HCM, CC GWAS/MTAG) and the shared-effects 847 

meta-analysis, 12 (8.2%) were classified as “Very High tractability” due to existing 848 

approved drugs, and an additional 6 (4.1%) had “High tractability” based on late-849 

stage clinical development. Another 49 genes (33.6%) showed moderate to low–850 

moderate tractability, supported by structural or mechanistic features, and represent 851 

promising targets for preclinical investigation. A large proportion of genes (69, or 852 

47.3%) had only minimal supportive evidence, and 10 genes (6.8%) lacked any 853 

tractability annotation—potentially reflecting unexplored biology rather than true 854 

undruggability. (Supplementary Table 13)  In addition to categorical annotations, 855 

we incorporated DrugnomeAI, a machine learning framework that predicts 856 

druggability using 324 gene-level features across 15 data sources, including protein–857 

protein interaction networks, expression profiles, and functional annotations. For 858 

each gene, we extracted Tier 1, Tclin, and combined Tier1+Tclin probability scores 859 

from DrugnomeAI. The Tclin score reflects the likelihood that a gene encodes a 860 

target of a drug with established clinical evidence—namely, compounds that have 861 

entered human clinical trials. The Tier 1 score estimates the probability that a gene 862 

encodes a target of an FDA-approved therapeutic agent. These probabilities are 863 

derived using a semi-supervised learning framework trained on the features of 864 

known drug targets, integrating 324 gene-level features across 15 biological and 865 

pharmacological data domains (e.g., protein interaction networks, gene expression, 866 

structural data, and functional annotations). Higher scores in either category suggest 867 

greater alignment with attributes of clinically validated targets and thus higher 868 

potential for successful pharmacologic intervention. Quantitative scores from 869 

DrugnomeAI highly correlated with therapeutic profiles from OpenTargets, with 870 

median scores ranging from 0.975 in the approved drug category to 0.027 among 871 

genes with no tractability annotation. This concordance across different scoring 872 

systems supports the robustness of our prioritization framework and identifies a set 873 

of gene targets with strong translational potential. 874 

https://paperpile.com/c/dHxZks/bZ8fA
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To identify the most translationally promising targets, we first focused on genes with 875 

either existing pharmacological agents or high druggability likelihood (Tclin+Tier1 876 

probability > 0.4, DrugnomeAI). In total, 35 prioritized genes met these criteria, of 877 

which 18 have been previously targeted in drug development efforts. Notably, drugs 878 

for 12 of these genes have reached the market.(Extended Data Figure 9a,b).  879 

While many of the known drugs targeting prioritized genes were developed for 880 

cancer (e.g., regorafenib for RAF138, afatinib for ERBB439), a subset also 881 

demonstrates direct relevance to cardiovascular and neuromuscular 882 

diseases.(Supplementary table 11, Extended Data Figure 7a,b) For instance, 883 

PDE3A is the target of milrinone, a phosphodiesterase inhibitor approved for acute 884 

heart failure, where it enhances myocardial contractility and reduces afterload.40 885 

ADM (Adrenomedullin) is another cardiovascular-relevant target; a non-neutralizing 886 

antibody (adrecizumab) has advanced to phase II trials in heart failure and sepsis,41 887 

and circulating levels of its prohormone (MR-proADM) are used as a biomarker of 888 

hemodynamic stress42,43. Additionally, some drugs, that has initially been used for 889 

non-cardiac reasons, might also hold promise to be applied in cardiovascular 890 

treatment. For example, PGR (Progesterone receptor) is primarily known for its role 891 

in reproductive physiology, however genetic variation near the PGR locus—892 

particularly in the intergenic region between PGR and TRPC6—has been associated 893 

with hypertensive disorders of pregnancy (HDPs), including preeclampsia. TRPC6 894 

encodes a calcium-permeable channel involved in renal function and blood pressure 895 

regulation. Nearby, ARHGAP42, which modulates vascular tone, has shown reduced 896 

expression in preeclamptic placentas. Together, these findings suggest that the 897 

broader PGR region may contribute to vascular regulation and highlight it as a 898 

potential target for therapeutic exploration in cardiovascular and hypertensive 899 

conditions. 44 GNRHR, which emerged as a prioritized gene in our CC-GWAS 900 

analysis, encodes the gonadotropin-releasing hormone receptor and is the molecular 901 

target of abarelix, a GnRH antagonist developed for prostate cancer. While there is 902 

currently no direct evidence linking GNRHR itself to cardiovascular disease, related 903 

hormonal pathways may be relevant. Notably, GNRH1, which encodes the ligand for 904 

GNRHR, has been shown in Mendelian randomization studies to be positively 905 

associated with increased risk of ischemic heart disease (IHD). This suggests that 906 

pharmacologic modulation of the GnRH axis—while originally intended for oncologic 907 

https://paperpile.com/c/dHxZks/wsLm7
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indications—could have broader systemic effects, including potential relevance in 908 

cardiovascular contexts. 45 909 

Notably, RPL22 exhibits low tractability and druggability based on both structural and 910 

clinical evidence. However, it has been listed among the targets of ataluren, a drug 911 

approved for Duchenne muscular dystrophy. Rather than acting selectively on 912 

RPL22, ataluren is believed to exert a broad mechanism of action by modulating the 913 

translational machinery. It affects multiple ribosomal components, including RPL22, 914 

with a total of 78 annotated protein targets. This suggests that RPL22 may not be the 915 

primary pharmacologic target, and its inclusion likely reflects the pleiotropic effects of 916 

ataluren on ribosomal function. (Supplementary Table 13) 917 

 918 

Among the prioritized genes without clinically developed drugs, several nonetheless 919 

demonstrated high tractability based on the availability of chemical probes 920 

(Extended Data Figure 9d-f). A chemical probe is a highly potent, selective, and 921 

cell-permeable compound that binds to a target protein and modulates its function in 922 

a predictable and reversible way. It serves as a tool to study the biology of that 923 

target. If a high-quality chemical probe exists for a gene product, it’s strong evidence 924 

that the protein is ligandable (i.e., it can bind a small molecule), which supports the 925 

tractability of that target for drug development. 926 

 Notably, targets such as PLK2, MAP3K7, and KAT2B were supported by multiple 927 

probes, including high-quality entries as defined by established scoring frameworks 928 

