

Supplementary Materials for

2 Leveraging the shared and opposing genetic mechanisms 3 in the heritable cardiomyopathies

4 Daria R. Kramarenko^{1,2,3}, Poeya Haydarlou¹, George J. Powell⁴, Joel T. Rämö^{5,6,7},
5 Riyad Janan⁴, Claire Prince⁴, Dominic S. Zimmerman¹, Pantazis Theotokis⁴, Prisca
6 K. Thami⁴, Jan Haas^{8,3}, Sophie Garnier^{9,10,3}, Frank Rühle^{11,12,3}, Edwin Poel^{1,3},
7 Amand F. Schmidt^{13,3,14,15,16}, Sharlene Day^{17,18}, Adam Helms^{19,18}, Rachel
8 Lampert^{20,18}, Victoria Parikh^{21,18}, Jodie Ingles^{22,18}, Iacopo Olivotto^{23,18}, Neal
9 Lakdawala^{24,18}, Anjali Owens^{17,18}, Sara Saberi^{19,18}, John Stendhal^{20,18}, Euan
10 Ashley^{21,18}, Belinda Gray^{25,18}, Mark W. Russell^{19,18}, Thomas D. Ryan^{26,18}, Joseph W.
11 Rossano^{27,18}, Dominic Abrams^{28,18}, Erin Miller^{26,18}, Kimberly Lin^{29,18}, Niccolo
12 Maurizi^{30,18}, Alessia Argiro^{23,18}, Colin Berry^{31,32}, Rob Cooper^{33,32}, Andrew S. Flett^{34,32},
13 Roy S. Gardner^{31,35,32}, John P. Greenwood^{36,37,38,32}, Brian P. Halliday^{39,40,32}, David
14 Hutchings^{41,32}, Masliza Mahmod^{42,32}, Gerry P. McCann^{43,32}, Stephen P. Page^{37,32},
15 Charles Peebles^{44,32}, Betty Raman^{42,32}, Peter Swoboda^{38,32}, Amanda Varnava^{45,32},
16 David Wright^{33,32}, Sanjay Prasad^{39,32}, Stuart Cook^{46,32}, Upsala (Paz) Tayal^{39,40,32},
17 Rachel Buchan^{40,32}, Roddy Walsh^{47,3}, Arthur A. M. Wilde^{1,2,13}, Benjamin Meder^{8,3,48},
18 Philippe Charron^{49,10,50}, Anuj Goel⁵¹, Ahmad S. Amin^{1,2,13,3}, Patrick T. Ellinor^{6,52},
19 Krishna G. Aragam^{6,52}, Rafik Tadros⁵³, Yigal M. Pinto^{1,13,2,3}, Carolyn Y. Ho^{24,18}, Hugh
20 Watkins⁵¹, James S. Ware^{4,54,18,3}, Connie R. Bezzina ^{*1,3}, Sean J. Jurgens ^{*1,5,13,3}

21 1 Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure &
22 Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands

23 2 European Reference Network for rare low-prevalence and complex diseases of the heart: ERN

24 GUARD-Heart

25 3 DCM-NEXT

26 4 National Heart and Lung Institute & MRC Laboratory of Medical Sciences, Imperial College London,
27 London, UK

28 5 Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA

29 6 Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA

30 7 Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE).

31 University of Helsinki, Helsinki, Finland

32 8 Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University Hospital
33 Heidelberg, Heidelberg, Germany

34 9 Research Unit on Cardiovascular Disorders, Metabolism and Nutrition, Team Genomics and

35 Pathophysiology of Cardiovascular Disease, Sorbone Université, INSERM, Paris, France
36 10 ICAN Institute for Cardiometabolism and Nutrition, Paris, France
37 11 Bioinformatics Core Facility, Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
38 12 Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster,
39 Münster, Germany
40 13 Department of Clinical Cardiology, Amsterdam UMC location University of Amsterdam,
41 Amsterdam, the Netherlands
42 14 Institute of Cardiovascular Science, Faculty of Population Health, University College London,
43 London, UK
44 15 University College London British Heart Foundation Research Accelerator, London, UK
45 16 Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht
46 University, Utrecht, the Netherlands
47 17 University of Pennsylvania, Philadelphia, PA, USA
48 18 SHaRe
49 19 Division of Pediatric Cardiology, University of Michigan, Ann Arbor, MI
50 20 Yale School of Medicine, New Haven, CT, USA
51 21 Stanford School of Medicine, Stanford, CA, USA
52 22 Garvan Institute of Medical Research, Sydney, NSW, Australia
53 23 University of Florence, Florence, Italy
54 24 Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
55 USA
56 25 University of Sydney, Sydney, NSW, Australia
57 26 Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
58 27 Children's Hospital of Philadelphia & University of Pennsylvania, Philadelphia, PA, USA
59 28 Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
60 29 Children's Hospital of Philadelphia, Philadelphia, PA, USA
61 30 University Hospital Lausanne (CHUV), Lausanne, Switzerland
62 31 Golden Jubilee National Hospital, Clydebank, Scotland, UK
63 32 GoDCM
64 33 University of Liverpool / Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
65 34 University Hospital Southampton NHS Foundation Trust, Southampton, UK
66 35 University of Glasgow, Glasgow, UK
67 36 Baker Heart and Diabetes Institute, Melbourne, Australia
68 37 Leeds Teaching Hospitals NHS Trust, Leeds, UK
69 38 The University of Leeds, Leeds, UK
70 39 National Heart and Lung Institute, Imperial College London, London, UK
71 40 Royal Brompton and Harefield Hospitals, Guy's and St. Thomas NHS Foundation Trust, London,
72 UK
73 41 University of Manchester, UK
74 42 University of Oxford, Oxford, UK

75 43 Division of Cardiovascular Sciences, University of Leicester, and the NIHR Leicester Biomedical
76 Research Centre, Glenfield Hospital, Leicester, UK
77 44 University of Southampton, Southampton, UK
78 45 Imperial College Healthcare NHS Trust, London, UK
79 46 MRC Laboratory of Medical Sciences, Imperial College London, London, UK
80 47 Cardiovascular and Genomics Research Institute, St George's University of London, London, UK
81 48 Site Heidelberg/Mannheim, DZHK, Heidelberg, Germany
82 49 Sorbonne Université, Inserm, Unité de recherche sur les maladies cardiovasculaires et
83 métaboliques, ICAN, F-75013 Paris, France
84 50 APHP, Cardiology and Genetics Departments, Pitié-Salpêtrière Hospital, Paris, France
85 51 Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John
86 Radcliffe Hospital, Oxford, UK
87 52 Cardiovascular Genomics Initiative, Cleveland Clinic, Cleveland, OH, USA
88 53 Electrophysiology Service and Adult Congenital Heart Disease Center, Montreal Heart Institute,
89 Université de Montréal, Montreal, Canada.
90 54 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA,
91 USA

92 * contributed equally

93

94 Correspondence to:

95 s.jurgens@amsterdamumc.nl
96 c.r.bezzina@amsterdamumc.nl

97 **Table of contents:**

98	<u>Supplementary Note</u>	4
99	<u>Data sources</u>	4
100	<u>Processing of GWAS summary statistics</u>	4
101	<u>Processing of MTAG summary statistics</u>	5
102	<u>Genetic correlation with LV traits</u>	5
103	<u>Novel regions identified by LAVA</u>	6
104	<u>Genomic structural equation modeling</u>	7
105	<u>Case-case GWAS</u>	9
106	<u>Locus definitions, variant annotation and gene prioritization</u>	12
107	<u>Processing of summary statistics using FUMA</u>	12
108	<u>Fine-mapping and credible set formatting</u>	12
109	<u>Gene prioritization using FLAMES</u>	12
110	<u>Locus definition and consolidation across studies</u>	13
111	<u>Gene prioritization across studies</u>	13
112	<u>Functional enrichment analysis</u>	14
113	<u>Cell type enrichment methods</u>	16
114	<u>Partitioned heritability of CC loci using LDSC</u>	17
115	<u>Genetic correlation between the DCM–HCM shared meta-analysis and</u>	
116	<u>cardiometabolic traits</u>	18
117	<u>Genetic correlations between cardiomyopathy GWAS and other cardiovascular</u>	
118	<u>diseases</u>	19
119	<u>The shared-effects meta-analysis correlations</u>	19
120	<u>Case–case analyses (CC GWAS/MTAG) correlations</u>	20
121	<u>Replication of CC-GWAS</u>	20
122	<u>Source for replication datasets</u>	20
123	<u>Replication CC-GWAS</u>	22
124	<u>Validation of novel loci</u>	22
125	<u>Validation of CASQ2 variant</u>	23
126	<u>Validation of case-case PGS</u>	24
127	<u>Drugability</u>	26
128	<u>Supplementary Figures</u>	29
129	<u>Supplementary Figure 1: Tissue enrichment of heritability for cardiomyopathy</u>	
130	<u>traits from bulk RNA sequencing data in GTEx v8.</u>	29
131	<u>Supplementary Figure 2: Matrix of genetic correlations between cardiomyopathy</u>	
132	<u>spectrum (from CC GWAS) and left ventricular traits from cardiac MRI</u>	31
133	<u>Supplementary Figure 3: Manhattan plots for DCM MTAG, HCM MTAG and CC</u>	
134	<u>MTAG</u>	33
135	<u>Supplementary Figures 4a-s. PheWAS for prioritized gene from 17 novel CC</u>	
136	<u>GWAS/CCMTAG (below)</u>	35
137	<u>Supplementary Figure 4a: 1:3199217:C:T / rs16823802 PheWAS</u>	
138	<u>associations (locus 2, PRDM16)</u>	36
139	<u>Supplementary Figure 4b: 1:22248881:G:A / rs10799719 PheWAS</u>	

140	<u>associations (locus 5, HSPG2)</u>	36
141	<u>Supplementary Figure 4c: 1:162023184:T:C / rs60129000 PheWAS</u>	
142	<u>associations (locus 11, NOS1AP)</u>	37
143	<u>Supplementary Figure 4d: 2:174888351:G:T / rs35717017 PheWAS</u>	
144	<u>associations (locus 22, SP3)</u>	38
145	<u>Supplementary Figure 4e: 3:20003611:T:G / rs4241539 PheWAS</u>	
146	<u>associations (locus 29, KAT2B)</u>	38
147	<u>Supplementary Figure 4f: 3:50306249:T:C / rs3806708 PheWAS associations</u>	
148	<u>(locus 30, CACNA2D2)</u>	39
149	<u>Supplementary Figure 4g: 3:169177924:C:T / rs9850919 PheWAS</u>	
150	<u>associations (locus 35, SEC62/MECOM)</u>	39
151	<u>Supplementary Figure 4h: 4:68556786:A:G / rs9998837 PheWAS</u>	
152	<u>associations (locus 39, GNRHR/UBA6)</u>	40
153	<u>Supplementary Figure 4i: 8:141740868:A:C / rs6994744 PheWAS</u>	
154	<u>associations (locus 65, PTP4A3/PTK2)</u>	41
155	<u>Supplementary Figure 4j: 9:111865232:C:A / rs7028081 PheWAS</u>	
156	<u>associations (locus 66, TMEM245)</u>	42
157	<u>Supplementary Figure 4k: 10:69929058:T:C / rs7911060 PheWAS</u>	
158	<u>associations (locus 70, MYPN)</u>	42
159	<u>Supplementary Figure 4l: 10:88450058:C:A / rs12251655 PheWAS</u>	
160	<u>associations (locus 72, LDB3)</u>	43
161	<u>Supplementary Figure 4m: 11:10238974:A:G / rs1822293 PheWAS</u>	
162	<u>associations (locus 76, ADM)</u>	43
163	<u>Supplementary Figure 4n: 11:111787962:G:T / rs10891299 PheWAS</u>	
164	<u>associations (locus 80, CRYAB)</u>	44
165	<u>Supplementary Figure 4o: 12:32980161:G:T / rs2045172 PheWAS</u>	
166	<u>associations (locus 83, PKP2)</u>	45
167	<u>Supplementary Figure 4p: 16:68036666:A:C / rs8059305 PheWAS</u>	
168	<u>associations (locus 99, NFATC3)</u>	45
169	<u>Supplementary Figure 4r: 16:68128104:A:G / rs12599178 PheWAS</u>	
170	<u>associations (locus 99, NFATC3)</u>	46
171	<u>Supplementary Figure 4s: 22:26162902:A:G / rs4820654 PheWAS</u>	
172	<u>associations (locus 112, MYO18B)</u>	47
173	<u>Supplementary Figure 5: Manhattan plot of the replication case-case GWAS</u>	48
174	<u>Supplementary figure 6: QQ plot of the case-case GWAS (HCM vs DCM).</u>	48
175	<u>Supplementary figure 7: Scatterplots showing concordance of novel SNP effect</u>	
176	<u>estimates between discovery and validation.</u>	49
177	<u>Supplementary Figure 8: Forest plots showing effect estimates for novel lead SNPs in</u>	
178	<u>discovery and validation.</u>	50
179	<u>Supplementary Figure 9: Pairwise genetic correlations between cardiomyopathy</u>	
180	<u>analyses and related cardiovascular phenotypes.</u>	52
181	<u>Supplementary Figure 10a: Cell-type-specific expression of the top prioritized</u>	
182	<u>genes for cardiomyopathies</u>	53
183	<u>Supplementary Figure 10b: Cell-type-specific expression and DE of the top prioritized</u>	
184	<u>genes for cardiomyopathies</u>	54
185	<u>References</u>	55

186 **Supplementary Note**

187 **Data sources**

188 To investigate the genetic similarity between DCM and HCM, we leveraged large-
189 scale genome-wide association (GWAS) data from two recent studies. Data for DCM
190 were obtained from a large GWAS meta-analysis by Jurgens *et al.* (2024)¹. In this
191 study, case-control GWAS data were assembled from 6 European-ancestry
192 datasets, including clinical case-control datasets (4,343 clinically ascertained DCM
193 cases) and biobank datasets (5,022 DCM cases defined by billing-codes). This
194 GWAS included Using a genome-wide significance threshold ($P < 5 \times 10^{-8}$), 38 distinct
195 loci were reported. To maximize discovery, the GWAS data were subsequently
196 integrated into a multi-trait GWAS (MTAG)² with GWAS data for MRI-derived left
197 ventricular (LV) traits (global circumferential strain, indexed left ventricle end-systolic
198 volume (LVESVi), and ejection fraction ; N=36,083; ref.³). From this MTAG, 65
199 significant loci were reported ($P < 5 \times 10^{-8}$). Of note, further details on the MTAG
200 methodology are described below.

201

202 Data for HCM were retrieved from a recent GWAS meta-analysis by Tadros *et al.*
203 (2025)³. This study included a total of 5,900 clinically-ascertained HCM cases and
204 68,359 controls of European genetic ancestry. At genome-wide significance ($P <$
205 5×10^{-8}), 34 distinct loci were reported. Similar to the DCM study, an MTAG approach
206 was used to boost discovery: HCM GWAS was integrated with GWAS data for three
207 LV traits (global circumferential strain, indexed left ventricle end-systolic volume
208 (LVESVi), and LV concentricity). From this MTAG, 68 significant loci were reported
209 ($P < 5 \times 10^{-8}$).

210 In this study, we processed and utilized both the single-trait GWAS and MTAG
211 summary statistics, for both DCM and HCM.

212 **Processing of GWAS summary statistics**

213 We processed the DCM and HCM GWAS summary statistics, aligning all datasets to
214 genome build GRCh37. We then aimed to remove variants driven by
215 disproportionately small sample sizes. To this end, for DCM GWAS, we restricted to
216 variants with at least 70% of the total case number contributing to the meta-analysis.
217 In the HCM GWAS summary statistics only the total sample size was available, and

218 therefore variants were restricted to those with at least 96% of the total sample size
219 contributing to the meta-analysis. Of note, the broad *MYBPC3* locus in HCM GWAS
220 is known to tag rare founder variants⁴; we therefore removed the extended region
221 surrounding this locus (chr11: 29,978,453–80,288,956) from the summary statistics⁵.
222 These filters left 6,635,031 variants for DCM GWAS, and 6,035,750 variants for
223 HCM GWAS (**Supplementary table 1**).

224 Processing of MTAG summary statistics
225 DCM and HCM MTAG summary statistics were also reprocessed to ensure
226 consistent loci annotation and gene prioritization across studies and approaches.
227 The datasets were aligned to genome build GRCh37. For DCM MTAG, to remove
228 variants with disproportionately small contributing sample size, we removed variants
229 with effective sample size <70% of the maximum effective sample size. For HCM
230 MTAG, we restricted to variants that passed all filters in the filtered HCM GWAS
231 summary statistics above. Finally, we removed the extended *MYBPC3* region from
232 both datasets. These filters left 5,513,180 variants for DCM MTAG, and 5,117,470
233 variants for HCM MTAG.

234 Genetic correlation with LV traits
235 To assess shared genetic architecture across the cardiomyopathy spectrum and
236 quantitative cardiac traits, we estimated genetic correlations using bivariate LD score
237 regression ⁶(**Methods**). Specifically, we computed genetic correlations between CC-
238 GWAS summary statistics and GWAS results for ten left ventricular (LV) traits
239 relevant to cardiomyopathy, measured in 36,083 participants from the UK Biobank
240 (UKB). ⁷ The strongest correlations were observed with LVESVi ($r_{g,\text{global}} = 0.624$),
241 global circumferential strain (Ecc) ($r_{g,\text{global}} = 0.705$), and LV concentricity (LVconc)
242 ($r_{g,\text{global}} = -0.575$), indicating substantial genetic overlap. (**Methods**; **Supplementary**
243 **Figure 2; Supplementary Table 7**) Interestingly, these correlations were notably
244 stronger than those observed for previously published single trait case–control
245 GWAS of DCM and HCM: the correlation between DCM GWAS and LVESVi was
246 $r_{g,\text{global}} = 0.7$, DCM GWAS and Ecc was $r_{g,\text{global}} = 0.747$ and between HCM GWAS and
247 LVconc was $r_{g,\text{global}} = 0.61$ (**Supplementary Table 3**). These findings suggest that CC-
248 GWAS captures a better genetic spectrum of cardiac traits as compared to the
249 traditional approach.

250

251 Novel regions identified by LAVA

252 Three novel genomic regions exhibited significant regional genetic correlation
253 between DCM and HCM. Neither of these regions were captured by DCM or HCM
254 GWAS. These regions were located on:

255 • Region 924 – chromosome 5 (chr5:178,595,253–179,794,710; GRCh37):

256 Although univariately subthreshold for both DCM ($P = 2.43 \times 10^{-8}$) and HCM
257 ($P = 6.05 \times 10^{-14}$), this region showed a significant **negative local genetic**
258 **correlation** ($\rho = -0.52$, $P = 2.07 \times 10^{-4}$). The lead variant in DCM GWAS was
259 **rs4701067** ($P = 0.03$, $\beta = 0.04$), and in HCM GWAS, **rs7733548** ($P = 0.001$, β
260 = -0.09), both mapping to *ADAMTS2*, a gene associated with
261 dermatosparaxis-type Ehlers–Danlos syndrome (OMIM).