(Methods). This provide valuable opportunities for early-phase preclinical 929 

investigation, offering routes for target validation, mechanistic dissection, and 930 

pharmacological modulation in the absence of approved compounds. For instance, 931 

MAP3K7 (TAK1), a serine/threonine kinase central to stress and inflammatory 932 

signaling, represents a compelling druggable candidate in cardiomyopathy. It is 933 

supported by two validated chemical probes and has been shown to regulate key 934 

signaling pathways downstream of TGF-β, IL-1, and TNF-α. Recent evidence 935 

highlights its cardioprotective role in restraining inflammasome activation and 936 

pyroptosis under pressure overload, suggesting potential therapeutic relevance in 937 

hypertrophy and heart failure. Pathogenic variants in MAP3K7 have been implicated 938 

in congenital syndromes with structural cardiac manifestations. (Supplementary 939 

Table 13)46 940 
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Supplementary Figures 941 

 942 

 943 

 944 

Supplementary Figure 1: Tissue enrichment of heritability for 945 

cardiomyopathy traits from bulk RNA sequencing data in GTEx v8. 946 

 947 

Bar plots represent the –log10(P) values from tissue-specific enrichment analyses, 948 

with tissues from GTEx v8 shown on the x-axis. Each panel corresponds to a 949 

different GWAS or MTAG result: CC GWAS and CC MTAG (top row), DCM GWAS 950 

and DCM MTAG (middle row), and HCM GWAS and HCM MTAG (bottom row). 951 



Tissues surpassing the Bonferroni-corrected significance threshold are shown in red; 952 

the horizontal dashed line marks the significance cutoff. Tissues are ordered by their 953 

significance within each panel. 954 

 Enrichment P-values were obtained using a stratified LD score regression 955 

framework; they are unadjusted and can be interpreted as one-sided. 956 

Abbreviations:  GWAS, genome-wide association study;  MTAG, multi-trait analysis 957 

of GWAS; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; CC, 958 

case-case analysis  959 



 960 

 961 

Supplementary Figure 2: Matrix of genetic correlations between 962 

cardiomyopathy spectrum (from CC GWAS) and left ventricular traits 963 

from cardiac MRI 964 

A heatmap of bivariate genetic correlations estimated from GWAS data, showing CC 965 

GWAS and relevant cardiac MRI traits. The color represents the level of genetic 966 

correlation, with red and blue representing positive and negative correlation, 967 

respectively.  968 

Note: CC-GWAS, case-case genome-wide association study; Ecc, global 969 

circumferential strain; Ell, global longitudinal strain; Err, global radial strain; LVEF, 970 

left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume indexed 971 

to body-mass index; LVESVi, left ventricular end-systolic volume indexed to body-972 

mass index; LVMi, left ventricular mass indexed to body-mass index; LVconc, left 973 

ventricular concentricity; maxWT, maximum wall thickness; meanWT, mean wall 974 

thickness. Since Ecc and Ell are always negative values, -Ecc and -Ell  are plotted to 975 

facilitate interpretation of effect direction. 976 

 977 



 978 

 979 
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 981 

Supplementary Figure 3: Manhattan plots for DCM MTAG, HCM MTAG 982 

and CC MTAG 983 

All panels are Manhattan plots where each dot represents a genetic variant, with 984 

genomic positions on the x-axis and -log10 of the association P-value on the y-axis. 985 

Panels a and b show results for published DCM MTAG (63 loci) and HCM MTAG (67 986 



loci), respectively. Panel c shows results for a case-case MTAG (included CC 987 

GWAS and MRI traits MTAG), where DCM and HCM are statistically modeled as 988 

opposites on a singular genetic spectrum, yielding 95 significant loci. 989 

 990 

 991 

 992 

 993 
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Supplementary Figures 4a-s. PheWAS for prioritized gene from 17 novel 995 

CC GWAS/CCMTAG (below) 996 

 997 

Panels below show broader results from PheWAS for lead variants of 17 novel CC 998 

GWAS/CCMTAG loci using data from the Cardiovascular Disease Knowledge Portal, 999 

specifically showing results from cardiovascular-related traits. The x-axis represents 1000 

different traits grouped by trait clusters, while the y-axis represents the -log10 P-1001 

value for the association between the selected variant and the respective traits.  1002 

The Variant Page summarizes variant impact predictions and genetic associations. 1003 

The variant ID is in the format Chromosome:Position (hg19 genome build):Reference 1004 

allele:Alternate allele. 1005 

 1006 

 1007 

 1008 



Supplementary Figure 4a: 1:3199217:C:T / rs16823802 PheWAS associations (locus 1009 

2, PRDM16) 1010 

 1011 

 1012 

 1013 

Supplementary Figure 4b: 1:22248881:G:A / rs10799719 PheWAS associations 1014 

(locus 5, HSPG2) 1015 



 1016 

Supplementary Figure 4c: 1:162023184:T:C / rs60129000 PheWAS associations 1017 

(locus 11, NOS1AP) 1018 

 1019 

 1020 

 1021 



Supplementary Figure 4d: 2:174888351:G:T / rs35717017 PheWAS associations 1022 

(locus 22, SP3) 1023 

 1024 

Supplementary Figure 4e: 3:20003611:T:G / rs4241539 PheWAS associations 1025 

(locus 29, KAT2B) 1026 

 1027 



 1028 

Supplementary Figure 4f: 3:50306249:T:C / rs3806708 PheWAS associations (locus 1029 

30, CACNA2D2) 1030 

 1031 

Supplementary Figure 4g:  3:169177924:C:T / rs9850919 PheWAS associations 1032 

(locus 35, SEC62/MECOM) 1033 



 1034 

 1035 

 1036 

Supplementary Figure 4h: 4:68556786:A:G / rs9998837 PheWAS associations 1037 

(locus 39, GNRHR/UBA6) 1038 

 1039 



Supplementary Figure 4i: 8:141740868:A:C / rs6994744 PheWAS associations 1040 

(locus 65, PTP4A3/PTK2) 1041 

 1042 

 1043 

Supplementary Figure 4j: 9:111865232:C:A / rs7028081 PheWAS associations 1044 

(locus 66, TMEM245) 1045 



 1046 

Supplementary Figure 4k: 10:69929058:T:C / rs7911060 PheWAS associations 1047 

(locus 70, MYPN) 1048 

 1049 

 1050 

 1051 



 1052 

Supplementary Figure 4l: 10:88450058:C:A / rs12251655 PheWAS associations 1053 

(locus 72, LDB3) 1054 

 1055 

Supplementary Figure 4m: 11:10238974:A:G / rs1822293 PheWAS associations 1056 

(locus 76, ADM) 1057 



 1058 

 1059 

Supplementary Figure 4n: 11:111787962:G:T / rs10891299  PheWAS associations 1060 

(locus 80, CRYAB) 1061 

 1062 



Supplementary Figure 4o: 12:32980161:G:T / rs2045172 PheWAS associations 1063 

(locus 83, PKP2) 1064 

 1065 

 1066 

Supplementary Figure 4p: 16:68036666:A:C / rs8059305 PheWAS associations 1067 

(locus 99, NFATC3) 1068 



 1069 

Supplementary Figure 4r: 16:68128104:A:G / rs12599178 PheWAS associations 1070 

(locus 99, NFATC3) 1071 

 1072 

 1073 



Supplementary Figure 4s: 22:26162902:A:G / rs4820654 PheWAS associations 1074 

(locus 112, MYO18B) 1075 

 1076 

 1077 

1078 



 1079 

Supplementary Figure 5: Manhattan plot of the replication case-case 1080 

GWAS 1081 

 1082 

Supplementary figure 6: QQ plot of the case–case GWAS (HCM vs 1083 

DCM). 1084 

  1085 



 1086 

Supplementary figure 7: Scatterplots showing concordance of novel SNP 1087 

effect estimates between discovery and validation.  1088 

A) correlation of raw betas (log-odds ratios per allele). B) correlation of standardized 1089 

effect sizes (Z-scores, β/SE). The solid line shows the fitted regression through the 1090 

origin. 1091 

 1092 

 1093 

Supplementary Figure 8: Forest plots showing effect estimates for novel 1094 

lead SNPs in discovery and validation.  1095 

A) raw betas (log-odds ratios per allele) with 95% confidence intervals. B) 1096 

standardized effect sizes (Z-scores, β/SE) with 95% confidence intervals. SNPs are 1097 



ordered by discovery effect size. Discovery and validation estimates are shown side 1098 

by side for each SNP. 1099 



 1100 



Supplementary Figure 9: Pairwise genetic correlations between 1101 

cardiomyopathy analyses and related cardiovascular phenotypes. 1102 

 1103 

 a, Genetic correlations (rg) between case–case analyses (CC GWAS and CC 1104 

MTAG), non-ischemic heart failure subtypes, coronary artery disease (CAD), and 1105 

atrial fibrillation (AF). 1106 

 b, Genetic correlations between the shared-effects DCM–HCM meta-analysis and 1107 

the same cardiovascular phenotypes. 1108 

Pairwise correlations were estimated using linkage disequilibrium score regression 1109 

(LDSC). Cell color reflects the magnitude and direction of (rg (red = positive 1110 

correlation, blue = negative correlation), and values are annotated in each cell. 1111 

Asterisks indicate significance (P < 0.05: *, P < 0.002: ** (Bonferroni correction). 1112 

 1113 

  1114 



1115 

Supplementary Figure 10a: Cell-type-specific expression of the top 1116 

prioritized genes for cardiomyopathies 1117 

Bubble heatmap showing gene expression data for prioritized genes across major 1118 

cardiac cell types, based on integration of three published single-nucleus and single-1119 

cell RNA sequencing (sn/scRNA-seq) datasets of human left ventricles (LV) from 1120 

non-failing control donors (maximum n = 18; Supplementary Table 13). The y-axis 1121 

displays a shortlist of 76 highly prioritized genes from CC GWAS and MTAG 1122 

analyses (with an additional 70 genes shown in Supplementary Figure 10b), while 1123 

the x-axis shows 16 harmonized LV cell types. For each gene–cell type pair, dot size 1124 

indicates the percentage of nuclei or cells expressing the gene at nonzero levels, 1125 

and dot color represents the scaled, relative normalized expression within that cell 1126 

type (compared to all other cell types). Expression values were aggregated after 1127 

data harmonization and scaling. Note: VSMC, vascular smooth muscle cell; Pericyte, 1128 

mural cell associated with microvasculature; Epicardial, epicardial-derived cells; 1129 



Endocardial, inner lining endothelial cells; Capillary Endothelial, capillary-associated 1130 

endothelial cells; Lymphatic Endothelial, lymphatic vessel endothelial cells; 1131 

Cardiomyocyte, cardiac muscle cells; Scaled mean expression, relative gene 1132 

expression per cell type; % nuclei expressing, proportion of cells/nuclei with 1133 

detectable gene expression; Padj, multiple-testing-adjusted two-sided P-value from 1134 