262 Region 1277 – Chromosome 8 (chr8:32,454,963–33,982,537; GRCh37): This
263 region showed moderate univariate association in DCM ($P = 5.90 \times 10^{-6}$) and
264 strong association in HCM ($P = 3.42 \times 10^{-11}$), with a robust **inverse local**
265 **correlation** ($\rho = -0.61$, $P = 4.54 \times 10^{-4}$). The lead DCM variant was
266 **rs62510527** ($P = 0.0001$, $\beta = -0.067$; near **POFUT3**), and the top HCM
267 variant was **rs17665441** ($P = 0.7$, $\beta = -0.005$; near **NRG1**), a gene previously
268 associated with schizophrenia susceptibility (OMIM).)

269 • Region 1948 – chromosome 13 (chr13:109,813,577–110,995,432 (GRCh37)): This region was also identified in both CC-MTAG and HCM-MTAG analyses
270 and prioritized to the *COL4A1* locus, this region demonstrated significant
271 heritability in both traits (DCM $P = 1.63 \times 10^{-11}$; HCM $P = 1.97 \times 10^{-9}$), with a
272 notable opposing effect direction ($\rho = -0.64$, $P = 1.10 \times 10^{-5}$).

274 Together, these findings underscore the power of local genetic correlation analyses
275 to uncover biologically relevant loci beyond conventional GWAS significance
276 thresholds, particularly those with antagonistic effects across disease subtypes.

277

278 Genomic structural equation modeling

279 After having computed $r_{g,\text{global}}$ between DCM and HCM, we then aimed to re-compute
280 $r_{g,\text{global}}$ accounting for the effect of other heritable traits. First, we aimed to account for
281 blood pressure and body habitus traits, given that these extracardiac traits have
282 been mentioned in literature as being risk factors for both DCM and HCM with
283 concordant directionality (high blood pressure and higher body weight have been
284 described as risk factors for DCM and HCM). To account for these heritable traits in
285 our analysis, we used genomic Structural Equation Modeling, implemented in the
286 *GenomicSEM* R-package. We first used the *ldsc()* function to compute pairwise
287 $r_{g,\text{global}}$ values for all pairs of traits from DCM, HCM, systolic blood pressure⁸ (SBP),
288 diastolic blood pressure⁸ (DBP), body-weight⁸ and body-mass-index⁹ (BMI). We then
289 used the *usermodel()* function to fit a Structural Equation model using the following
290 approach:

291 DCM ~ a1*SBP + a2*DBP + a3*BMI + a4*weight

292 HCM ~ b1*SBP + b2*DBP + b3*BMI + b4*weight

293 DCM ~~ r*HCM

294 SBP ~~ SBP

295 SBP ~~ DBP

296 SBP ~~ BMI

297 SBP ~~ weight

298 DBP ~~ BMI

299 DBP ~~ weight

300 DBP ~~ DBP

301 BMI ~~ BMI

302 BMI ~~ weight

303 weight ~~ weight

304 DCM ~~ DCM

305 HCM ~~ HCM

306

307 Essentially, this model regresses the four risk factors on DCM, and separately also

308 on HCM, while allowing for covariance between each of the risk factors and between

309 DCM and HCM. From the resulting model fit, we extracted the scaled covariance

310 between DCM and HCM representing the $r_{g,\text{global}}$ between DCM and HCM conditional

311 on the heritable components of SBP, DBP, weight and BMI.

312

313 In a similar fashion, we also computed the $r_{g,\text{global}}$ between DCM and HCM,

314 conditional on cardiac endophenotypes from MRI - namely those most strongly

315 associated with DCM and HCM including LVESVi, LV concentricity (LVconc) and

316 global circumferential strain (Ecc)³. The input model was specified as follows:

317 DCM ~ a1*Ecc + a2*LVESVi + a3*LVconc

318 HCM ~ b1*Ecc + b2*LVESVi + b3*LVconc

319 DCM ~~ r*HCM

320 Ecc ~~ Ecc

321 Ecc ~~ LVESVi

322 Ecc ~~ LVconc

323 LVESVi ~~ LVconc

324 LVESVi ~~ LVESVi

325 LVconc ~~ LVconc

326 DCM ~~ DCM

327 HCM ~~ HCM

328

329 Case-case GWAS

330 To identify genetic variants that differentiate between DCM and HCM, we applied
331 CC-GWAS, a summary-statistics-based method that estimates genetic divergence
332 between cases of two disorders using case-control GWAS results. To construct CC-
333 GWAS from our available GWAS summary statistics, we used the **CCGWAS** R-
334 package (v0.1.0)¹⁰ This method calculates allele frequency differences between
335 DCM and HCM cases (A1 vs. B1) by leveraging the observed effects in DCM vs.
336 controls (A1A0) and HCM vs. controls (B1B0). Central to this approach is the genetic
337 distance measure $F_{ST,causal}$, defined as the average normalized squared difference in
338 allele frequencies at causal SNPs across case-controls GWAS, which reflects the
339 degree of genetic separation between the two phenotypes.

340 CC-GWAS estimates the case-case effect size ($\hat{\beta}_{A1B1}$) for each SNP using a
341 weighted linear combination of the case-control GWAS effect sizes:

342
$$\hat{\beta}_{A1B1} = \omega_{A1A0} \cdot \hat{\beta}_{A1A0} + \omega_{B1B0} \cdot \hat{\beta}_{B1B0}$$

343 where ω_{A1A0} and ω_{B1B0} are trait-specific weights. Two weighting schemes are
344 implemented:

345 (1) **CC-GWAS_{OLS} weights**, optimized to minimize the expected squared error
346 between the estimated and true A1B1 effect sizes, accounting for SNP heritabilities,
347 disease prevalences, genetic correlation, sample sizes, and sample overlap; and
348 (2) **CC-GWAS_{exact} weights**, a conservative, sample-size-independent formulation
349 based only on population prevalences:

350
$$\hat{\beta}_{A1B1}^{exact} = (1 - K_A) \hat{\beta}_{A1A0} - (1 - K_B) \hat{\beta}_{A1A0} \hat{\beta}_{B1B0}$$

351 While the OLS weights provide higher power, they may be susceptible to type I error
352 at so-called *stress test SNPs*—variants with significant and similarly directed effects
353 in both case-control GWASs (nonzero A1A0 and B1B0) but no true case-case
354 difference ($A1B1 = 0$). These variants can appear falsely significant due to random
355 sampling variation. To address this, CC-GWAS applies a dual-threshold strategy: a

356 SNP is declared significant only if it passes genome-wide significance ($P < 5 \times 10^{-8}$)
357 with OLS weights and a secondary threshold ($P < 10^{-4}$) with exact weights, thereby
358 maximizing power while controlling type I error. This approach enhances sensitivity
359 to opposite-direction genetic effects, while suppressing signals that are shared
360 between diseases.

361 For this analysis, we used the processed summary statistics from DCM and HCM
362 GWAS, along with the following input parameters: i) the assumed population
363 prevalences (0.4% for DCM, 0.2% for HCM); ii) the case/control numbers in DCM
364 GWAS and HCM GWAS, with some attenuation for potential missingness (see
365 below); iii) the heritabilities from LDSC (14.2% for DCM, 18% for HCM); iv) the $r_{g,\text{global}}$
366 between DCM and HCM, and its intercept, from LDSC ($r_{g,\text{global}}=-0.56$ and
367 $\text{error}_{\text{covariance}}=0.012$)⁶; and v) the number of effectively independent causal variants
368 for DCM (1200; see below)¹⁰. Naturally, CC-GWAS was restricted to genetic variants
369 found in the processed DCM and HCM GWAS summary statistics; after additional
370 automatic filtering by the CCGWAS package, 4987309 high-quality variants
371 remained in the CC-GWAS analysis and resulting summary statistics. Genome-wide
372 significance was defined as $P < 5 \times 10^{-8}$, and all hypothesis tests were two-sided.

373
374 To account for some degree of per-variant sample missingness, we adjusted the
375 input case/control numbers - used as input to CCGWAS. Notably, because the meta-
376 analytical case/control numbers in the summary statistics were based on the
377 maximum sample size of contributing cohorts, the provided numbers reflect
378 maximum values and are therefore broadly overestimated. This is relevant because
379 CCGWAS computes expected effect sizes based on the case/control numbers.
380 Indeed, CCGWAS raised warnings indicating that the expected effect sizes were not
381 well-calibrated. Consistent with some overestimation of case/control numbers, we
382 found that CCGWAS gave well-calibrated effect sizes when we assumed some
383 attenuation of case/control numbers across all variants. For DCM GWAS, we
384 attenuated case/control numbers to 90% of the maximum numbers, while for HCM
385 GWAS we attenuated the numbers by 85%, when inputted to the CCGWAS
386 software.
387

388 To estimate the number of independent causal variants, we used stratified fourth
389 moments regression (<https://github.com/lukejoconnor/SLD4M>)¹¹. This method
390 computes from a GWAS the polygenicity, expressed as the effective number of
391 independently associated causal variants (where the ‘effective’ clause accounts not
392 only for the potential number of causal variants but also the relative effect size of
393 causal variants). Assuming DCM to be more polygenic than HCM, we put forward
394 the polygenicity statistic estimated from DCM GWAS (1223) to the CCGWAS
395 software.

396

397 Locus definitions, variant annotation and gene prioritization

398 Locus definition, variant annotation, and gene prioritization were performed using a
399 unified pipeline across all summary statistics, including DCM GWAS, DCM MTAG,
400 HCM GWAS, HCM MTAG, CC-GWAS, and CC-MTAG. (**Code availability**)

401 Processing of summary statistics using FUMA

402 Each set of summary statistics was first processed using Functional Mapping and Annotation
403 (FUMA)¹² v1.6.1 (<https://fuma.ctglab.nl/>). Among other analyses, FUMA applies Multi-marker
404 Analysis of GenoMic Annotation (MAGMA; v.1.08) to perform an initial gene-based
405 association analysis, by aggregating variant-level signals into gene-level statistics while
406 accounting for linkage disequilibrium¹³. The MAGMA gene-level scores were also used by
407 FUMA to test for tissue-specific enrichment of RNA expression profiles, based on
408 transcriptomic profiles across dozens of tissues from the GTEx v8 dataset
409 (GTEx/v8/gtex_v8_ts_general_avg_log2TPM)¹⁴. The MAGMA gene scores and tissue
410 enrichment statistics were used as input for our gene prioritization pipeline, as described in
411 detail below.

412 Fine-mapping and credible set formatting

413 Our gene nomination pipeline required finding credible sets that likely include the causal
414 variants from the respective GWAS. To identify such credible sets, we performed fine-
415 mapping using the SuSiER algorithm (v0.12.35)^{15,16}. For each GWAS dataset, the SuSiER
416 algorithm was run within separate LD blocks derived from UK Biobank European-ancestry
417 reference data.¹⁷ The minimum squared correlation was set to 0.5 (the default), unless the
418 algorithm failed to converge, in which case we relaxed the threshold to 0.25. If SuSiE
419 continued to fail in a region harboring genome-wide significant variants, we flagged the
420 respective LD region and generated an artificial credible set using only the most significant
421 variant in the region (**Supplementary Tables 24-36**)

422 Gene prioritization using FLAMES

423 To perform gene prioritization, we used the recently-described ‘fine-mapped locus
424 assessment model of effector genes’ (FLAMES) approach (v1.1.1)¹⁸. FLAMES combines two
425 main approaches to gene prioritization in a weighted framework to compute causal gene
426 predictions that outperform prior methods. In particular, FLAMES first uses pre-fit machine
427 learning models (based on XG-Boost) to link fine-mapped variants to likely effector genes
428 based on various parameters including variant-to-gene distance, epigenomic context, and
429 quantitative trait loci. Second, FLAMES uses the Polygenic Priority Score (PoPS¹⁹) method

430 to learn gene features associated with the trait based on functional networks; features
431 consist of cell-type-specific gene expression, biological pathways and protein–protein
432 interactions (PPIs).
433 We then applied the FLAMES framework to each of our GWAS datasets. To this end, for a
434 given GWAS dataset, we first ran PoPS (v0.2),¹⁹ using the MAGMA Z-scores as input and
435 using the full feature matrix provided by the PoPS developers. We then annotated each
436 credible set using the *annotate* module from FLAMES, which combines variant-to-gene
437 mappings, MAGMA Z-scores, PoPS scores, and GTEx tissue enrichment data.

438

439 FLAMES then returned a ranked list of genes per locus in *FLAMES_scores.preds*, including
440 raw and scaled FLAMES scores, XG-Boost scores, PoPS scores, and estimated precision.

441

442 Locus definition and consolidation across studies

443

444 For each credible set, we selected the top variant based on the highest posterior inclusion
445 probability (PIP), or, in cases where fine-mapping failed, the variant with the lowest *P*-value.
446 All index variants were then sorted by chromosome and genomic position. Index variants
447 located within 1Mb of one another were merged into one locus, to define non-overlapping
448 genomic loci. Each locus was assigned a unique identifier based on its genomic position,
449 with consistent numbering maintained across all analyses (**Supplementary Table 2**).
450

451 Gene prioritization across studies

452 Despite applying a harmonized pipeline for gene prioritization across the various GWAS
453 datasets, it was possible for the FLAMES algorithm to nominate different causal genes within
454 the same locus in different GWAS datasets. To consolidate gene-level evidence within and
455 across datasets, we therefore applied a scoring framework to prioritize effector genes at
456 each locus. For each study, genes identified as top-ranked by either PoPS or FLAMES were
457 assigned 0.5 points per method per study. Scores were then aggregated across all studies.
458 For example, locus 12 (chr1:212,107,306–212,277,107) appeared in both DCM MTAG and
459 CC MTAG. In DCM MTAG, *DTL* was prioritized by both PoPS and FLAMES (score = 1),
460 while in CC MTAG, *BATF3* was prioritized by PoPS and *DTL* again by FLAMES. This
461 resulted in cumulative rank scores of *DTL* = 1.5 and *BATF3* = 0.5. Accordingly, *DTL* was
462 selected as the reported gene for this locus.

463 For each locus, the gene(s) with the highest total score were designated as lead candidates.
464 In cases where multiple genes had equal scores, or where the difference between top-
465 scoring genes was <1.0, all were retained as joint candidates. This strategy enabled the
466 identification of both study-specific and consensus lead genes across DCM, HCM, and
467 case–case analyses. While we acknowledge that the approach is to an extent arbitrary, we
468 applied this approach to transparently indicate instances where gene prioritization produced
469 potentially inconsistent results. Reassuringly, we found that a single effector gene was
470 nominated in the vast majority of loci using this approach (**Extended Data Figure 3**). The
471 final locus-level summary included genomic coordinates, contributing studies, top-ranked
472 genes, prioritization scores, and selected lead gene(s).(**Supplementary Table 2**).

473 Functional enrichment analysis
474 We used the g:Profiler platform²⁰ (v. February 2025) to test for enrichment of gene
475 sets from several predefined sources for genes curated from CC-GWAS and CC-
476 MTAG. The g:Profiler algorithm uses one-sided Fisher’s exact tests to test for
477 enrichment of a prespecified list of genes across many gene sets, and subsequently
478 adjusts one-sided P values for multiple testing while taking into account the
479 correlation between gene sets (g:SCS method⁷⁶). We used default settings with a
480 multiple testing correction based on the Benjamini–Hochberg FDR and retained
481 terms with adjusted P-values < 0.05. Gene set categories included Gene Ontology
482 (GO: Biological Process, Molecular Function, and Cellular Component), KEGG,
483 Reactome, WikiPathways, CORUM, Human Protein Atlas, Human Phenotype
484 Ontology, transcription factor targets, and miRNA–target interactions.
485 First we tested all genes from CC-GWAS, then genes unique for CC-GWAS or CC-
486 MTAG for loci that were not significant in other DCM and HCM GWAS and MTAG.
487 To quantify the strength of association for each term, we computed the odds ratio
488 (OR) using a custom function based on contingency table parameters derived from
489 term size, query size, and domain background size. Continuity correction was
490 applied to avoid division by zero where needed.
491 To reduce redundancy in GO terms and annotate broader biological themes, we
492 used REVIGO²¹ to group enriched GO terms by semantic similarity. We parsed
493 REVIGO output and linked each original term to a representative parent term, which
494 was then used to group and annotate terms across GO:BP, GO:CC, and GO:MF
495 domains.

496 A custom R workflow was developed to integrate enrichment results with REVIGO
497 clusters, calculate ORs, and visualize results. We generated a volcano plot with odds
498 ratio on the x-axis and $-\log_{10}(\text{adjusted P-value})$ on the y-axis. Select representative
499 terms were labeled using the REVIGO group name.

500 This approach allowed us to highlight key functional pathways enriched among
501 prioritized genes, including protein binding (GO:MF), sarcomeric and cytoskeletal
502 structure (GO:CC), and cell junction organization and signal transduction (GO:BP).
503 Since our prioritized genes may have been preselected towards genes with high
504 cardiac expression (that is, through gene features learnt by PoPS), we performed a
505 sensitivity analysis using nearest genes.

506 To generate a nearest-gene annotation for loci identified in the CC GWAS and CC
507 MTAG analyses, we used the `get_nearest_gene()` function from the *gwasRtools*
508 package (v0.1.0; available via GitHub: [lcpilling/gwasRtools](https://github.com/lcpilling/gwasRtools)). For each lead SNP, the
509 nearest protein-coding gene within ± 500 kb (500,00 base pairs) was identified using
510 coordinates aligned to human genome build GRCh37. This approach was applied
511 separately to loci from CC GWAS and CC MTAG, producing two corresponding gene
512 lists. These lists were used for pathway enrichment analysis alongside genes
513 prioritized using the FLAMES/PoPS framework.

514 Pathway enrichment of nearest-gene sets (**Extended Data Figure 6b,d**) revealed
515 broadly consistent biological pathways compared to functionally informed
516 prioritization (**Extended Data Figure 6a,c**), including strong enrichment for muscle
517 structure development, actin binding, cytoskeletal organization, and myofibril
518 assembly. Notably, terms such as "actin binding", "cytoskeleton", and "myofibril"
519 remained significant under both strategies, suggesting that core cardiomyocyte
520 structural processes are recurrently implicated across methods.

521 However, enrichment significance was generally reduced when using nearest-gene
522 annotation, and several key terms observed with FLAMES/PoPS—such as
523 sarcomere organization or transcriptional regulation—were absent. This may reflect
524 the limited precision of proximity-based gene assignment, especially in regions with
525 multiple genes or regulatory elements acting at a distance.

526 Taken together, these results support the robustness of the key functional pathways
527 implicated in our study while highlighting the additional specificity provided by
528 functionally informed gene prioritization.

529 Cell type enrichment methods

530 Using the snRNA-seq data obtained from Reichart et al., 2022 (ref.²²), we performed
531 cell type enrichment analyses. The dataset consisted of samples from several
532 anatomical locations (including several locations across the left and right ventricle)
533 from 61 cardiomyopathy patients - of which 52 with DCM - and 18 non-failing
534 controls. We focused on the 18 non-failing donors, and generated cell type-specific
535 and cell state-specific annotations for enrichment testing using stratified linkage
536 disequilibrium score regression within the *sc-linker* framework²³.

537

538 First, we defined cell types from cell type and cell state annotations provided with the
539 publicly-available dataset. We removed variants flagged as ‘native’ or ‘low-QC’.
540 Nuclei with cell state ‘PC1’, ‘PC2’ or ‘PC3’ were then collapsed into ‘Pericytes’.
541 Nuclei with cell state ‘SMC1.1’, ‘SMC1.2’, or ‘SMC2’ were collapsed into ‘VSMC’.
542 Nuclei with cell state ‘EC7’ were assigned ‘Endocardial’. Nuclei with cell state ‘Meso’
543 were assigned ‘Epicardial’. Nuclei
544 with cell state ‘EC8’ were assigned ‘Lymphatic endothelial’. Nuclei with cell state
545 ‘EC1.0’, ‘EC2.0’, ‘EC5.0’, or ‘EC6.0’ were assigned ‘Cardiac endothelial’. For
546 remaining nuclei (those with cell states not mentioned above) the cell type
547 annotations provided with the original dataset were retained. This approach left 11
548 distinct cardiac cell types.

549

550 To test for enrichment of cell type specific gene programs in our GWAS/MTAG
551 datasets, we created cell-type specific gene programs. To this end, we performed
552 ‘pseudo-bulk’ aggregation by summing gene counts across nuclei for each
553 donor/tissue region combination, by cell type. We only retained a given donor/tissue
554 region combination if they had at least 50 nuclei of that cell type. Lowly expressed
555 genes identified with the `filterByExpr()` function in edgeR were removed. We
556 normalized the pseudo-bulk expression with DESeq2 and fit the differential
557 expression model $\sim 0 + \text{cell_type} + \text{donor_tissue}$ using limma-voom. Notably, we
558 included a covariate for the donor/tissue region combination because each

559 donor/tissue region will be represented across most cell types. We then extracted
560 contrasts comparing gene expression in each focal cell type to all other cell types.
561 Cell type-specific gene programs were subsequently computed by ranking and
562 scoring genes based on their enrichment statistics, as described in previous work²³.
563 Notably, however, we adapted the algorithm to set all genes with negative
564 enrichment scores (ie, those depleted within the focal cell type as compared to the
565 other cell types) to 0; this was applied to avoid cell type enrichments driven by genes
566 that were in fact enriched in other cell types.

567

568 Using the cell type-specific gene expression profiles, we then performed heritability
569 enrichment analyses using the *sc-linker* pipeline (<https://github.com/kkdey/GSSG>)²³.
570 To this end, we used the epigenomic variant-to-gene mapping data for heart and
571 fetal heart, which were provided with the software, as input. We used the CC-GWAS
572 dataset as GWAS input. We then used the provided scripts to apply stratified LD-
573 score regression to compute heritability enrichment statistics for the cell type-specific
574 gene programs²⁴. As recommended²⁴, we report test statistics and corresponding
575 one-sided *P*-values from the tau ‘coefficient’ - which is conditional on all other
576 annotations included in the model including the ‘baseline LD’ annotations. To
577 account for the 11 cell types tested, we applied a Bonferroni significance cutoff by
578 setting significance at $0.05/11=0.0045$.

579

580 Partitioned heritability of CC loci using LDSC

581 To evaluate the contribution of loci identified through case–case GWAS (CC GWAS
582 and CC MTAG) to overall SNP-based heritability of DCM and HCM, we performed
583 partitioned heritability analysis using LDSC²⁵. First, we selected genome-wide
584 significant variants ($P < 5 \times 10^{-8}$) from both CC GWAS and CC MTAG, then defined
585 500 kb flanking windows upstream and downstream of each lead SNP. These
586 regions were merged using *bedtools merge*²⁶ to create a non-redundant set of
587 genomic intervals (LD regions) comprising all CC-significant loci.

588 These merged regions were used to generate binary annotation files according to
589 LDSC documentation²⁵. To estimate partial heritability, we applied LDSC *--h2* with
590 both baselineLD v2.2 annotations provided by LDSC developers and the newly

591 defined CC locus annotations. Heritability estimates were calculated separately for
592 DCM and HCM GWAS summary statistics, and enrichment was quantified as the
593 proportion of heritability explained divided by the proportion of SNPs annotated in
594 each category.

595 CC-significant loci comprised only 2.7% of genome-wide SNPs but explained a large
596 fraction of heritability for both cardiomyopathies. In DCM, CC loci captured 34.6% of
597 total SNP-based heritability (Enrichment = 12.7-fold; $P=6.88\times10^{-18}$). In HCM, the
598 same loci explained 53.4% of SNP-based heritability (Enrichment = 19.6-fold;
599 $P=9.26\times10^{-16}$). (**Supplementary Table 9**)

600 Genetic correlation between the DCM–HCM shared meta-analysis and
601 cardiometabolic traits

602 We applied linkage disequilibrium score regression (LDSC)⁶ to assess genetic
603 correlations (r_g)²⁷ between the shared-effects meta-analysis and a set of 65
604 quantitative traits.^{8,9} Analyses were performed using the European ancestry LD
605 reference panel and the default ldsc.py --rg settings using tutorials from developers.

606 Among all tested traits, four phenotypes remained significantly correlated with the
607 DCM–HCM meta-analysis after Bonferroni correction ($P < 0.05/65$): diastolic and
608 systolic blood pressure (DBP: $r_g=0.415$, $P = 5.00 \times 10^{-5}$, SBP: $r_g = 0.375$, $P = 1.50 \times$
609 10^{-4}), body mass index (BMI) ($r_g = 0.407$, $P = 1.00 \times 10^{-4}$), body weight ($r_g = 0.392$,
610 $P = 1.50 \times 10^{-4}$) and C reactive protein (CRP) ($r_g = 0.268$, $P = 6.00 \times$
611 10^{-4}). (**Supplementary Table 19**) Several other traits were nominally significant,
612 including C-reactive protein, urate, creatinine, and multiple red blood cell indices
613 (e.g., nucleated RBC percentage, reticulocyte counts), suggesting shared polygenic
614 mechanisms related to inflammation, renal function, and hematopoiesis.

615 Some traits showed negative correlations (e.g., sex hormone-binding globulin
616 (SHBG), HDL cholesterol, basophil count), particularly in the shared model, though
617 these did not reach Bonferroni significance.

618 If compared to DCM and HCM, shared meta-analysis showed stronger and more
619 consistent genetic correlations with cardiometabolic risk traits. DCM and HCM
620 GWAS, when assessed separately, showed fewer Bonferroni-significant correlations.

621 While many traits trended in the same direction, effect sizes were attenuated and P -
622 values were less robust, underscoring the increased power of the shared meta-
623 analysis to detect shared polygenic architecture.

624 Despite the strong negative correlation, certain extracardiac risk factors - including
625 hypertension and obesity - have been linked to both DCM and HCM^{1,3,28,29}. Indeed,
626 when accounting for the genetic components of blood pressure and body habitus
627 (**Methods**)³⁰, the inverse genetic correlation between DCM and HCM became
628 nominally stronger ($r_{g,global}=-0.63$, SE=0.07, $P=9.4\times10^{-16}$). In contrast, when
629 conditioned on the LV endophenotypes related to contractility and chamber size, the
630 genetic correlation was substantially weakened, but not abolished ($r_{g,global}=-0.26$,
631 SE=0.07, $P=9.4\times10^{-2}$). These findings indicate that the genetic pathways intrinsic to
632 myocardial function/structure may be largely inverse between DCM and HCM, while
633 certain extracardiac pathways may be concordant.

634

635 Genetic correlations between cardiomyopathy GWAS and other
636 cardiovascular diseases

637 We performed pairwise genetic correlation analyses using LDSC to evaluate shared
638 polygenic architecture between cardiomyopathy GWAS/MTAG results and other
639 cardiovascular traits³¹, including coronary artery disease (CAD)³², atrial fibrillation
640 (AF)³³, and subtypes of heart failure (HF)³⁴.

641 The shared-effects meta-analysis correlations

642 The shared-effects meta-analysis of DCM and HCM demonstrated positive genetic
643 correlation with all tested traits: HF types³⁴, AF³³, CAD³². The strongest correlations
644 that also reached Bonferroni corrected statistical significance level was observed
645 with non-ischemic heart failure (niHF)³⁴ ($r_g = 0.69$, $P = 3.05 \times 10^{-19}$), all-cause HF³⁴
646 ($r_g = 0.677$, $P = 7.87 \times 10^{-34}$). (**Supplementary Figure 9, Supplementary Table**
647 **19,20**)

648 Case–case analyses (CC GWAS/MTAG) genetic correlations

649 In contrast, the cardiomyopathy spectrum derived from CC GWAS and CC MTAG

650 showed little or no genetic correlation with any of the tested cardiovascular traits (AF,

651 CAD, HF)^{32,33} (**Supplementary Figure 9, Supplementary Table 20**)

652 This lack of correlation suggests that the genetic signals captured by CC-based

653 analyses represent distinct axes of trait differentiation, rather than shared

654 susceptibility loci contributing broadly to cardiovascular disease. Notably, while CC

655 MTAG and CC GWAS were highly correlated with each other ($r_g = 1.09$, $P < 0.01$),

656 they remained largely orthogonal to external cardiac disease traits. (**Supplementary**

657 **Figure 9**)

658

659 Replication of CC-GWAS

660 Source for replication datasets

661 HCM cases were recruited from the Sarcomeric Human Cardiomyopathy Registry
662 (SHaRe). The registry's structure and initial findings have been detailed by Ho et al.
663 (2018)³⁵. HCM was diagnosed by each SHaRe site and is defined as unexplained
664 left ventricular (LV) hypertrophy with a maximal LV wall thickness exceeding 15 mm,
665 or over 13 mm in family members with HCM (or an equivalent LV wall thickness z
666 score in pediatric patients).

667 Whole genome sequencing samples were collected from DCM patients across
668 multiple cohorts and studies (GO-DCM (N=565), Bratislava (N=15), RBH Biobank
669 (N=596), SMARTER-DCM (N=29), TRED-HF2 (N=22), MATCH and MATCH2
670 (N=179), the Heart Hive (N=109) and MitoDCM (N=10)) which have been described
671 in detail elsewhere. Briefly, the GO-DCM study was a whole genome sequencing
672 initiative that aimed to recruit 2000 patients with DCM, collecting blood samples,
673 from 2020 to 2027 across England (London, Leeds, Oxford, Leicester, Liverpool,
674 Southampton and Manchester) and Scotland (Glasgow)

675 (clinicaltrials.gov/study/NCT03843255). Additional whole genome sequencing
676 samples were obtained from Bratislava, approved by the Ethics Committee of
677 Národný ústav srdcových a cievnych chorôb, a.s. The RBH Biobank is a biobank of
678 patients recruited from heart, lung and critical care departments of the Royal
679 Brompton & Harefield NHS Foundation Trust. Patients were invited to give biological
680 samples including whole blood, serum and plasma (IRAS ID 264059.;
681 [www.hra.nhs.uk/planning-and-improving-research/application-summaries/royal-brompton-harefield-cardiovascular-research-centre-biobank](http://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/royal-brompton-harefield-cardiovascular-research-centre-biobank)). The
683 SMARTER study aimed to further the genetic understanding of cardiomyopathy and
684 patients were invited to give samples for whole genome sequencing (IRAS ID
685 313058; www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/the-smarter-cm-study). The TRED-HF2 study aimed
687 to recruit recovered DCM patients between 2023 and 2026 to determine the
688 therapies required to maintain heart failure remission
689 (clinicaltrials.gov/study/NCT06091475) . The MATCH and MATCH2 studies recruited
690 DCM patients to establish the relationship between heart failure and type 2 diabetes
691 (IRAS ID 228222; www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/match)

692 [summaries/research-summaries/myocardial-tissue-characteristics-and-glycaemic-](https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/myocardial-tissue-characteristics-and-glycaemic-status/)
693 [status](https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/myocardial-tissue-characteristics-and-glycaemic-status-2/). IRAS ID 273547; [www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-](https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/the-heart-hive/)
694 [summaries/the-heart-hive](https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/the-heart-hive/)). The Heart Hive is an online portal for
695 individuals with cardiomyopathy to actively engage with researchers and research
696 studies. Participants were invited to provide saliva samples for whole genome
697 sequencing, and indicate studies they would like to engage in (IRAS ID 246395;
698 [www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-](https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/the-heart-hive/)
700 [summaries/the-heart-hive](https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/the-heart-hive/)). The MitoDCM study was a double blind randomised
701 controlled trial of mitoquinol mesylate on patients with DCM to assess the effect of
702 reducing oxidative stress on the heart (clinicaltrials.gov/study/NCT05410873)
703
704 Sequencing reads were aligned to the hg38 reference genome and variants were
705 called using the Illumina DRAGEN pipeline (v3.10.12). Individual gVCF files were
706 joint-called in Hail (v0.2.128). Genotypes were set to missing if genotype quality
707 (GQ) < 20, depth (DP) < 10, or allele balance (AB) in heterozygotes < 0.2.
708 Analyses were restricted to individuals of non-Finnish European (NFE) ancestry.
709 Ancestry assignment was performed by projecting study samples onto the gnomAD
710 v4.1 principal component (PC) space and clustering with NFE reference individuals.
711 Variant- and sample-level quality control was carried out in Hail (v0.2.128). Sample
712 QC was performed first, excluding individuals with call rate < 98.5%, mean depth <
713 10, or mean genotype quality < 20. Genome-wide SNVs were also used to compute
714 the heterozygous/homozygous variant ratio and the transition/transversion (Ti/Tv)
715 ratio. Samples deviating by more than six median absolute deviations (MAD) from
716 the median het/hom ratio, or with Ti/Tv ratios outside the expected range of 1.8–2.2,
717 were excluded. Additional exclusions were applied for relatedness (π -hat > 0.125) or
718 sex discordance. After sample filtering, variant QC was restricted to biallelic
719 autosomal SNPs. Variants were excluded if call rate < 0.98, Hardy–Weinberg
720 equilibrium $p < 1 \times 10^{-10}$, or minor allele frequency < 0.01. Following QC,
721 approximately 7.9 million SNPs across 1,158 HCM and 1,525 DCM cases were
722 retained for analysis.
723

724 Replication CC-GWAS

725 The case–case GWAS (HCM vs DCM) was performed in Hail using an additive
726 genetic model with SNP dosage. HCM cases were treated as “cases” and DCM
727 cases as “controls.” Covariates included sex and the top 20 principal components.
728 Association statistics were reported as log-odds ratios per effect allele with
729 corresponding standard errors and p-values.

730 Validation of novel loci

731 Novel lead SNPs were defined from the discovery case–case GWAS and MTAG
732 analyses (see manuscript **Methods**). For each locus, the discovery beta and
733 standard error were taken from the analysis in which the SNP was originally
734 reported. When a lead SNP appeared in both the case–case GWAS and MTAG, the
735 MTAG estimate was used. The corresponding SNPs were extracted from our
736 individual-level case–case GWAS (with positions lifted over from GRCh37 to
737 GRCh38). Alleles were harmonized so that effect estimates correspond to the same
738 effect allele across datasets.

739 Concordance between discovery and validation was assessed using several
740 complementary approaches:

741 1. Direction concordance

742 ○ The proportion of SNPs with the same direction of effect was tested
743 against the null expectation of 50% using a binomial test.

744 2. One-sided look-ups

745 ○ For each lead SNP, the one-sided p-value was evaluated in the
746 validation dataset in the discovery-predicted direction of effect, testing
747 whether the SNP showed enrichment of association beyond chance.

748 3. Effect-size concordance

749 ○ Discovery and validation effect estimates were compared directly using
750 correlation and linear regression (validation ~ discovery).
751 ○ Both raw betas (log-odds scale) and standardized Z-scores (β/SE)
752 were considered to account for differences in effect size scaling.

753

754 Seventeen novel loci with 18 corresponding lead SNPs were identified in the
755 discovery analysis (locus 99, mapped to *NFATC3*, was tagged by two distinct variants:

756 rs8059305 in CC-GWAS and rs12599178 in CC-MTAG), Of these, 17 lead SNPs were
757 present in the validation cohort, corresponding to 16 novel loci. For the 17 lead
758 SNPs, we first assessed concordance in the direction of effect between discovery
759 and validation. Sixteen of the 17 SNPs (94.1%) shared the same direction of effect,
760 significantly greater than the 50% expected under the null (binomial test, $p =$
761 0.000137).

762 We next performed one-sided look-ups for the 17 lead SNPs to test whether the
763 validation GWAS showed enrichment of association in the discovery-predicted
764 direction. Under the null hypothesis of 5% replication by chance, fewer than one
765 SNP would be expected to reach nominal significance. In contrast, 11 of the 17
766 SNPs (64.7%) did so in the validation dataset, representing a highly significant
767 enrichment (binomial test, $p = 4.6 \times 10^{-11}$).

768 To further evaluate concordance, we compared effect sizes between discovery and
769 validation. Effect directions were highly correlated ($r = 0.83$, $p = 3.3e-5$), although
770 effect estimates were generally larger in the validation dataset due to differences in
771 scale (**Supplementary Figure 7** and **Supplementary Figure 8**). Forest plots of
772 individual loci illustrate the consistency in direction of effect across discovery and
773 validation.

774 Validation of CASQ2 variant

775 The enrichment of the CASQ2 lead SNP was assessed separately in individuals in
776 the HCM and DCM cohorts that pass QC (described above) relative to non-Finnish
777 European (NFE) population controls from gnomAD (v4.1). Enrichment was evaluated
778 using Fisher's exact tests (one sided p-value) under three genetic models: (i) an
779 additive model, testing enrichment of the effect allele in cases versus controls; (ii) a
780 dominant model, testing enrichment of effect-allele carriers (heterozygous +
781 homozygous) versus non-carriers; and (iii) a recessive model, testing enrichment of
782 homozygous effect-allele carriers versus all other genotypes.

783 The discovery GWAS identified a novel locus associated with increased risk of both
784 HCM and DCM, with the lead variant corresponding to a missense substitution in
785 CASQ2 (p.Thr66Ala). We validated this signal by comparing allele and genotype
786 counts in HCM and DCM cases with population reference data from non-Finnish
787 European individuals in gnomAD (v4.1).

788 Across 1,158 HCM and 1,525 DCM cases, we observed enrichment of the effect
789 allele relative to gnomAD controls under multiple inheritance models. In an additive
790 model, the effect allele was significantly enriched in both HCM (OR = 1.14, one-sided
791 p = 0.002) and DCM (OR = 1.07, one-sided p = 0.037). Interestingly, however, the
792 strength of association differed under dominant and recessive models. In a dominant
793 model, carriers of the effect allele (heterozygotes and homozygotes) were
794 significantly enriched in HCM cases compared with gnomAD (OR = 1.20, one-sided
795 p = 0.001), whereas DCM cases were not significantly enriched. By contrast, under a
796 recessive model, homozygous carriers were significantly enriched in DCM relative to
797 gnomAD (OR = 1.19, one-sided p = 0.027), but not in HCM.
798 Together, these results suggest a dosage-dependent relationship: heterozygous
799 carriers of the CASQ2 variant appear more likely to develop HCM, whereas
800 homozygous carriers are enriched among DCM cases.