DESeq2 differential expression 1135 

 1136 

 1137 

 1138 

Supplementary Figure 10b: Cell-type-specific expression and DE of the top 1139 

prioritized genes for cardiomyopathies  1140 



References 1141 

1. Jurgens, S. J. et al. Genome-wide association study reveals mechanisms 1142 

underlying dilated cardiomyopathy and myocardial resilience. Nat Genet 56, 1143 

2636–2645 (2024). 1144 

2. Turley, P. et al. Multi-trait analysis of genome-wide association summary 1145 

statistics using MTAG. Nat Genet 50, 229–237 (2018). 1146 

3. Tadros, R. et al. Large-scale genome-wide association analyses identify novel 1147 

genetic loci and mechanisms in hypertrophic cardiomyopathy. Nat Genet 57, 1148 

530–538 (2025). 1149 

4. Tadros, R. et al. Shared genetic pathways contribute to risk of hypertrophic and 1150 

dilated cardiomyopathies with opposite directions of effect. Nat Genet 53, 128–1151 

134 (2021). 1152 

5. Zheng, S. L. et al. Evaluation of polygenic score for hypertrophic 1153 

cardiomyopathy in the general population and across clinical settings. Nat. 1154 

Genet. in press, (2025). 1155 

6. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from 1156 

polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 1157 

(2015). 1158 

7. Tadros, R. et al. Large scale genome-wide association analyses identify novel 1159 

genetic loci and mechanisms in hypertrophic cardiomyopathy. medRxiv (2023) 1160 

doi:10.1101/2023.01.28.23285147. 1161 

8. Jurgens, S. J. et al. Adjusting for common variant polygenic scores improves 1162 

yield in rare variant association analyses. Nat Genet 55, 544–548 (2023). 1163 

9. Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat 1164 

distribution in 694 649 individuals of European ancestry. Hum Mol Genet 28, 1165 

http://paperpile.com/b/dHxZks/DnAKG
http://paperpile.com/b/dHxZks/DnAKG
http://paperpile.com/b/dHxZks/DnAKG
http://paperpile.com/b/dHxZks/DnAKG
http://paperpile.com/b/dHxZks/DnAKG
http://paperpile.com/b/dHxZks/DnAKG
http://paperpile.com/b/dHxZks/DnAKG
http://paperpile.com/b/dHxZks/DnAKG
http://paperpile.com/b/dHxZks/DnAKG
http://paperpile.com/b/dHxZks/3NsA3
http://paperpile.com/b/dHxZks/3NsA3
http://paperpile.com/b/dHxZks/3NsA3
http://paperpile.com/b/dHxZks/3NsA3
http://paperpile.com/b/dHxZks/3NsA3
http://paperpile.com/b/dHxZks/3NsA3
http://paperpile.com/b/dHxZks/3NsA3
http://paperpile.com/b/dHxZks/3NsA3
http://paperpile.com/b/dHxZks/Jojea
http://paperpile.com/b/dHxZks/Jojea
http://paperpile.com/b/dHxZks/Jojea
http://paperpile.com/b/dHxZks/Jojea
http://paperpile.com/b/dHxZks/Jojea
http://paperpile.com/b/dHxZks/Jojea
http://paperpile.com/b/dHxZks/Jojea
http://paperpile.com/b/dHxZks/Jojea
http://paperpile.com/b/dHxZks/Jojea
http://paperpile.com/b/dHxZks/mzTHZ
http://paperpile.com/b/dHxZks/mzTHZ
http://paperpile.com/b/dHxZks/mzTHZ
http://paperpile.com/b/dHxZks/mzTHZ
http://paperpile.com/b/dHxZks/mzTHZ
http://paperpile.com/b/dHxZks/mzTHZ
http://paperpile.com/b/dHxZks/mzTHZ
http://paperpile.com/b/dHxZks/mzTHZ
http://paperpile.com/b/dHxZks/mzTHZ
http://paperpile.com/b/dHxZks/pRA5Z
http://paperpile.com/b/dHxZks/pRA5Z
http://paperpile.com/b/dHxZks/pRA5Z
http://paperpile.com/b/dHxZks/pRA5Z
http://paperpile.com/b/dHxZks/pRA5Z
http://paperpile.com/b/dHxZks/pRA5Z
http://paperpile.com/b/dHxZks/pRA5Z
http://paperpile.com/b/dHxZks/pRA5Z
http://paperpile.com/b/dHxZks/pRA5Z
http://paperpile.com/b/dHxZks/MIiN2
http://paperpile.com/b/dHxZks/MIiN2
http://paperpile.com/b/dHxZks/MIiN2
http://paperpile.com/b/dHxZks/MIiN2
http://paperpile.com/b/dHxZks/MIiN2
http://paperpile.com/b/dHxZks/MIiN2
http://paperpile.com/b/dHxZks/MIiN2
http://paperpile.com/b/dHxZks/MIiN2
http://paperpile.com/b/dHxZks/MIiN2
http://paperpile.com/b/dHxZks/UqYhz
http://paperpile.com/b/dHxZks/UqYhz
http://paperpile.com/b/dHxZks/UqYhz
http://paperpile.com/b/dHxZks/UqYhz
http://paperpile.com/b/dHxZks/UqYhz
http://paperpile.com/b/dHxZks/UqYhz
http://paperpile.com/b/dHxZks/UqYhz
http://dx.doi.org/10.1101/2023.01.28.23285147
http://paperpile.com/b/dHxZks/UqYhz
http://paperpile.com/b/dHxZks/J8kNQ
http://paperpile.com/b/dHxZks/J8kNQ
http://paperpile.com/b/dHxZks/J8kNQ
http://paperpile.com/b/dHxZks/J8kNQ
http://paperpile.com/b/dHxZks/J8kNQ
http://paperpile.com/b/dHxZks/J8kNQ
http://paperpile.com/b/dHxZks/J8kNQ
http://paperpile.com/b/dHxZks/J8kNQ
http://paperpile.com/b/dHxZks/pogVU
http://paperpile.com/b/dHxZks/pogVU
http://paperpile.com/b/dHxZks/pogVU
http://paperpile.com/b/dHxZks/pogVU
http://paperpile.com/b/dHxZks/pogVU
http://paperpile.com/b/dHxZks/pogVU
http://paperpile.com/b/dHxZks/pogVU
http://paperpile.com/b/dHxZks/pogVU