801

802 Validation of case-case PGS

803 Polygenic scores (PGS) were calculated for 1,158 HCM cases and 1,525 DCM
804 cases that passed sample and variant quality control and were included in the
805 validation GWAS, together with 7,296 population control individuals from the UK
806 Biobank. Three PGS were derived for each individual: an HCM PGS, a DCM PGS,
807 and a case–case (CC) PGS. Each score was generated by summing the number of
808 effect alleles carried, weighted by per-allele effect sizes estimated using SBayesRC
809 from the respective MTAG summary statistics. The first 20 genetic principal
810 components (PCs) were calculated for each individual using gnomAD loadings. To
811 minimise confounding by population structure, ancestry adjustment was performed in
812 two stages using UK Biobank controls only. First, a linear model was fitted with the
813 PGS as the outcome and the first 20 PCs as predictors to model ancestry-related
814 differences in the PGS mean. The squared residuals from this model were then
815 regressed on the same PCs to capture ancestry-related differences in variance. Both
816 models were applied to all samples to predict the expected mean and variance of the
817 PGS given ancestry, and each raw PGS was adjusted by subtracting the predicted
818 mean and dividing by the predicted standard deviation. The resulting ancestry-

819 adjusted scores were then standardised using the mean and standard deviation of
820 the control group, yielding z-scored values with mean 0 and variance 1 in controls.
821 To validate whether each PGS could discriminate DCM cases from HCM cases, we
822 fitted logistic regression models with DCM versus HCM status as the outcome. All
823 models were adjusted for the first 20 ancestry PCs; sex was included as a covariate
824 except in univariate models. From these models, we derived performance metrics
825 including: (i) the log-odds ratio per standard deviation increase in PGS, (ii) the area
826 under the receiver operating characteristic curve (AUC, univariate model), (iii) the
827 area under the precision–recall curve (AUPRC, univariate model), and (iv) the
828 improvement in Nagelkerke’s pseudo- R^2 .

829

830 We assessed whether case–case GWAS data could be leveraged to position
831 individuals along the polygenic spectrum of cardiomyopathy using genome-wide
832 genetic data. To this end, we constructed polygenic scores (PGS) from MTAG
833 summary statistics for DCM (PGS-DCM), HCM (PGS-HCM), and the case–case
834 analysis (PGS-CC), and tested their performance in an independent validation cohort
835 comprising 1,158 HCM cases, 1,525 DCM cases, and 7,296 controls from the UK
836 Biobank. PGS-CC provided the strongest discrimination between DCM and HCM,
837 with an odds ratio of 3.12 per standard deviation (95% CI 2.83–3.44; $p = 3.1 \times 10^{-132}$), and the highest predictive performance (AUC = 0.85, AUPRC = 0.84) (Figure
838 5).

839

840

841

842 Drugability

843 To assess the therapeutic potential of prioritized genes, we performed a
844 comprehensive druggability annotation by integrating tractability profiles from the
845 Open Targets Platform (queried April 2025)³⁶ with quantitative predictions from
846 DrugnomeAI³⁷ (**Methods**). Among the 146 prioritized genes across 113 loci identified
847 across all summary statistics (DCM, HCM, CC GWAS/MTAG) and the shared-effects
848 meta-analysis, 12 (8.2%) were classified as “Very High tractability” due to existing
849 approved drugs, and an additional 6 (4.1%) had “High tractability” based on late-
850 stage clinical development. Another 49 genes (33.6%) showed moderate to low-
851 moderate tractability, supported by structural or mechanistic features, and represent
852 promising targets for preclinical investigation. A large proportion of genes (69, or
853 47.3%) had only minimal supportive evidence, and 10 genes (6.8%) lacked any
854 tractability annotation—potentially reflecting unexplored biology rather than true
855 undruggability. (**Supplementary Table 13**) In addition to categorical annotations,
856 we incorporated DrugnomeAI, a machine learning framework that predicts
857 druggability using 324 gene-level features across 15 data sources, including protein-
858 protein interaction networks, expression profiles, and functional annotations. For
859 each gene, we extracted Tier 1, Tclin, and combined Tier1+Tclin probability scores
860 from DrugnomeAI. The Tclin score reflects the likelihood that a gene encodes a
861 target of a drug with established clinical evidence—namely, compounds that have
862 entered human clinical trials. The Tier 1 score estimates the probability that a gene
863 encodes a target of an FDA-approved therapeutic agent. These probabilities are
864 derived using a semi-supervised learning framework trained on the features of
865 known drug targets, integrating 324 gene-level features across 15 biological and
866 pharmacological data domains (e.g., protein interaction networks, gene expression,
867 structural data, and functional annotations). Higher scores in either category suggest
868 greater alignment with attributes of clinically validated targets and thus higher
869 potential for successful pharmacologic intervention. Quantitative scores from
870 DrugnomeAI highly correlated with therapeutic profiles from OpenTargets, with
871 median scores ranging from 0.975 in the approved drug category to 0.027 among
872 genes with no tractability annotation. This concordance across different scoring
873 systems supports the robustness of our prioritization framework and identifies a set
874 of gene targets with strong translational potential.

875 To identify the most translationally promising targets, we first focused on genes with
876 either existing pharmacological agents or high druggability likelihood (Tclin+Tier1
877 probability > 0.4, DrugnomeAI). In total, 35 prioritized genes met these criteria, of
878 which 18 have been previously targeted in drug development efforts. Notably, drugs
879 for 12 of these genes have reached the market.(**Extended Data Figure 9a,b**).

880 While many of the known drugs targeting prioritized genes were developed for
881 cancer (e.g., regorafenib for *RAF1*³⁸, afatinib for *ERBB4*³⁹), a subset also
882 demonstrates direct relevance to cardiovascular and neuromuscular
883 diseases.(**Supplementary table 11, Extended Data Figure 7a,b**) For instance,
884 *PDE3A* is the target of milrinone, a phosphodiesterase inhibitor approved for acute
885 heart failure, where it enhances myocardial contractility and reduces afterload.⁴⁰
886 *ADM* (Adrenomedullin) is another cardiovascular-relevant target; a non-neutralizing
887 antibody (adrenomedullin) has advanced to phase II trials in heart failure and sepsis,⁴¹
888 and circulating levels of its prohormone (MR-proADM) are used as a biomarker of
889 hemodynamic stress^{42,43}. Additionally, some drugs, that has initially been used for
890 non-cardiac reasons, might also hold promise to be applied in cardiovascular
891 treatment. For example, *PGR* (Progesterone receptor) is primarily known for its role
892 in reproductive physiology, however genetic variation near the *PGR* locus—
893 particularly in the intergenic region between *PGR* and *TRPC6*—has been associated
894 with hypertensive disorders of pregnancy (HDPs), including preeclampsia. *TRPC6*
895 encodes a calcium-permeable channel involved in renal function and blood pressure
896 regulation. Nearby, *ARHGAP42*, which modulates vascular tone, has shown reduced
897 expression in preeclamptic placentas. Together, these findings suggest that the
898 broader *PGR* region may contribute to vascular regulation and highlight it as a
899 potential target for therapeutic exploration in cardiovascular and hypertensive
900 conditions.⁴⁴ *GNRHR*, which emerged as a prioritized gene in our CC-GWAS
901 analysis, encodes the gonadotropin-releasing hormone receptor and is the molecular
902 target of abarelix, a GnRH antagonist developed for prostate cancer. While there is
903 currently no direct evidence linking *GNRHR* itself to cardiovascular disease, related
904 hormonal pathways may be relevant. Notably, *GNRH1*, which encodes the ligand for
905 *GNRHR*, has been shown in Mendelian randomization studies to be positively
906 associated with increased risk of ischemic heart disease (IHD). This suggests that
907 pharmacologic modulation of the GnRH axis—while originally intended for oncologic

908 indications—could have broader systemic effects, including potential relevance in
909 cardiovascular contexts.⁴⁵

910 Notably, *RPL22* exhibits low tractability and druggability based on both structural and
911 clinical evidence. However, it has been listed among the targets of ataluren, a drug
912 approved for Duchenne muscular dystrophy. Rather than acting selectively on
913 *RPL22*, ataluren is believed to exert a broad mechanism of action by modulating the
914 translational machinery. It affects multiple ribosomal components, including *RPL22*,
915 with a total of 78 annotated protein targets. This suggests that *RPL22* may not be the
916 primary pharmacologic target, and its inclusion likely reflects the pleiotropic effects of
917 ataluren on ribosomal function. (**Supplementary Table 13**)

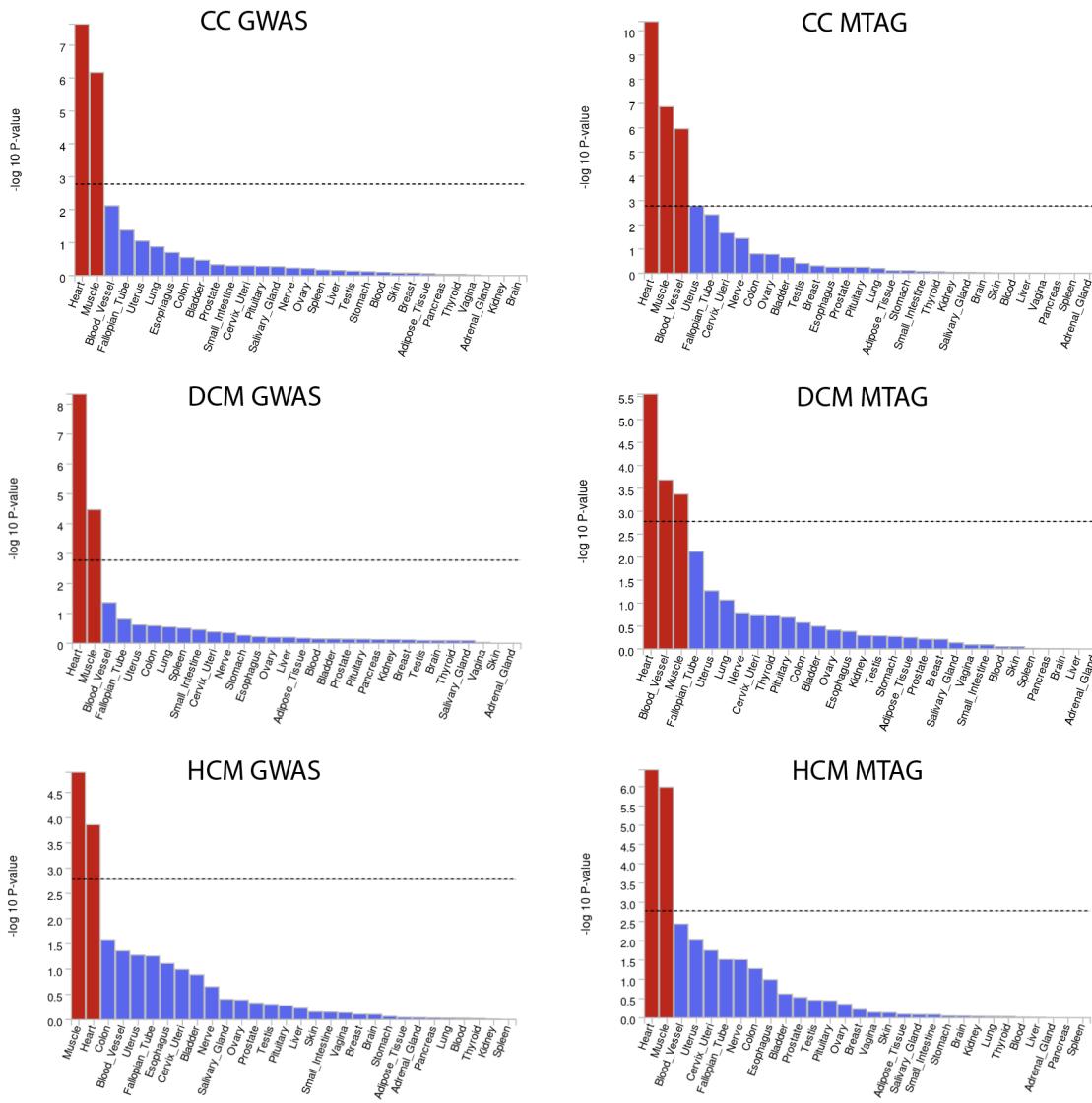
918

919 Among the prioritized genes without clinically developed drugs, several nonetheless
920 demonstrated high tractability based on the availability of chemical probes
921 (**Extended Data Figure 9d-f**). A chemical probe is a highly potent, selective, and
922 cell-permeable compound that binds to a target protein and modulates its function in
923 a predictable and reversible way. It serves as a tool to study the biology of that
924 target. If a high-quality chemical probe exists for a gene product, it's strong evidence
925 that the protein is ligandable (i.e., it can bind a small molecule), which supports the
926 tractability of that target for drug development.

927 Notably, targets such as *PLK2*, *MAP3K7*, and *KAT2B* were supported by multiple
928 probes, including high-quality entries as defined by established scoring frameworks
929 (**Methods**). This provide valuable opportunities for early-phase preclinical
930 investigation, offering routes for target validation, mechanistic dissection, and
931 pharmacological modulation in the absence of approved compounds. For instance,
932 *MAP3K7* (*TAK1*), a serine/threonine kinase central to stress and inflammatory
933 signaling, represents a compelling druggable candidate in cardiomyopathy. It is
934 supported by two validated chemical probes and has been shown to regulate key
935 signaling pathways downstream of TGF- β , IL-1, and TNF- α . Recent evidence
936 highlights its cardioprotective role in restraining inflammasome activation and
937 pyroptosis under pressure overload, suggesting potential therapeutic relevance in
938 hypertrophy and heart failure. Pathogenic variants in *MAP3K7* have been implicated
939 in congenital syndromes with structural cardiac manifestations. (**Supplementary**
940 **Table 13**)⁴⁶

941 **Supplementary Figures**

942



943

944

945 **Supplementary Figure 1: Tissue enrichment of heritability for**
946 **cardiomyopathy traits from bulk RNA sequencing data in GTEx v8.**

947

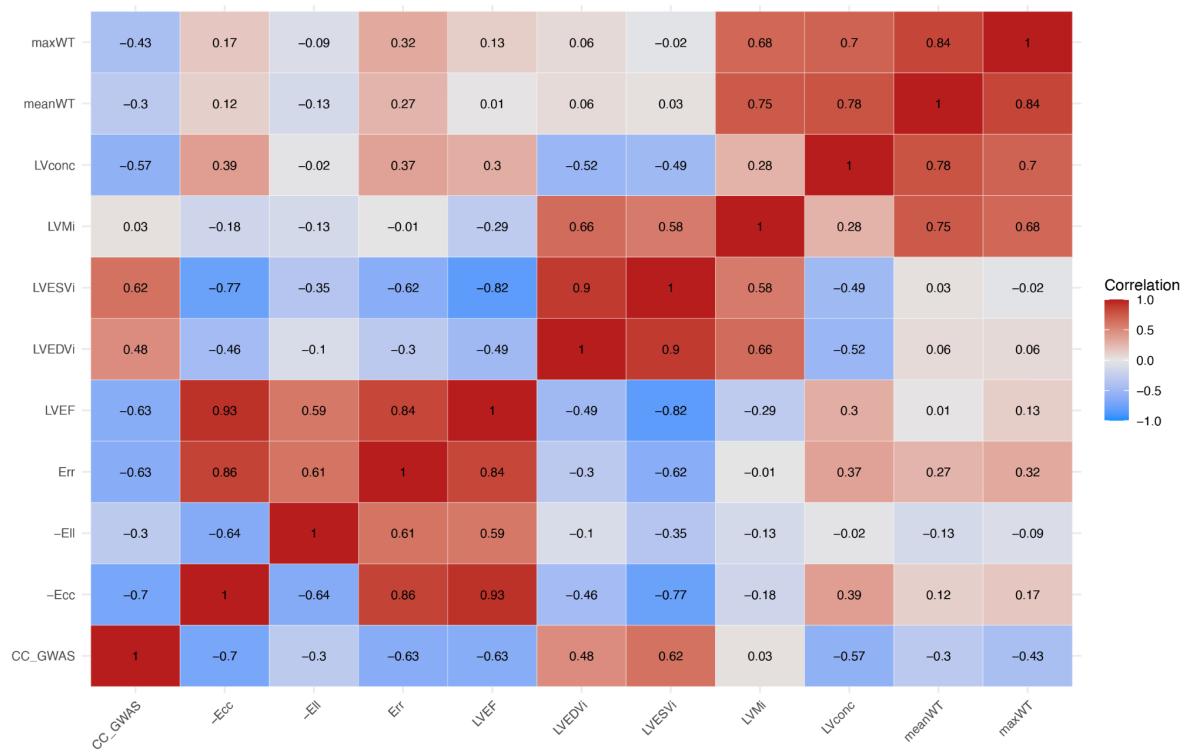
948 Bar plots represent the $-\log_{10}(P)$ values from tissue-specific enrichment analyses,
949 with tissues from GTEx v8 shown on the x-axis. Each panel corresponds to a
950 different GWAS or MTAG result: CC GWAS and CC MTAG (top row), DCM GWAS
951 and DCM MTAG (middle row), and HCM GWAS and HCM MTAG (bottom row).

952 Tissues surpassing the Bonferroni-corrected significance threshold are shown in red;
953 the horizontal dashed line marks the significance cutoff. Tissues are ordered by their
954 significance within each panel.

955 Enrichment *P*-values were obtained using a stratified LD score regression
956 framework; they are unadjusted and can be interpreted as one-sided.

957 **Abbreviations:** GWAS, genome-wide association study; MTAG, multi-trait analysis
958 of GWAS; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; CC,
959 case-case analysis

960



961

962 Supplementary Figure 2: Matrix of genetic correlations between
 963 cardiomyopathy spectrum (from CC GWAS) and left ventricular traits
 964 from cardiac MRI

965 A heatmap of bivariate genetic correlations estimated from GWAS data, showing CC
 966 GWAS and relevant cardiac MRI traits. The color represents the level of genetic
 967 correlation, with red and blue representing positive and negative correlation,
 968 respectively.