166–174 (2019). 1166 

10. Peyrot, W. J. & Price, A. L. Identifying loci with different allele frequencies 1167 

among cases of eight psychiatric disorders using CC-GWAS. Nat. Genet. 53, 1168 

445–454 (2021). 1169 

11. O’Connor, L. J. et al. Extreme Polygenicity of Complex Traits Is Explained by 1170 

Negative Selection. Am J Hum Genet 105, 456–476 (2019). 1171 

12. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional 1172 

mapping and annotation of genetic associations with FUMA. Nat Commun 8, 1173 

1826 (2017). 1174 

13. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized 1175 

gene-set analysis of GWAS data. PLoS Comput Biol 11, e1004219 (2015). 1176 

14. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects 1177 

across human tissues. Science 369, 1318–1330 (2020). 1178 

15. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to 1179 

variable selection in regression, with application to genetic fine mapping. J R 1180 

Stat Soc Series B Stat Methodol 82, 1273–1300 (2020). 1181 

16. Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary 1182 

data with the ‘Sum of Single Effects’ model. PLoS Genet 18, e1010299 (2022). 1183 

17. Karczewski, K. J. et al. Pan-UK Biobank GWAS improves discovery, analysis of 1184 

genetic architecture, and resolution into ancestry-enriched effects. bioRxiv 1185 

(2024) doi:10.1101/2024.03.13.24303864. 1186 

18. Schipper, M. et al. Prioritizing effector genes at trait-associated loci using 1187 

multimodal evidence. Nat Genet 57, 323–333 (2025). 1188 

19. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to 1189 

predict genes underlying complex traits and diseases. Nat Genet 55, 1267–1276 1190 

http://paperpile.com/b/dHxZks/pogVU
http://paperpile.com/b/dHxZks/2EQqE
http://paperpile.com/b/dHxZks/2EQqE
http://paperpile.com/b/dHxZks/2EQqE
http://paperpile.com/b/dHxZks/2EQqE
http://paperpile.com/b/dHxZks/2EQqE
http://paperpile.com/b/dHxZks/2EQqE
http://paperpile.com/b/dHxZks/2EQqE
http://paperpile.com/b/dHxZks/KkD3j
http://paperpile.com/b/dHxZks/KkD3j
http://paperpile.com/b/dHxZks/KkD3j
http://paperpile.com/b/dHxZks/KkD3j
http://paperpile.com/b/dHxZks/KkD3j
http://paperpile.com/b/dHxZks/KkD3j
http://paperpile.com/b/dHxZks/KkD3j
http://paperpile.com/b/dHxZks/KkD3j
http://paperpile.com/b/dHxZks/XeE5P
http://paperpile.com/b/dHxZks/XeE5P
http://paperpile.com/b/dHxZks/XeE5P
http://paperpile.com/b/dHxZks/XeE5P
http://paperpile.com/b/dHxZks/XeE5P
http://paperpile.com/b/dHxZks/XeE5P
http://paperpile.com/b/dHxZks/XeE5P
http://paperpile.com/b/dHxZks/PkGPb
http://paperpile.com/b/dHxZks/PkGPb
http://paperpile.com/b/dHxZks/PkGPb
http://paperpile.com/b/dHxZks/PkGPb
http://paperpile.com/b/dHxZks/PkGPb
http://paperpile.com/b/dHxZks/PkGPb
http://paperpile.com/b/dHxZks/VCIU6
http://paperpile.com/b/dHxZks/VCIU6
http://paperpile.com/b/dHxZks/VCIU6
http://paperpile.com/b/dHxZks/VCIU6
http://paperpile.com/b/dHxZks/VCIU6
http://paperpile.com/b/dHxZks/VCIU6
http://paperpile.com/b/dHxZks/y58ji
http://paperpile.com/b/dHxZks/y58ji
http://paperpile.com/b/dHxZks/y58ji
http://paperpile.com/b/dHxZks/y58ji
http://paperpile.com/b/dHxZks/y58ji
http://paperpile.com/b/dHxZks/y58ji
http://paperpile.com/b/dHxZks/y58ji
http://paperpile.com/b/dHxZks/7lZNM
http://paperpile.com/b/dHxZks/7lZNM
http://paperpile.com/b/dHxZks/7lZNM
http://paperpile.com/b/dHxZks/7lZNM
http://paperpile.com/b/dHxZks/7lZNM
http://paperpile.com/b/dHxZks/7lZNM
http://paperpile.com/b/dHxZks/6sJXK
http://paperpile.com/b/dHxZks/6sJXK
http://paperpile.com/b/dHxZks/6sJXK
http://paperpile.com/b/dHxZks/6sJXK
http://paperpile.com/b/dHxZks/6sJXK
http://paperpile.com/b/dHxZks/6sJXK
http://paperpile.com/b/dHxZks/6sJXK
http://dx.doi.org/10.1101/2024.03.13.24303864
http://paperpile.com/b/dHxZks/6sJXK
http://paperpile.com/b/dHxZks/o0NKB
http://paperpile.com/b/dHxZks/o0NKB
http://paperpile.com/b/dHxZks/o0NKB
http://paperpile.com/b/dHxZks/o0NKB
http://paperpile.com/b/dHxZks/o0NKB
http://paperpile.com/b/dHxZks/o0NKB
http://paperpile.com/b/dHxZks/o0NKB
http://paperpile.com/b/dHxZks/o0NKB
http://paperpile.com/b/dHxZks/2mNto
http://paperpile.com/b/dHxZks/2mNto
http://paperpile.com/b/dHxZks/2mNto
http://paperpile.com/b/dHxZks/2mNto
http://paperpile.com/b/dHxZks/2mNto
http://paperpile.com/b/dHxZks/2mNto
http://paperpile.com/b/dHxZks/2mNto
http://paperpile.com/b/dHxZks/2mNto