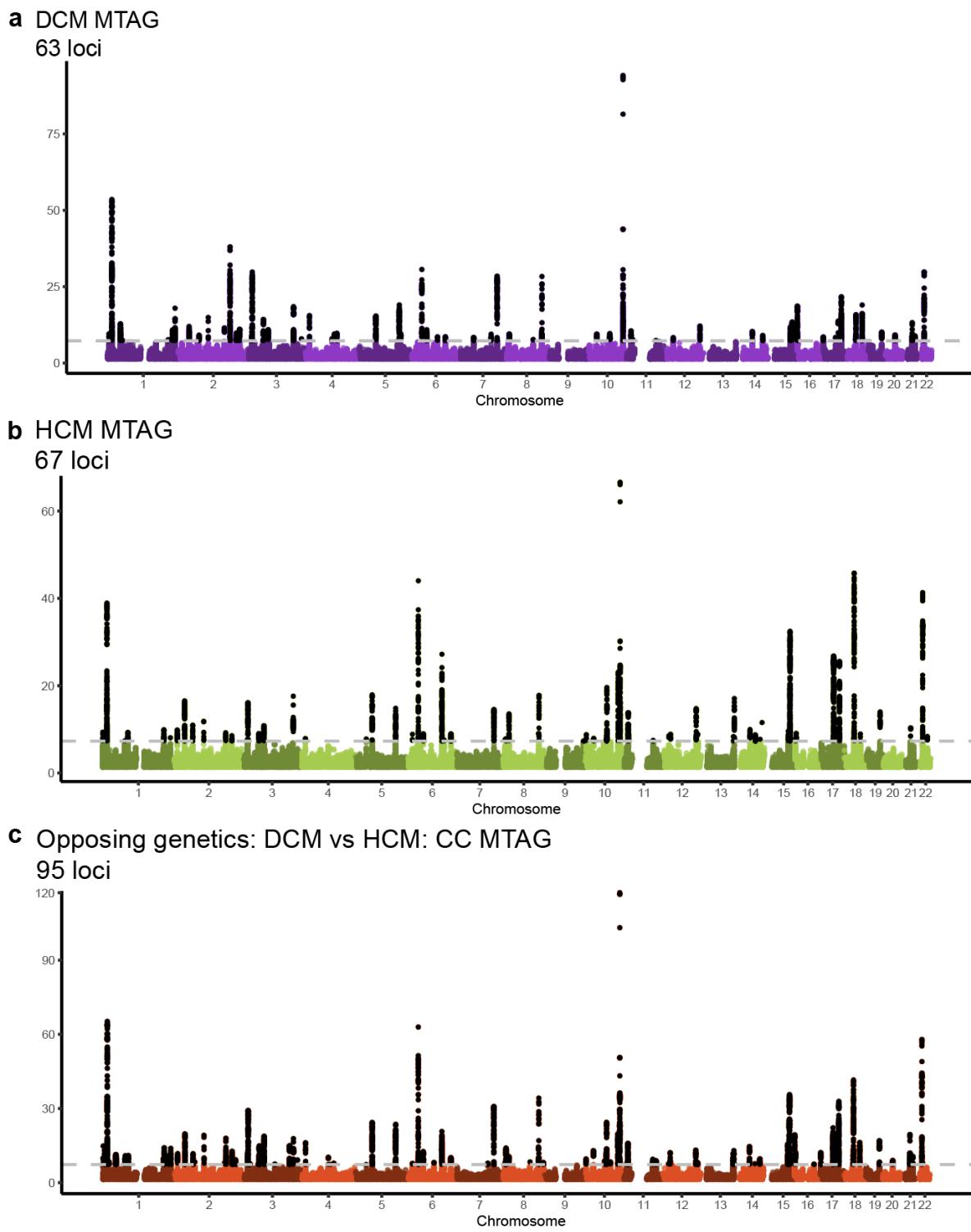
969 Note: CC-GWAS, case-case genome-wide association study; Ecc, global
 970 circumferential strain; Ell, global longitudinal strain; Err, global radial strain; LVEF,
 971 left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume indexed
 972 to body-mass index; LVESVi, left ventricular end-systolic volume indexed to body-
 973 mass index; LVMi, left ventricular mass indexed to body-mass index; Lvconc, left
 974 ventricular concentricity; maxWT, maximum wall thickness; meanWT, mean wall
 975 thickness. Since Ecc and Ell are always negative values, -Ecc and -Ell are plotted to
 976 facilitate interpretation of effect direction.

977

978

979

980



982 Supplementary Figure 3: Manhattan plots for DCM MTAG, HCM MTAG
983 and CC MTAG

984 All panels are Manhattan plots where each dot represents a genetic variant, with
985 genomic positions on the x-axis and -log10 of the association *P*-value on the y-axis.
986 Panels **a** and **b** show results for published DCM MTAG (63 loci) and HCM MTAG (67

987 loci), respectively. Panel **c** shows results for a case-case MTAG (included CC
988 GWAS and MRI traits MTAG), where DCM and HCM are statistically modeled as
989 opposites on a singular genetic spectrum, yielding 95 significant loci.

990

991

992

993

994

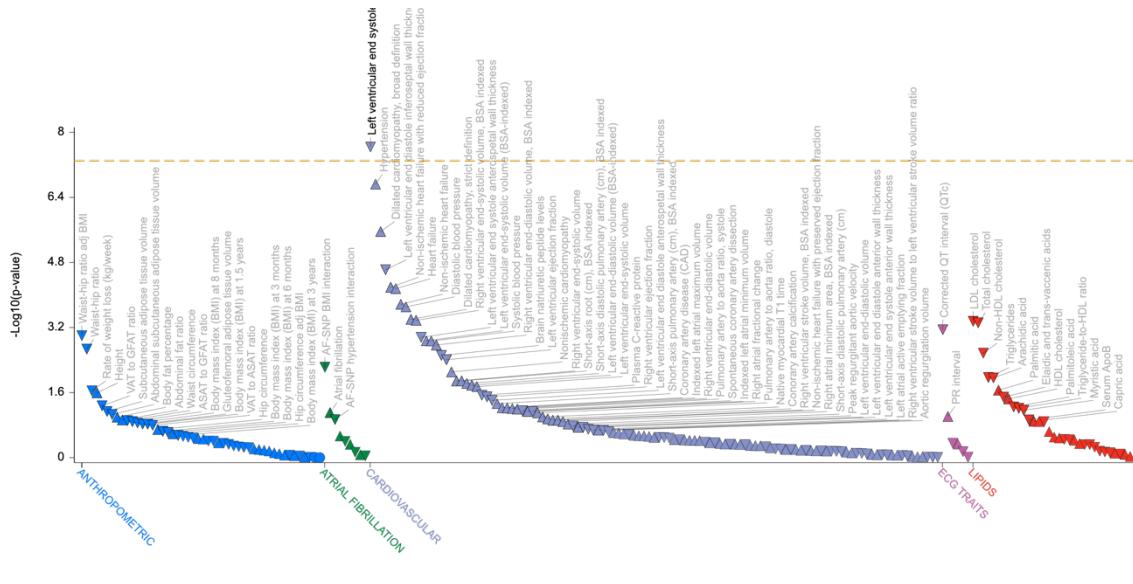
995 Supplementary Figures 4a-s. PheWAS for prioritized gene from 17 novel
996 CC GWAS/CCMTAG (below)

997

998 Panels below show broader results from PheWAS for lead variants of 17 novel CC
999 GWAS/CCMTAG loci using data from the Cardiovascular Disease Knowledge Portal,
1000 specifically showing results from cardiovascular-related traits. The x-axis represents
1001 different traits grouped by trait clusters, while the y-axis represents the -log10 P-
1002 value for the association between the selected variant and the respective traits.
1003 The Variant Page summarizes variant impact predictions and genetic associations.
1004 The variant ID is in the format Chromosome:Position (hg19 genome build):Reference
1005 allele:Alternate allele.

1006

1007

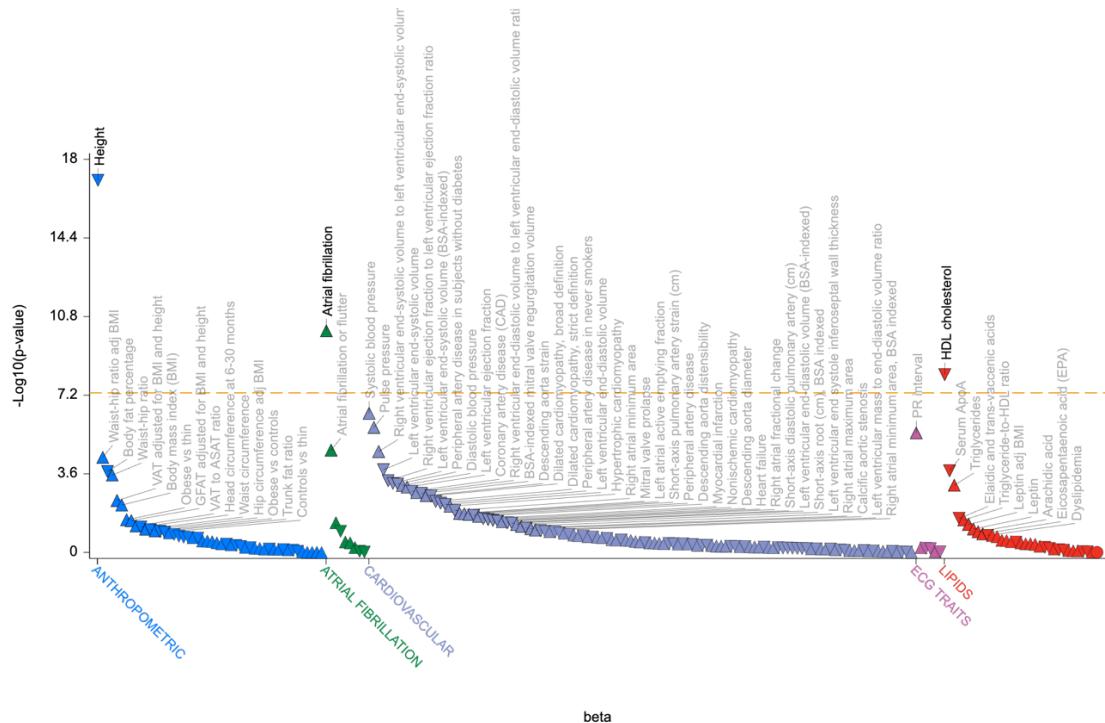


1008

1009 Supplementary Figure 4a: 1:3199217:C:T / rs16823802 PheWAS associations (locus
 1010 2, *PRDM16*)

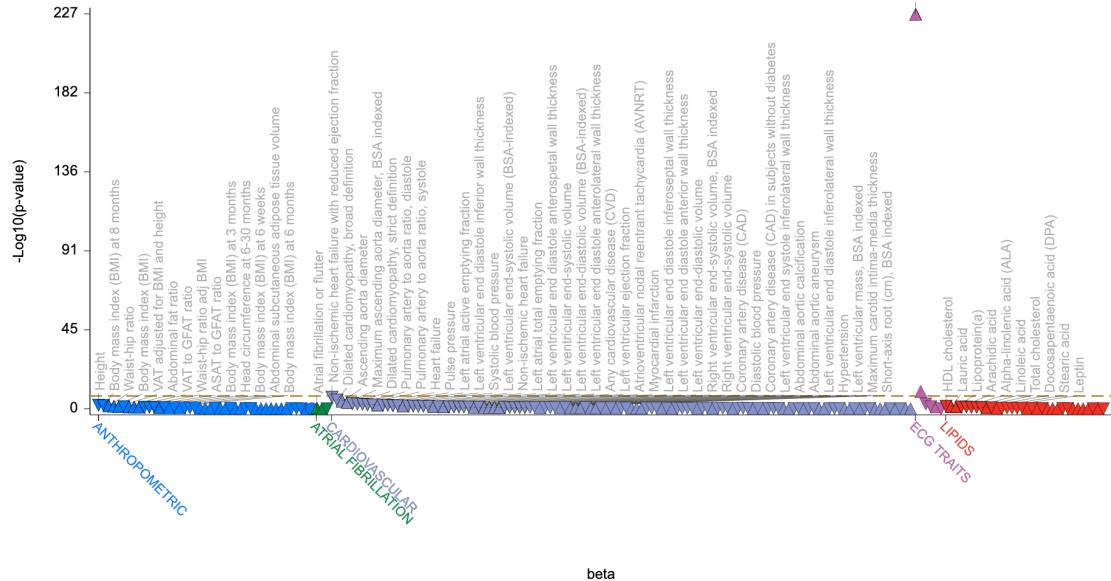
1011

1012

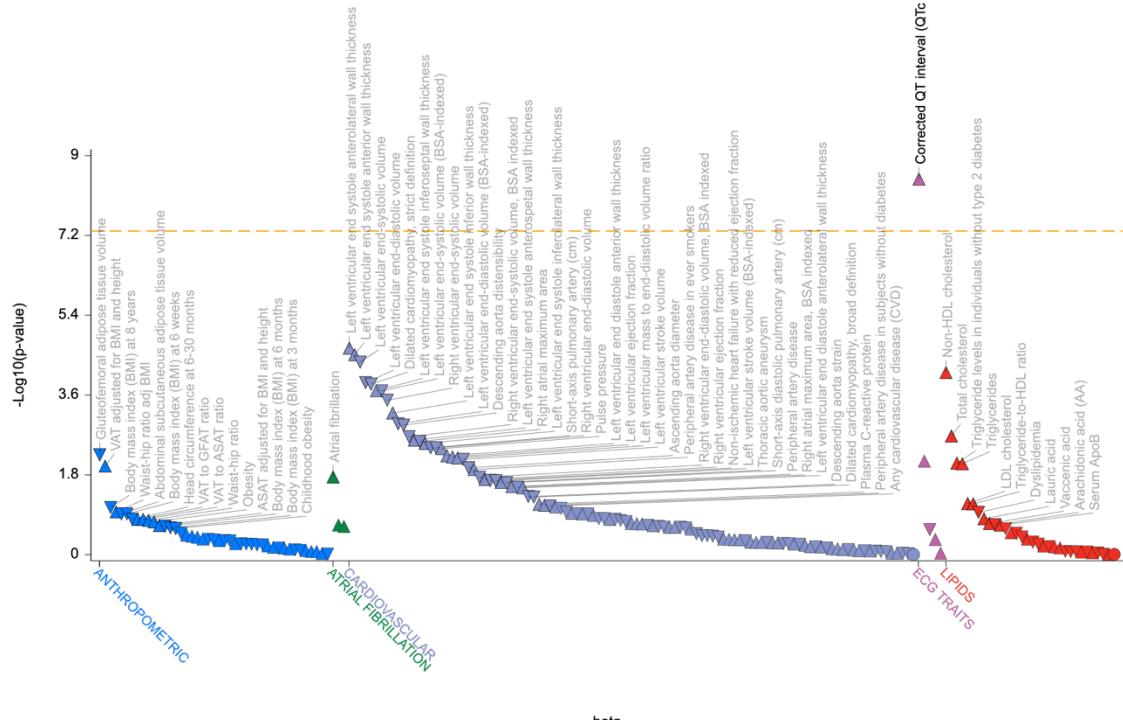


1013

1014 Supplementary Figure 4b: 1:22248881:G:A / rs10799719 PheWAS associations
 1015 (locus 5, *HSPG2*)



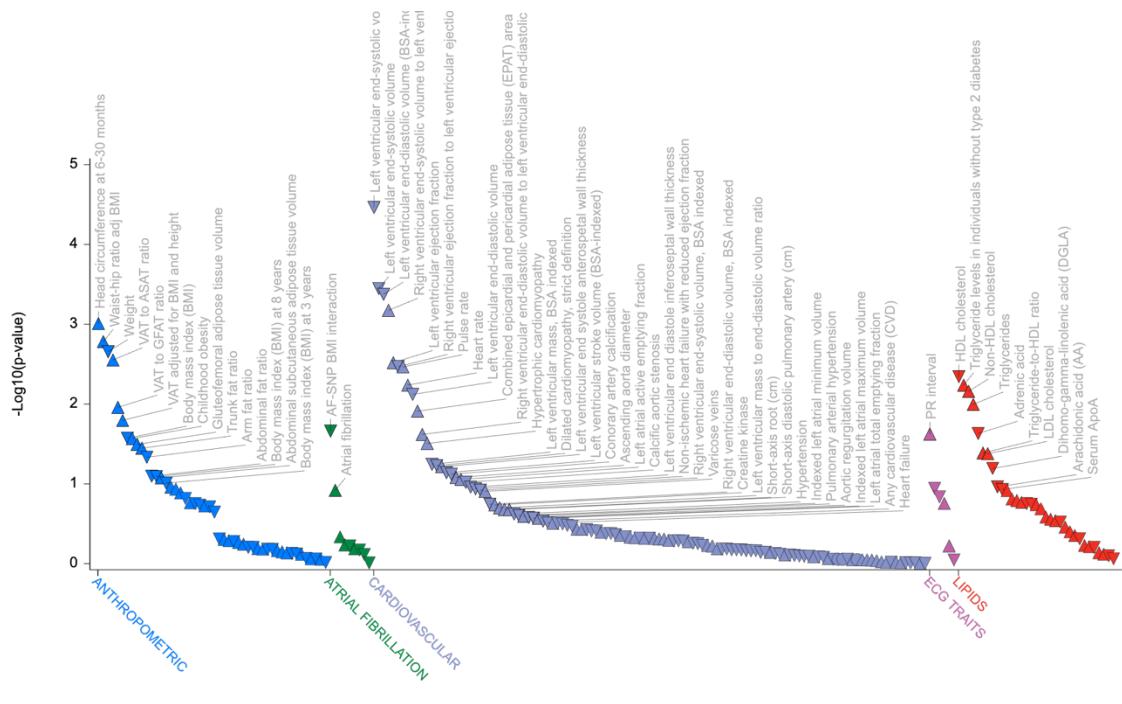
1019



1020

1021

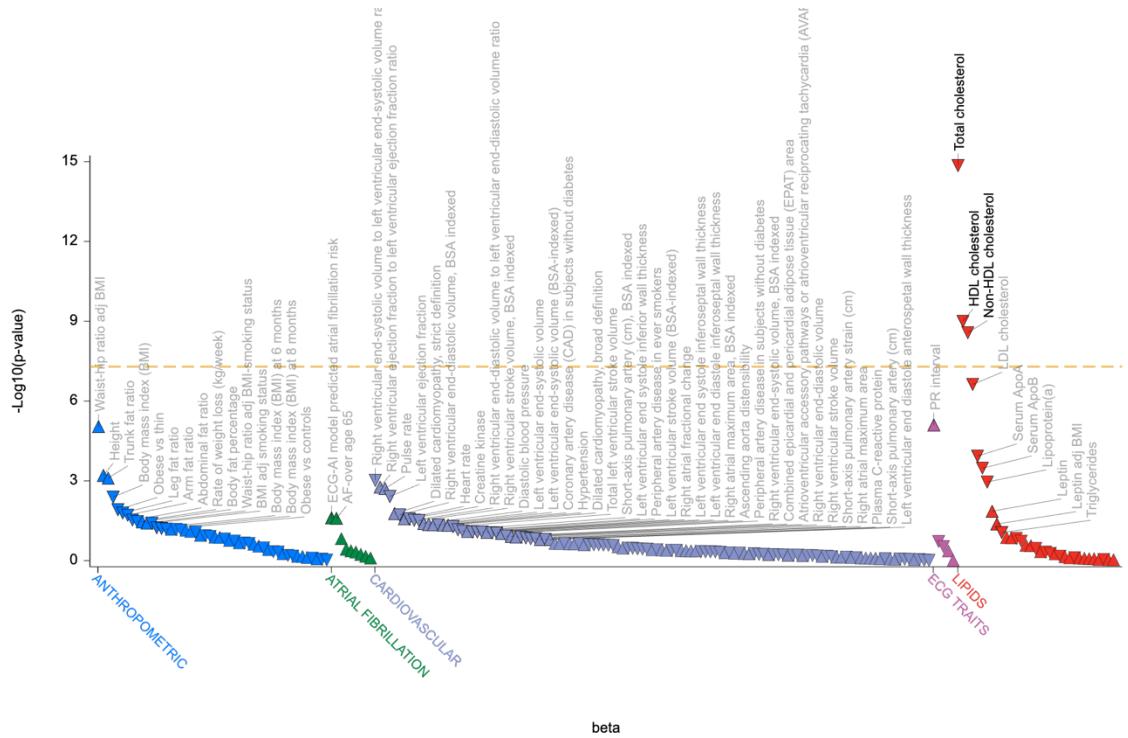
1022 Supplementary Figure 4d: 2:174888351:G:T / rs35717017 PheWAS associations
1023 (locus 22, *SP3*)