(2023). 1191 

20. Kolberg, L. et al. g:Profiler-interoperable web service for functional enrichment 1192 

analysis and gene identifier mapping (2023 update). Nucleic Acids Res 51, 1193 

W207–W212 (2023). 1194 

21. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and 1195 

visualizes long lists of gene ontology terms. PLoS One 6, e21800 (2011). 1196 

22. Reichart, D. et al. Pathogenic variants damage cell composition and single cell 1197 

transcription in cardiomyopathies. Science 377, eabo1984 (2022). 1198 

23. Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular 1199 

processes by integrating single-cell RNA-sequencing and human genetics. Nat 1200 

Genet 54, 1479–1492 (2022). 1201 

24. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes 1202 

identifies disease-relevant tissues and cell types. Nat Genet 50, 621–629 1203 

(2018). 1204 

25. Finucane, H. K. et al. Partitioning heritability by functional annotation using 1205 

genome-wide association summary statistics. Nat Genet 47, 1228–1235 (2015). 1206 

26. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing 1207 

genomic features. Bioinformatics 26, 841–842 (2010). 1208 

27. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases 1209 

and traits. Nat Genet 47, 1236–1241 (2015). 1210 

28. Park, J.-B. et al. Obesity and metabolic health status are determinants for the 1211 

clinical expression of hypertrophic cardiomyopathy. Eur J Prev Cardiol 27, 1212 

1849–1857 (2020). 1213 

29. Harper, A. R. et al. Common genetic variants and modifiable risk factors 1214 

underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 1215 

http://paperpile.com/b/dHxZks/2mNto
http://paperpile.com/b/dHxZks/GrhtT
http://paperpile.com/b/dHxZks/GrhtT
http://paperpile.com/b/dHxZks/GrhtT
http://paperpile.com/b/dHxZks/GrhtT
http://paperpile.com/b/dHxZks/GrhtT
http://paperpile.com/b/dHxZks/GrhtT
http://paperpile.com/b/dHxZks/GrhtT
http://paperpile.com/b/dHxZks/GrhtT
http://paperpile.com/b/dHxZks/GrhtT
http://paperpile.com/b/dHxZks/BGYgv
http://paperpile.com/b/dHxZks/BGYgv
http://paperpile.com/b/dHxZks/BGYgv
http://paperpile.com/b/dHxZks/BGYgv
http://paperpile.com/b/dHxZks/BGYgv
http://paperpile.com/b/dHxZks/BGYgv
http://paperpile.com/b/dHxZks/fDeid
http://paperpile.com/b/dHxZks/fDeid
http://paperpile.com/b/dHxZks/fDeid
http://paperpile.com/b/dHxZks/fDeid
http://paperpile.com/b/dHxZks/fDeid
http://paperpile.com/b/dHxZks/fDeid
http://paperpile.com/b/dHxZks/fDeid
http://paperpile.com/b/dHxZks/fDeid
http://paperpile.com/b/dHxZks/wbp5p
http://paperpile.com/b/dHxZks/wbp5p
http://paperpile.com/b/dHxZks/wbp5p
http://paperpile.com/b/dHxZks/wbp5p
http://paperpile.com/b/dHxZks/wbp5p
http://paperpile.com/b/dHxZks/wbp5p
http://paperpile.com/b/dHxZks/wbp5p
http://paperpile.com/b/dHxZks/wbp5p
http://paperpile.com/b/dHxZks/wbp5p
http://paperpile.com/b/dHxZks/VpNUG
http://paperpile.com/b/dHxZks/VpNUG
http://paperpile.com/b/dHxZks/VpNUG
http://paperpile.com/b/dHxZks/VpNUG
http://paperpile.com/b/dHxZks/VpNUG
http://paperpile.com/b/dHxZks/VpNUG
http://paperpile.com/b/dHxZks/VpNUG
http://paperpile.com/b/dHxZks/VpNUG
http://paperpile.com/b/dHxZks/VpNUG
http://paperpile.com/b/dHxZks/B95nn
http://paperpile.com/b/dHxZks/B95nn
http://paperpile.com/b/dHxZks/B95nn
http://paperpile.com/b/dHxZks/B95nn
http://paperpile.com/b/dHxZks/B95nn
http://paperpile.com/b/dHxZks/B95nn
http://paperpile.com/b/dHxZks/B95nn
http://paperpile.com/b/dHxZks/B95nn
http://paperpile.com/b/dHxZks/OJ6uz
http://paperpile.com/b/dHxZks/OJ6uz
http://paperpile.com/b/dHxZks/OJ6uz
http://paperpile.com/b/dHxZks/OJ6uz
http://paperpile.com/b/dHxZks/OJ6uz
http://paperpile.com/b/dHxZks/OJ6uz
http://paperpile.com/b/dHxZks/wDXqp
http://paperpile.com/b/dHxZks/wDXqp
http://paperpile.com/b/dHxZks/wDXqp
http://paperpile.com/b/dHxZks/wDXqp
http://paperpile.com/b/dHxZks/wDXqp
http://paperpile.com/b/dHxZks/wDXqp
http://paperpile.com/b/dHxZks/wDXqp
http://paperpile.com/b/dHxZks/wDXqp
http://paperpile.com/b/dHxZks/GJqSF
http://paperpile.com/b/dHxZks/GJqSF
http://paperpile.com/b/dHxZks/GJqSF
http://paperpile.com/b/dHxZks/GJqSF
http://paperpile.com/b/dHxZks/GJqSF
http://paperpile.com/b/dHxZks/GJqSF
http://paperpile.com/b/dHxZks/GJqSF
http://paperpile.com/b/dHxZks/GJqSF
http://paperpile.com/b/dHxZks/GJqSF
http://paperpile.com/b/dHxZks/c9hnJ
http://paperpile.com/b/dHxZks/c9hnJ
http://paperpile.com/b/dHxZks/c9hnJ
http://paperpile.com/b/dHxZks/c9hnJ
http://paperpile.com/b/dHxZks/c9hnJ
http://paperpile.com/b/dHxZks/c9hnJ


53, 135–142 (2021). 1216 

30. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights 1217 

into the multivariate genetic architecture of complex traits. Nat Hum Behav 3, 1218 

513–525 (2019). 1219 

31. Jurgens, S. J. et al. Analysis of rare genetic variation underlying cardiometabolic 1220 

diseases and traits among 200,000 individuals in the UK Biobank. Nat Genet 54, 1221 

240–250 (2022). 1222 

32. Aragam, K. G. et al. Discovery and systematic characterization of risk variants 1223 

and genes for coronary artery disease in over a million participants. Nat Genet 1224 

54, 1803–1815 (2022). 1225 

33. Roselli, C. et al. Meta-analysis of genome-wide associations and polygenic risk 1226 

prediction for atrial fibrillation in more than 180,000 cases. Nat Genet 57, 539–1227 

547 (2025). 1228 

34. Henry, A. et al. Genome-wide association study meta-analysis provides insights 1229 

into the etiology of heart failure and its subtypes. Nat Genet 57, 815–828 (2025). 1230 

35. Ho, C. Y. et al. Genotype and Lifetime Burden of Disease in Hypertrophic 1231 

Cardiomyopathy. Circulation (2018) 1232 

doi:10.1161/CIRCULATIONAHA.117.033200. 1233 

36. Buniello, A. et al. Open Targets Platform: facilitating therapeutic hypotheses 1234 

building in drug discovery. Nucleic Acids Res 53, D1467–D1475 (2025). 1235 

37. Raies, A. et al. DrugnomeAI is an ensemble machine-learning framework for 1236 

predicting druggability of candidate drug targets. Commun Biol 5, 1291 (2022). 1237 

38. Strumberg, D. & Schultheis, B. Regorafenib for cancer. Expert Opin Investig 1238 

Drugs 21, 879–889 (2012). 1239 

39. Jiang, Y. et al. Afatinib for the Treatment of NSCLC with Uncommon EGFR 1240 

http://paperpile.com/b/dHxZks/c9hnJ
http://paperpile.com/b/dHxZks/c9hnJ
http://paperpile.com/b/dHxZks/tMTj
http://paperpile.com/b/dHxZks/tMTj
http://paperpile.com/b/dHxZks/tMTj
http://paperpile.com/b/dHxZks/tMTj
http://paperpile.com/b/dHxZks/tMTj
http://paperpile.com/b/dHxZks/tMTj
http://paperpile.com/b/dHxZks/tMTj
http://paperpile.com/b/dHxZks/tMTj
http://paperpile.com/b/dHxZks/tMTj
http://paperpile.com/b/dHxZks/EMRKa
http://paperpile.com/b/dHxZks/EMRKa
http://paperpile.com/b/dHxZks/EMRKa
http://paperpile.com/b/dHxZks/EMRKa
http://paperpile.com/b/dHxZks/EMRKa
http://paperpile.com/b/dHxZks/EMRKa
http://paperpile.com/b/dHxZks/EMRKa
http://paperpile.com/b/dHxZks/EMRKa
http://paperpile.com/b/dHxZks/EMRKa
http://paperpile.com/b/dHxZks/PHhzv
http://paperpile.com/b/dHxZks/PHhzv
http://paperpile.com/b/dHxZks/PHhzv
http://paperpile.com/b/dHxZks/PHhzv
http://paperpile.com/b/dHxZks/PHhzv
http://paperpile.com/b/dHxZks/PHhzv
http://paperpile.com/b/dHxZks/PHhzv
http://paperpile.com/b/dHxZks/PHhzv
http://paperpile.com/b/dHxZks/PHhzv
http://paperpile.com/b/dHxZks/iup3N
http://paperpile.com/b/dHxZks/iup3N
http://paperpile.com/b/dHxZks/iup3N
http://paperpile.com/b/dHxZks/iup3N
http://paperpile.com/b/dHxZks/iup3N
http://paperpile.com/b/dHxZks/iup3N
http://paperpile.com/b/dHxZks/iup3N
http://paperpile.com/b/dHxZks/iup3N
http://paperpile.com/b/dHxZks/iup3N
http://paperpile.com/b/dHxZks/s3Oi5
http://paperpile.com/b/dHxZks/s3Oi5
http://paperpile.com/b/dHxZks/s3Oi5
http://paperpile.com/b/dHxZks/s3Oi5
http://paperpile.com/b/dHxZks/s3Oi5
http://paperpile.com/b/dHxZks/s3Oi5
http://paperpile.com/b/dHxZks/s3Oi5
http://paperpile.com/b/dHxZks/s3Oi5
http://paperpile.com/b/dHxZks/09mki
http://paperpile.com/b/dHxZks/09mki
http://paperpile.com/b/dHxZks/09mki
http://paperpile.com/b/dHxZks/09mki
http://paperpile.com/b/dHxZks/09mki
http://paperpile.com/b/dHxZks/09mki
http://paperpile.com/b/dHxZks/09mki
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.033200
http://paperpile.com/b/dHxZks/09mki
http://paperpile.com/b/dHxZks/bZ8fA
http://paperpile.com/b/dHxZks/bZ8fA
http://paperpile.com/b/dHxZks/bZ8fA
http://paperpile.com/b/dHxZks/bZ8fA
http://paperpile.com/b/dHxZks/bZ8fA
http://paperpile.com/b/dHxZks/bZ8fA
http://paperpile.com/b/dHxZks/bZ8fA
http://paperpile.com/b/dHxZks/bZ8fA
http://paperpile.com/b/dHxZks/yMAMM
http://paperpile.com/b/dHxZks/yMAMM
http://paperpile.com/b/dHxZks/yMAMM
http://paperpile.com/b/dHxZks/yMAMM
http://paperpile.com/b/dHxZks/yMAMM
http://paperpile.com/b/dHxZks/yMAMM
http://paperpile.com/b/dHxZks/yMAMM
http://paperpile.com/b/dHxZks/yMAMM
http://paperpile.com/b/dHxZks/wsLm7
http://paperpile.com/b/dHxZks/wsLm7
http://paperpile.com/b/dHxZks/wsLm7
http://paperpile.com/b/dHxZks/wsLm7
http://paperpile.com/b/dHxZks/wsLm7
http://paperpile.com/b/dHxZks/wsLm7
http://paperpile.com/b/dHxZks/Qdms3
http://paperpile.com/b/dHxZks/Qdms3
http://paperpile.com/b/dHxZks/Qdms3