1024

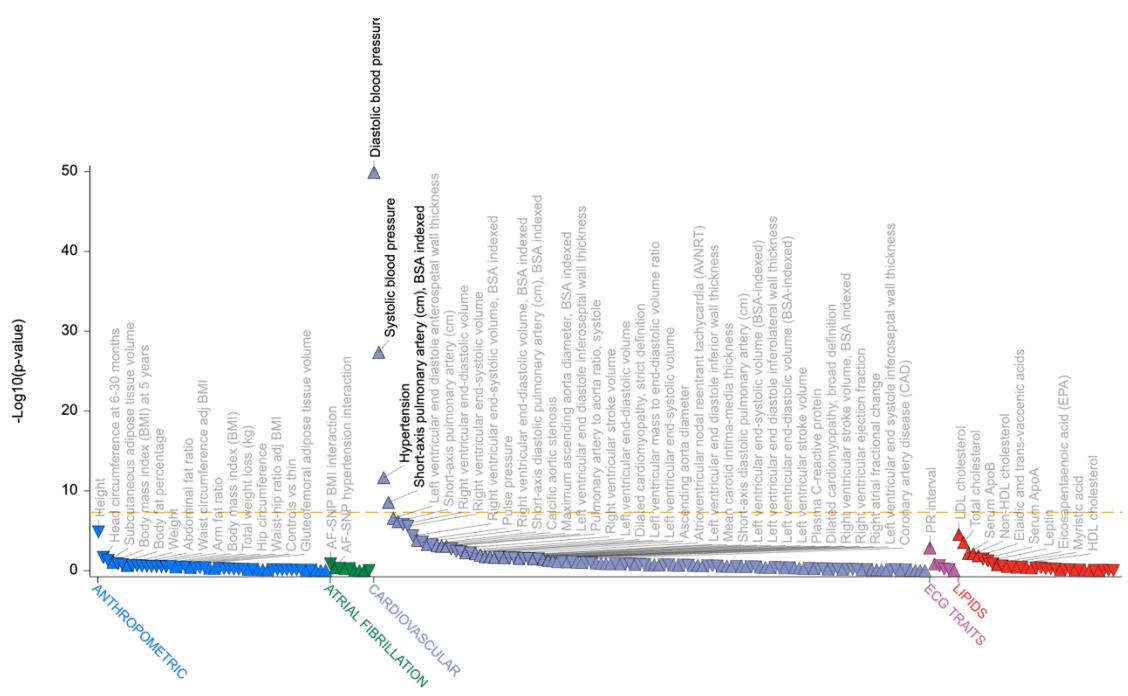
1025 Supplementary Figure 4e: 3:20003611:T:G / rs4241539 PheWAS associations
1026 (locus 29, *KAT2B*)

1027



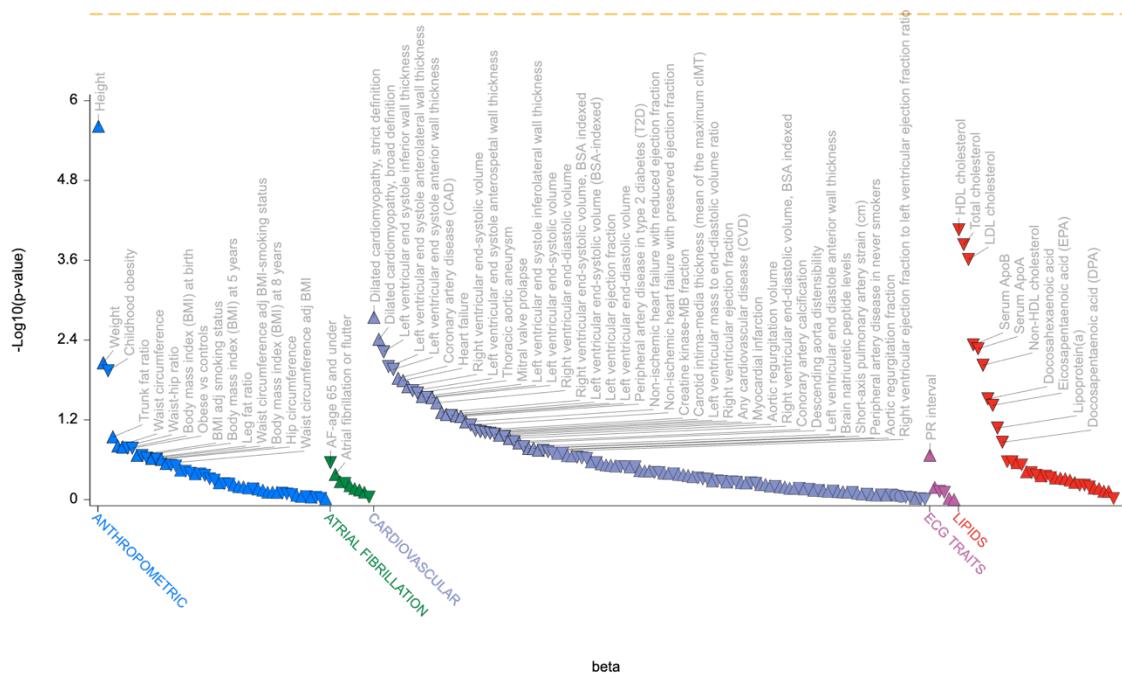
1028

1029 Supplementary Figure 4f: 3:50306249:T:C / rs3806708 PheWAS associations (locus
1030 30, CACNA2D2)



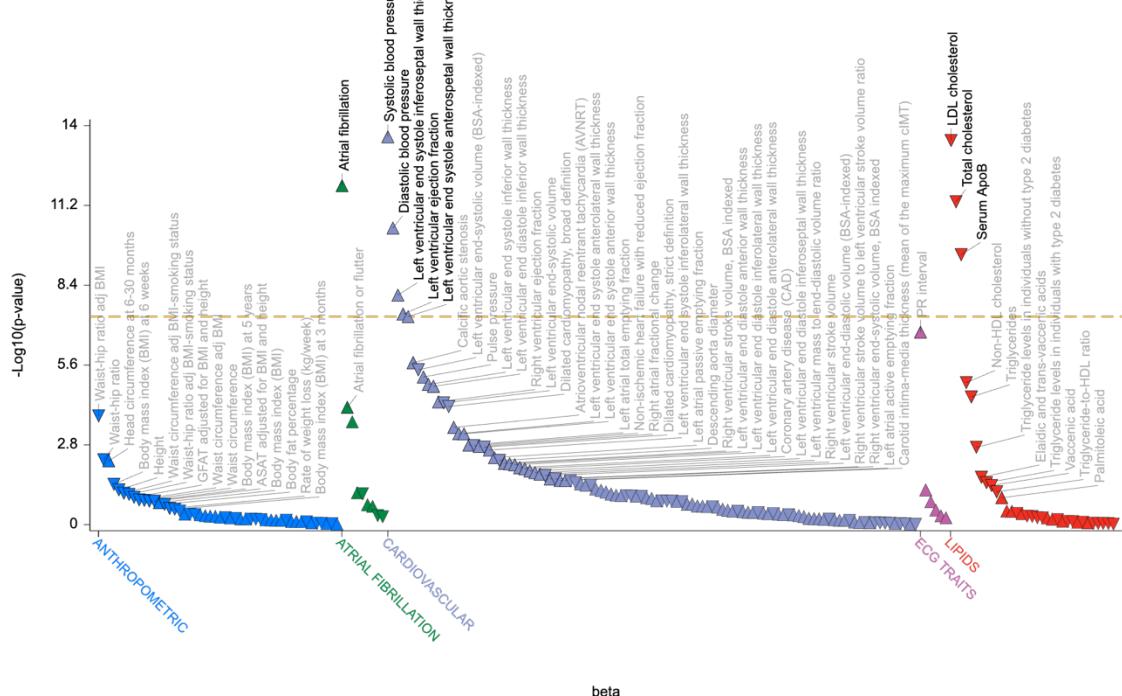
1031

1032 Supplementary Figure 4g: 3:169177924:C:T / rs9850919 PheWAS associations
1033 (locus 35, SEC62/MECOM)



1036

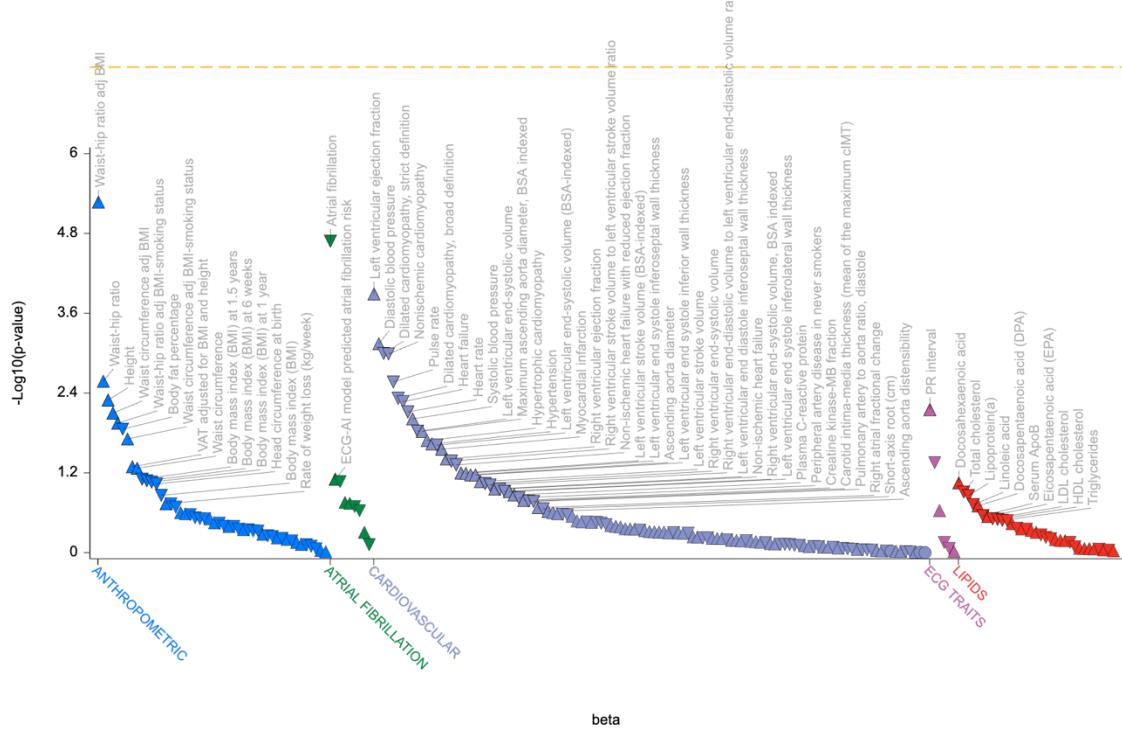
1037 Supplementary Figure 4h: 4:68556786:A:G / rs9998837 PheWAS associations
1038 (locus 39, *GNRHR/UBA6*)



1039

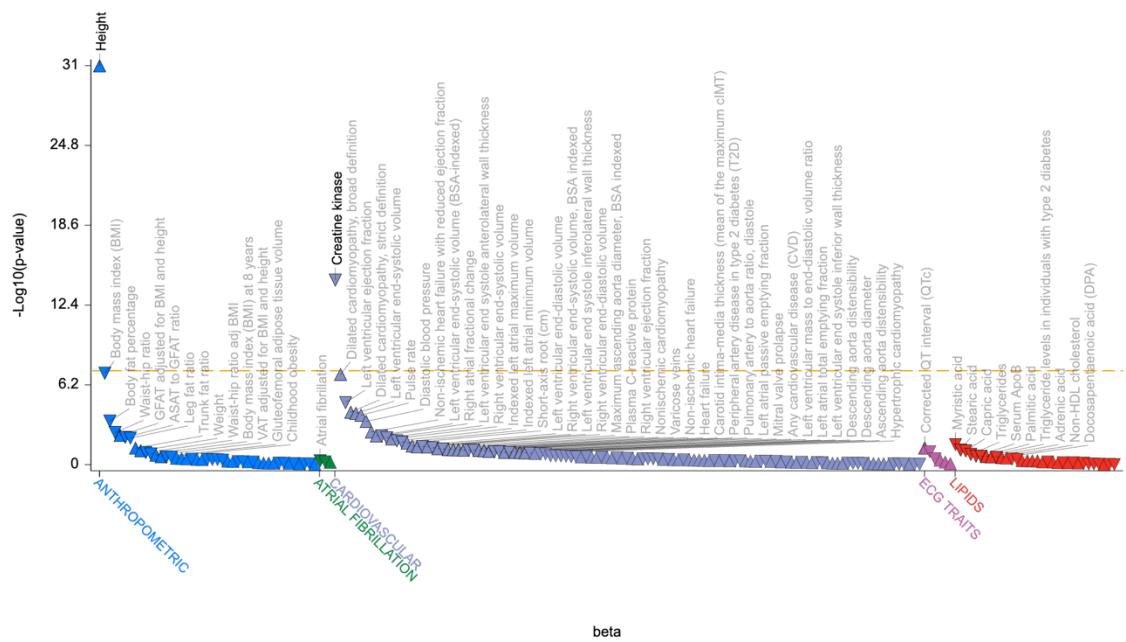
1040 Supplementary Figure 4i: 8:141740868:A:C / rs6994744 PheWAS associations
1041 (locus 65, *PTP4A3/PTK2*)