Mutations: A Narrative Review. Curr Oncol 30, 5337–5349 (2023). 1241 

40. Polidovitch, N. et al. Phosphodiesterase type 3A (PDE3A), but not type 3B 1242 

(PDE3B), contributes to the adverse cardiac remodeling induced by pressure 1243 

overload. J Mol Cell Cardiol 132, 60–70 (2019). 1244 

41. Voors, A. A. et al. Adrenomedullin in heart failure: pathophysiology and 1245 

therapeutic application. Eur J Heart Fail 21, 163–171 (2019). 1246 

42. Gaggin, H. K. & Januzzi, J. L., Jr. Biomarkers and diagnostics in heart failure. 1247 

Biochim Biophys Acta 1832, 2442–2450 (2013). 1248 

43. Pandhi, P. et al. Clinical value of pre-discharge bio-adrenomedullin as a marker 1249 

of residual congestion and high risk of heart failure hospital readmission. Eur J 1250 

Heart Fail 22, 683–691 (2020). 1251 

44. Honigberg, M. C. et al. Polygenic prediction of preeclampsia and gestational 1252 

hypertension. Nat Med 29, 1540–1549 (2023). 1253 

45. Schooling, C. M. & Ng, J. C. M. Reproduction and longevity: A Mendelian 1254 

randomization study of gonadotropin-releasing hormone and ischemic heart 1255 

disease. SSM Popul Health 8, 100411 (2019). 1256 

46. Li, X. et al. TAK1 Activation by NLRP3 Deficiency Confers Cardioprotection 1257 

Against Pressure Overload-Induced Cardiomyocyte Pyroptosis and 1258 

Hypertrophy. JACC Basic Transl Sci 8, 1555–1573 (2023). 1259 

 1260 

http://paperpile.com/b/dHxZks/Qdms3
http://paperpile.com/b/dHxZks/Qdms3
http://paperpile.com/b/dHxZks/Qdms3
http://paperpile.com/b/dHxZks/Qdms3
http://paperpile.com/b/dHxZks/Qdms3
http://paperpile.com/b/dHxZks/4Wg31
http://paperpile.com/b/dHxZks/4Wg31
http://paperpile.com/b/dHxZks/4Wg31
http://paperpile.com/b/dHxZks/4Wg31
http://paperpile.com/b/dHxZks/4Wg31
http://paperpile.com/b/dHxZks/4Wg31
http://paperpile.com/b/dHxZks/4Wg31
http://paperpile.com/b/dHxZks/4Wg31
http://paperpile.com/b/dHxZks/4Wg31
http://paperpile.com/b/dHxZks/OLrki
http://paperpile.com/b/dHxZks/OLrki
http://paperpile.com/b/dHxZks/OLrki
http://paperpile.com/b/dHxZks/OLrki
http://paperpile.com/b/dHxZks/OLrki
http://paperpile.com/b/dHxZks/OLrki
http://paperpile.com/b/dHxZks/OLrki
http://paperpile.com/b/dHxZks/OLrki
http://paperpile.com/b/dHxZks/WheRN
http://paperpile.com/b/dHxZks/WheRN
http://paperpile.com/b/dHxZks/WheRN
http://paperpile.com/b/dHxZks/WheRN
http://paperpile.com/b/dHxZks/WheRN
http://paperpile.com/b/dHxZks/WheRN
http://paperpile.com/b/dHxZks/okvdN
http://paperpile.com/b/dHxZks/okvdN
http://paperpile.com/b/dHxZks/okvdN
http://paperpile.com/b/dHxZks/okvdN
http://paperpile.com/b/dHxZks/okvdN
http://paperpile.com/b/dHxZks/okvdN
http://paperpile.com/b/dHxZks/okvdN
http://paperpile.com/b/dHxZks/okvdN
http://paperpile.com/b/dHxZks/okvdN
http://paperpile.com/b/dHxZks/5Hktx
http://paperpile.com/b/dHxZks/5Hktx
http://paperpile.com/b/dHxZks/5Hktx
http://paperpile.com/b/dHxZks/5Hktx
http://paperpile.com/b/dHxZks/5Hktx
http://paperpile.com/b/dHxZks/5Hktx
http://paperpile.com/b/dHxZks/5Hktx
http://paperpile.com/b/dHxZks/5Hktx
http://paperpile.com/b/dHxZks/68yGg
http://paperpile.com/b/dHxZks/68yGg
http://paperpile.com/b/dHxZks/68yGg
http://paperpile.com/b/dHxZks/68yGg
http://paperpile.com/b/dHxZks/68yGg
http://paperpile.com/b/dHxZks/68yGg
http://paperpile.com/b/dHxZks/68yGg
http://paperpile.com/b/dHxZks/huZaW
http://paperpile.com/b/dHxZks/huZaW
http://paperpile.com/b/dHxZks/huZaW
http://paperpile.com/b/dHxZks/huZaW
http://paperpile.com/b/dHxZks/huZaW
http://paperpile.com/b/dHxZks/huZaW
http://paperpile.com/b/dHxZks/huZaW
http://paperpile.com/b/dHxZks/huZaW
http://paperpile.com/b/dHxZks/huZaW