1042



1043

1044 Supplementary Figure 4j: 9:111865232:C:A / rs7028081 PheWAS associations
1045 (locus 66, *TMEM245*)



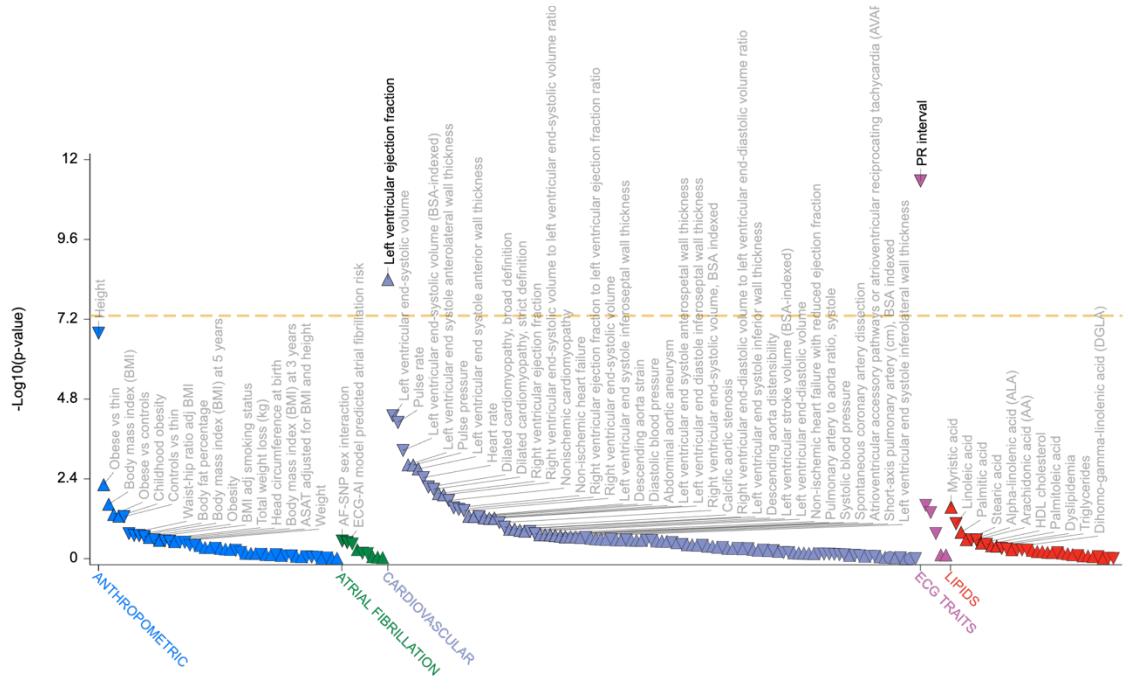
1046

1047 Supplementary Figure 4k: 10:69929058:T:C / rs7911060 PheWAS associations
 1048 (locus 70, *MYPN*)

1049

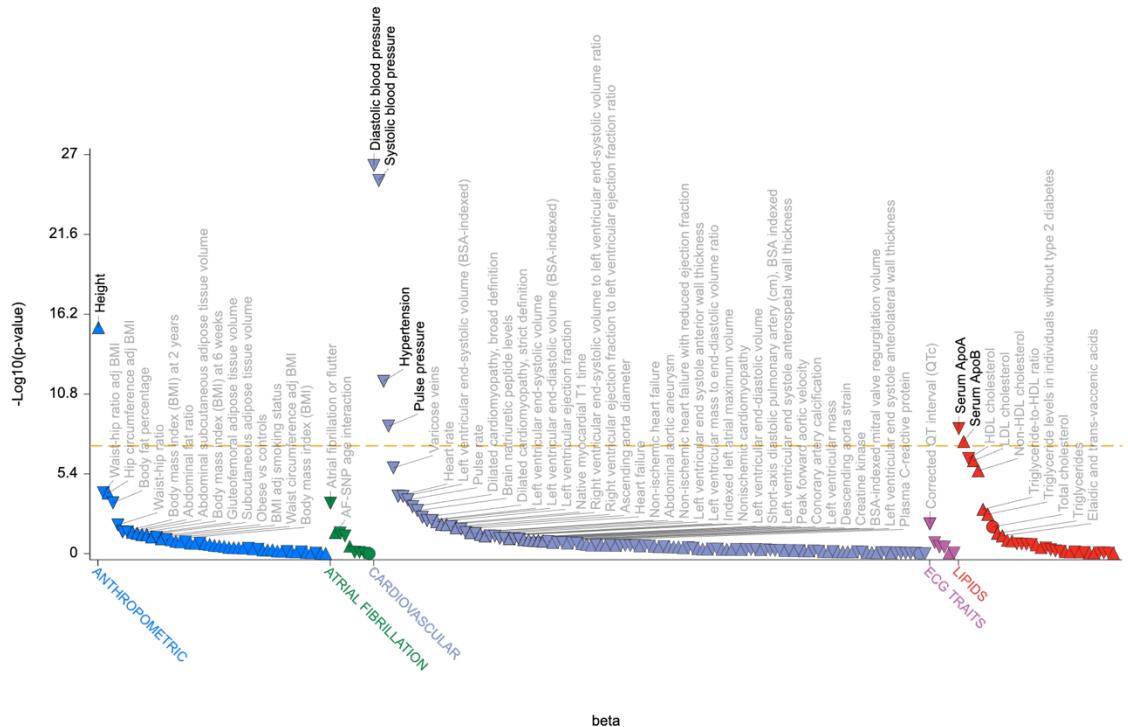
1050

1051



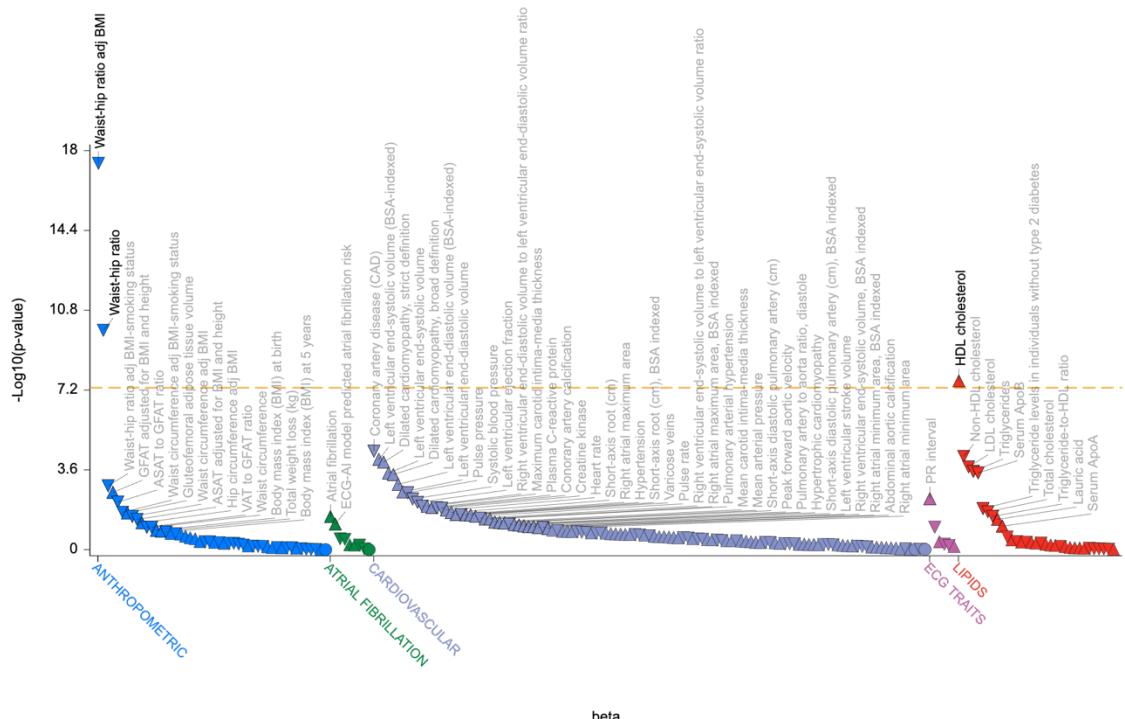
1052

1053 Supplementary Figure 4l: 10:88450058:C:A / rs12251655 PheWAS associations
 1054 (locus 72, *LDB3*)

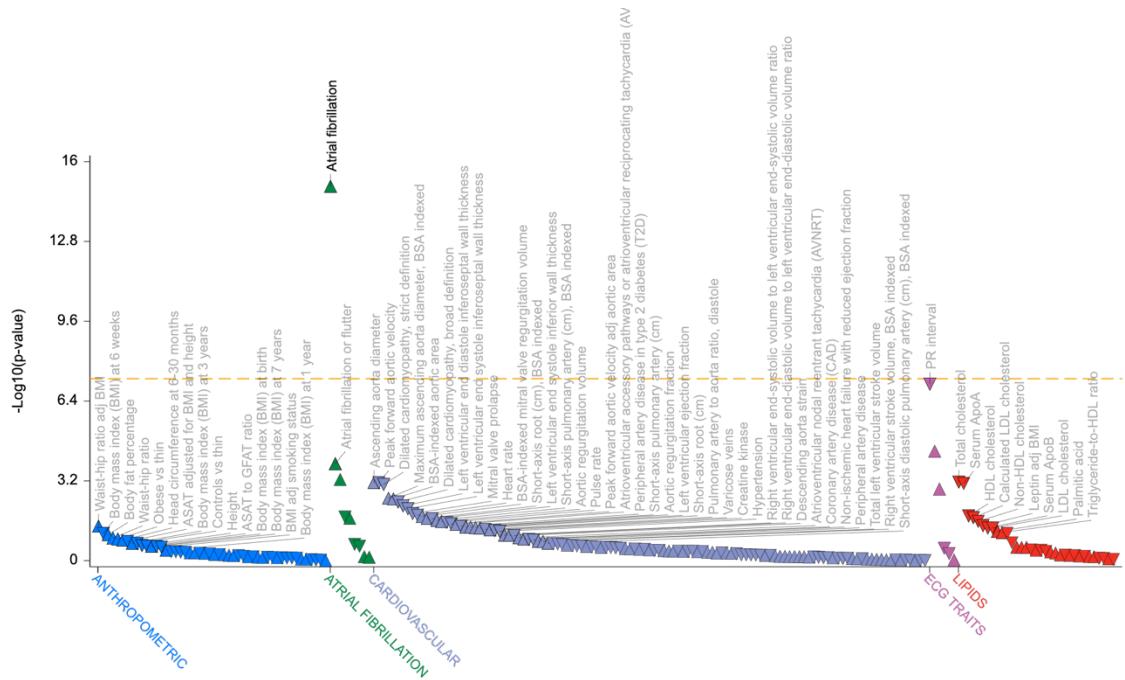


1055

1056 Supplementary Figure 4m: 11:10238974:A:G / rs1822293 PheWAS associations
 1057 (locus 76, *ADM*)

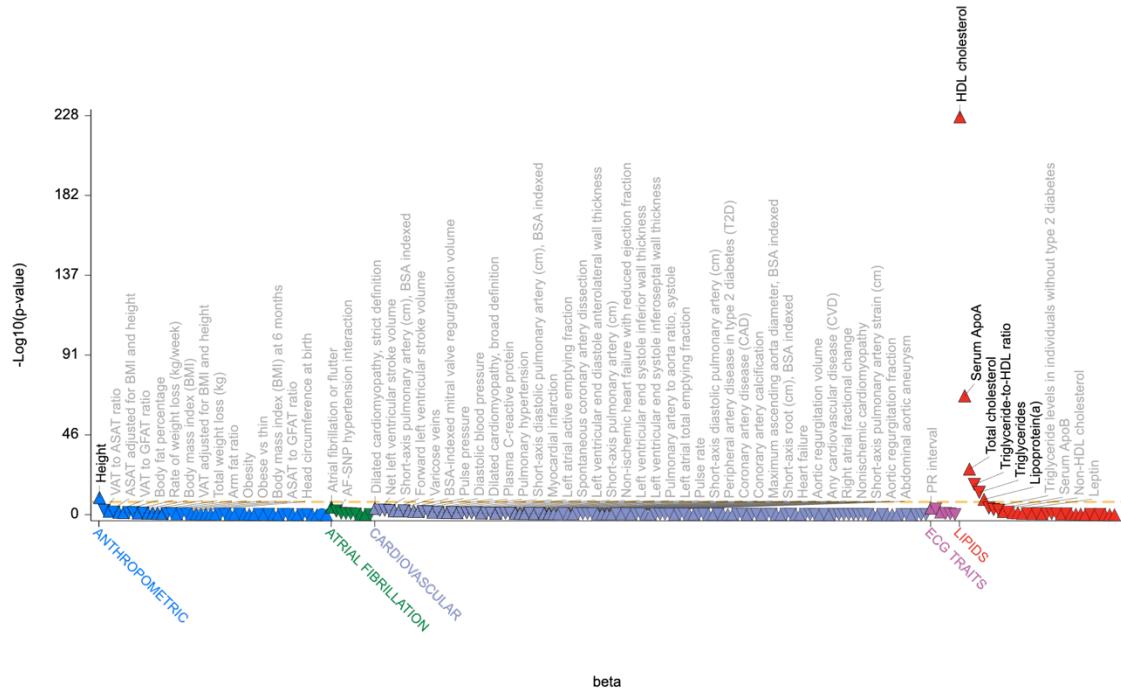


1060 Supplementary Figure 4n: 11:111787962:G:T / rs10891299 PheWAS associations
 1061 (locus 80, CRYAB)



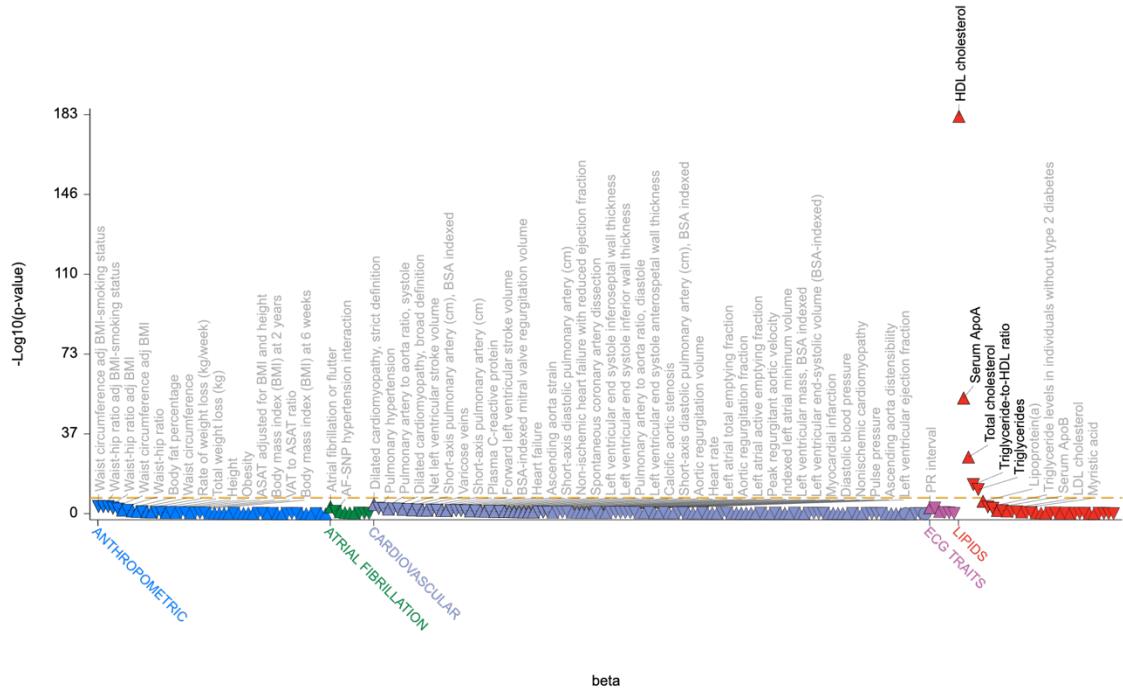
1063 Supplementary Figure 4o: 12:32980161:G:T / rs2045172 PheWAS associations
 1064 (locus 83, *PKP2*)

1065



1066

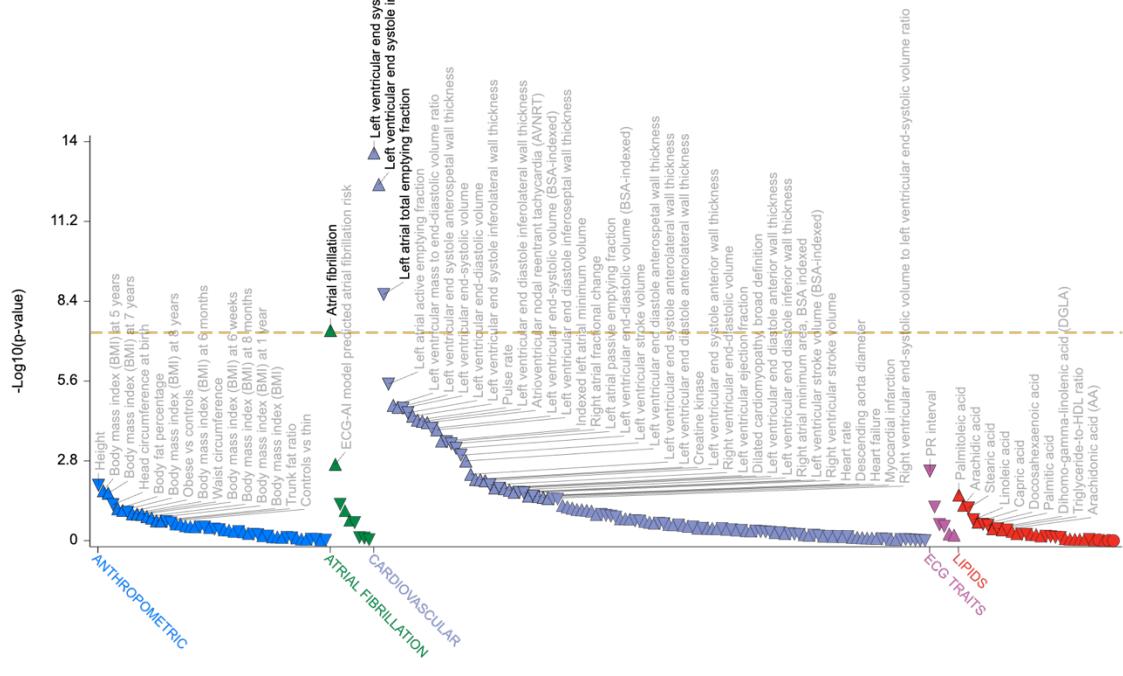
1067 Supplementary Figure 4p: 16:68036666:A:C / rs8059305 PheWAS associations
 1068 (locus 99, *NFATC3*)



1069

1070 Supplementary Figure 4r: 16:68128104:A:G / rs12599178 PheWAS associations
1071 (locus 99, *NFATC3*)

1072



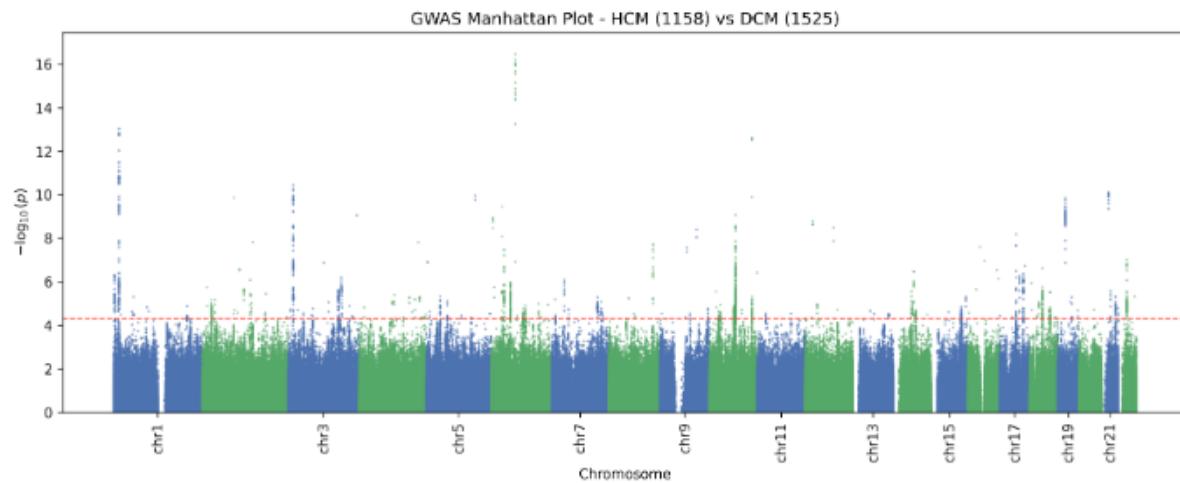
1073

1074 Supplementary Figure 4s: 22:26162902:A:G / rs4820654 PheWAS associations
1075 (locus 112, *MYO18B*)

1076

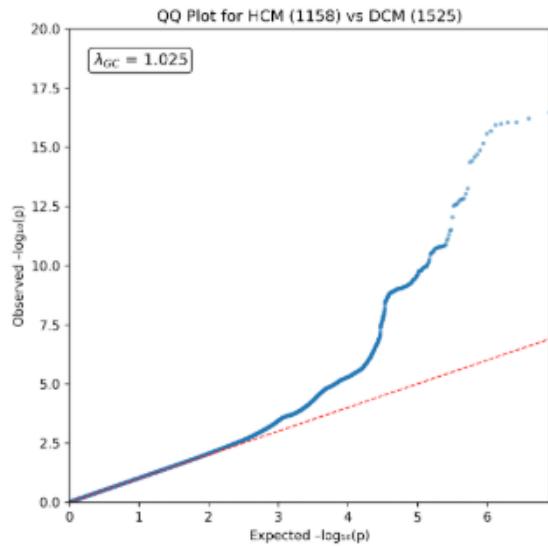
1077

1078



1079

1080 Supplementary Figure 5: Manhattan plot of the replication case-case
 1081 GWAS

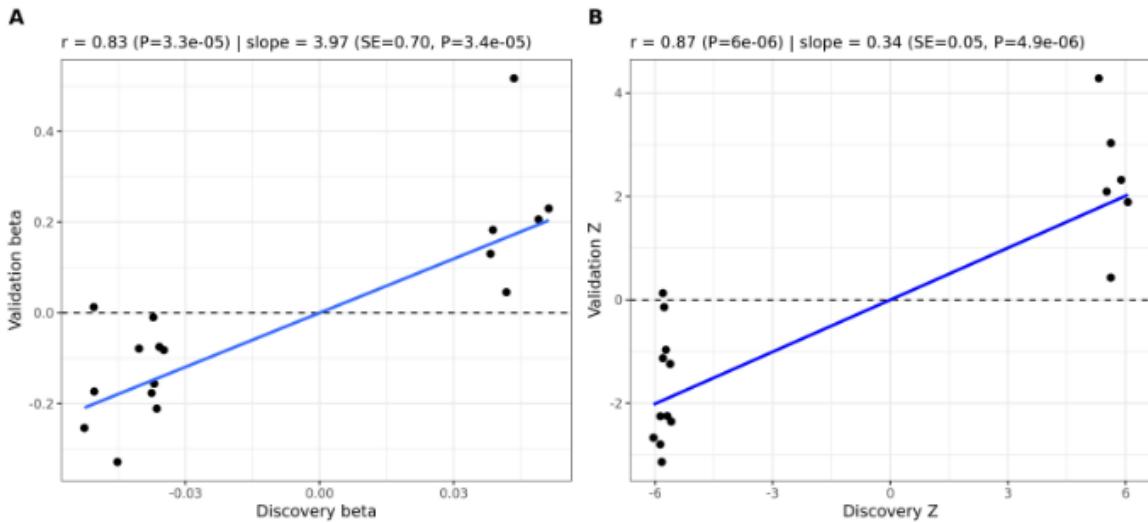


1082

Figure 2: QQ plot of the case-case GWAS (HCM vs DCM).

1083 Supplementary figure 6: QQ plot of the case-case GWAS (HCM vs
 1084 DCM).

1085

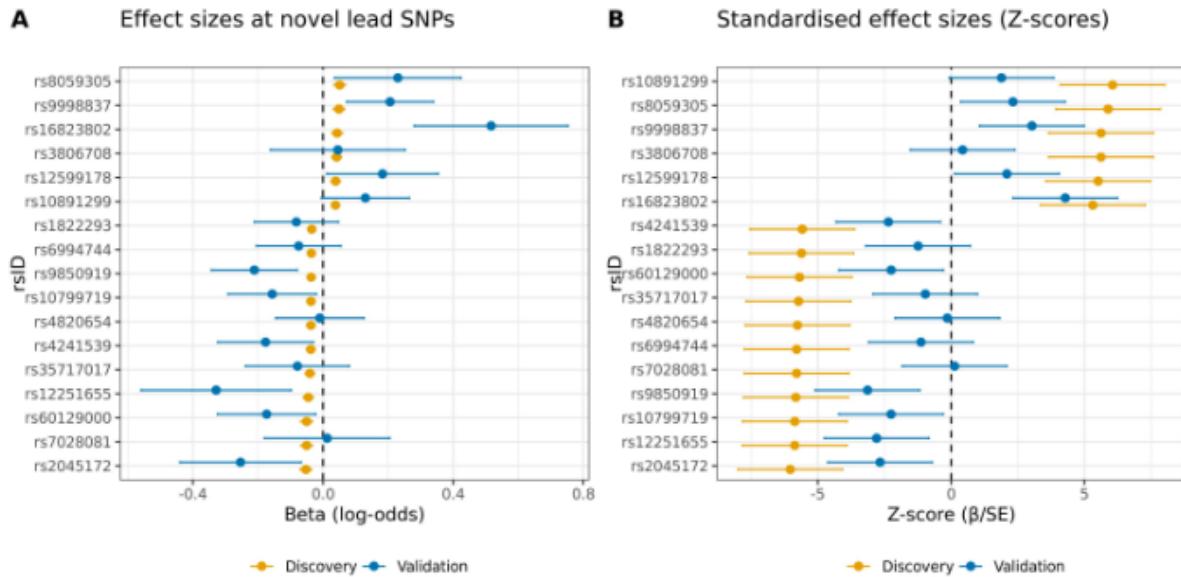


1086

1087 Supplementary figure 7: Scatterplots showing concordance of novel SNP
1088 effect estimates between discovery and validation.

1089 A) correlation of raw betas (log-odds ratios per allele). B) correlation of standardized
1090 effect sizes (Z-scores, β/SE). The solid line shows the fitted regression through the
1091 origin.

1092

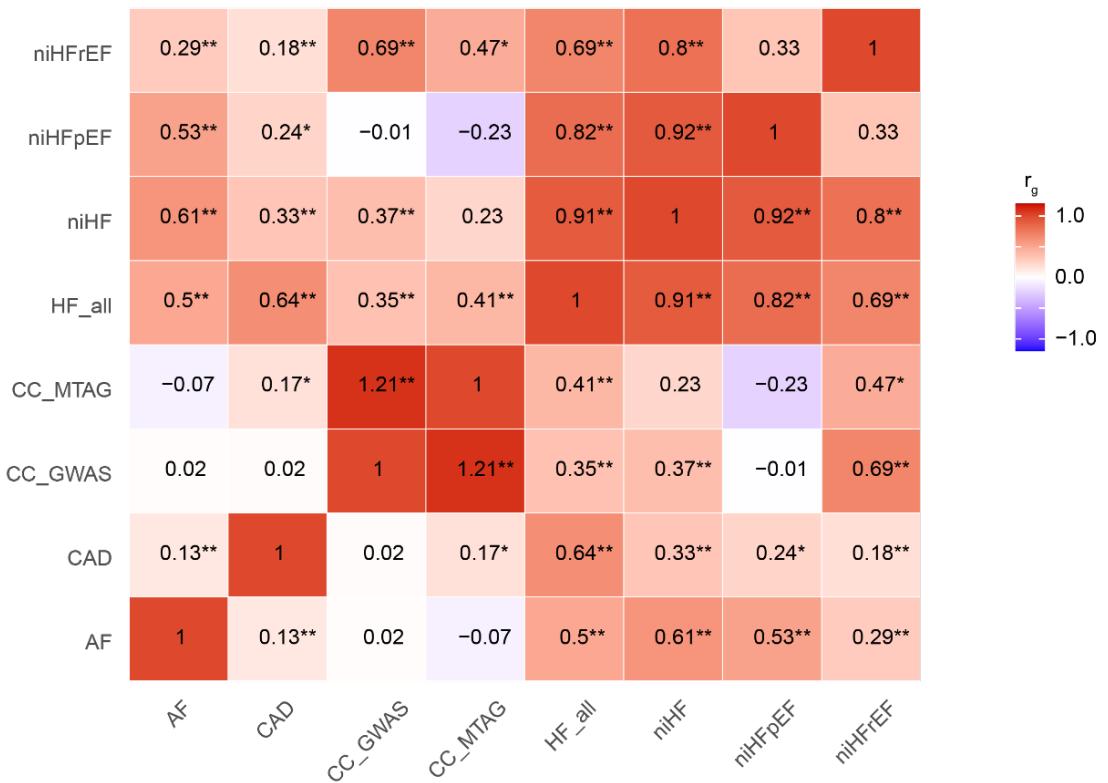
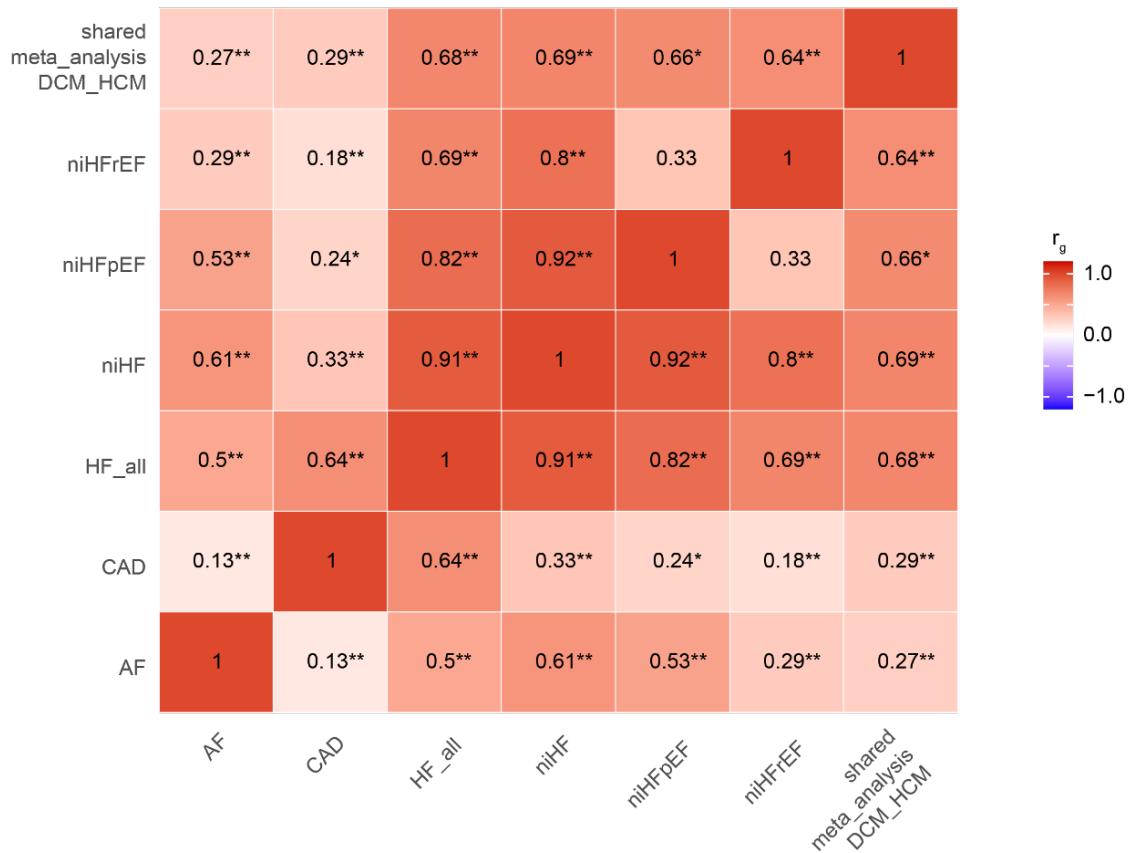


1093

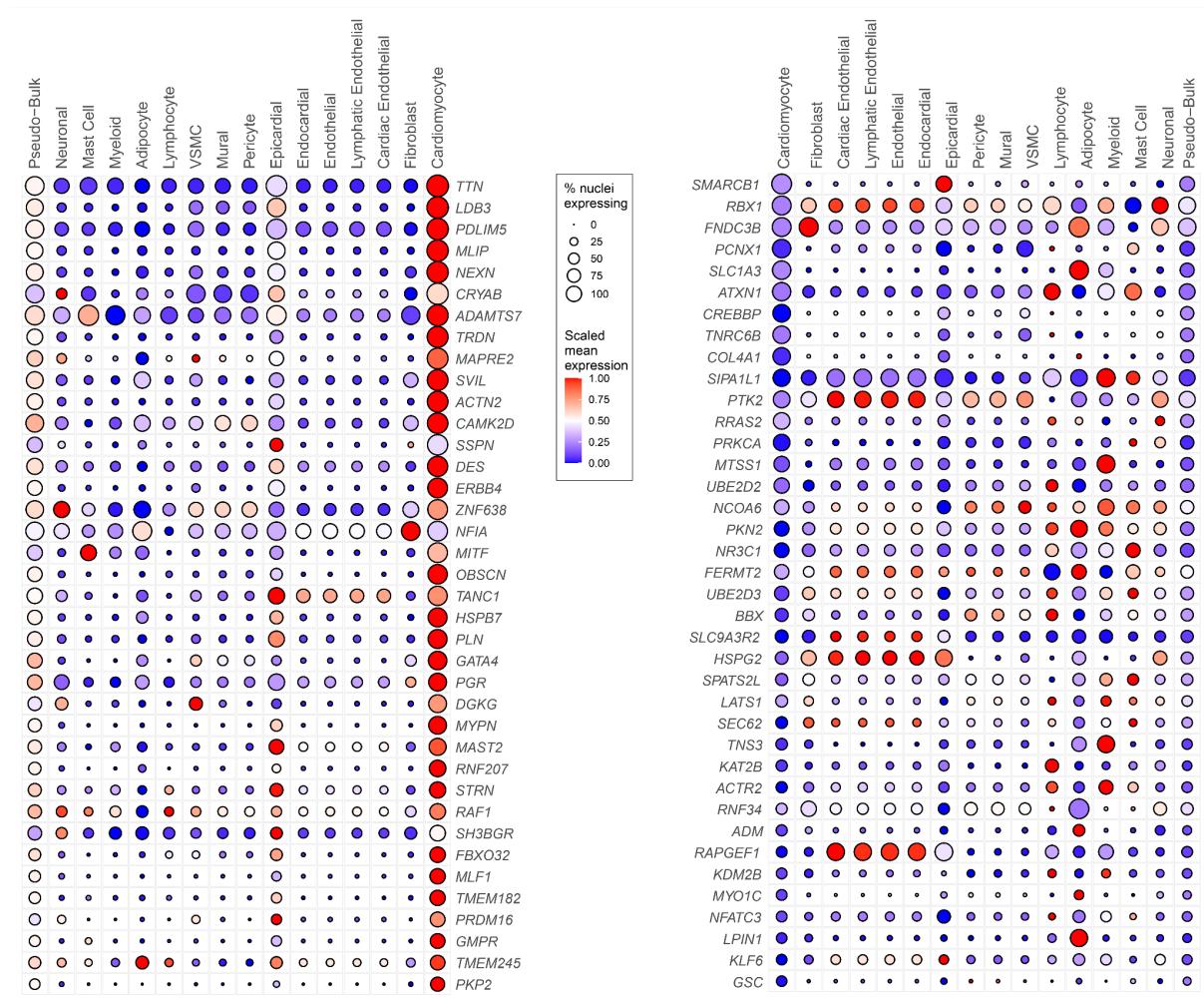
1094 Supplementary Figure 8: Forest plots showing effect estimates for novel
1095 lead SNPs in discovery and validation.

1096 A) raw betas (log-odds ratios per allele) with 95% confidence intervals. B)
1097 standardized effect sizes (Z-scores, β/SE) with 95% confidence intervals. SNPs are

1098 ordered by discovery effect size. Discovery and validation estimates are shown side
1099 by side for each SNP.

a**b**

1101 Supplementary Figure 9: Pairwise genetic correlations between
1102 cardiomyopathy analyses and related cardiovascular phenotypes.
1103
1104 a, Genetic correlations (r_g) between case–case analyses (CC GWAS and CC
1105 MTAG), non-ischemic heart failure subtypes, coronary artery disease (CAD), and
1106 atrial fibrillation (AF).
1107 b, Genetic correlations between the shared-effects DCM–HCM meta-analysis and
1108 the same cardiovascular phenotypes.
1109 Pairwise correlations were estimated using linkage disequilibrium score regression
1110 (LDSC). Cell color reflects the magnitude and direction of (r_g (red = positive
1111 correlation, blue = negative correlation), and values are annotated in each cell.
1112 Asterisks indicate significance ($P < 0.05$: *, $P < 0.002$: ** (Bonferroni correction).
1113
1114



1115

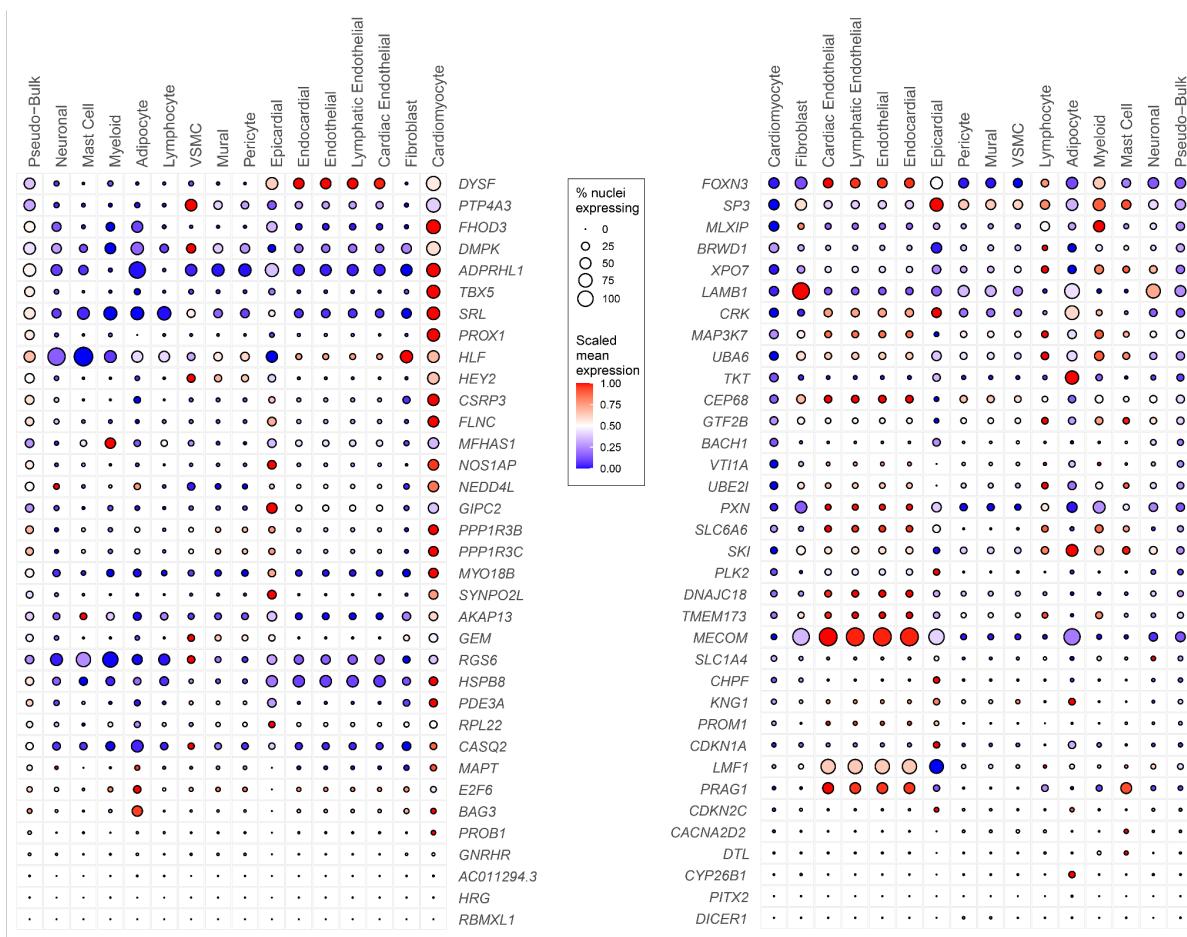
1116 **Supplementary Figure 10a: Cell-type-specific expression of the top**
 1117 **prioritized genes for cardiomyopathies**

1118 Bubble heatmap showing gene expression data for prioritized genes across major
 1119 cardiac cell types, based on integration of three published single-nucleus and single-
 1120 cell RNA sequencing (sn/scRNA-seq) datasets of human left ventricles (LV) from
 1121 non-failing control donors (maximum n = 18; **Supplementary Table 13**). The y-axis
 1122 displays a shortlist of 76 highly prioritized genes from CC GWAS and MTAG
 1123 analyses (with an additional 70 genes shown in **Supplementary Figure 10b**), while
 1124 the x-axis shows 16 harmonized LV cell types. For each gene–cell type pair, dot size
 1125 indicates the percentage of nuclei or cells expressing the gene at nonzero levels,
 1126 and dot color represents the scaled, relative normalized expression within that cell
 1127 type (compared to all other cell types). Expression values were aggregated after
 1128 data harmonization and scaling. Note: VSMC, vascular smooth muscle cell; Pericyte,
 1129 mural cell associated with microvasculature; Epicardial, epicardial-derived cells;

1130 Endocardial, inner lining endothelial cells; Capillary Endothelial, capillary-associated
 1131 endothelial cells; Lymphatic Endothelial, lymphatic vessel endothelial cells;
 1132 Cardiomyocyte, cardiac muscle cells; Scaled mean expression, relative gene
 1133 expression per cell type; % nuclei expressing, proportion of cells/nuclei with
 1134 detectable gene expression; Padj, multiple-testing-adjusted two-sided P-value from
 1135 DESeq2 differential expression

1136

1137



1138

1139 Supplementary Figure 10b: Cell-type-specific expression and DE of the top
 1140 prioritized genes for cardiomyopathies

1141 **References**

1142 1. Jurgens, S. J. *et al.* Genome-wide association study reveals mechanisms
1143 underlying dilated cardiomyopathy and myocardial resilience. *Nat Genet* **56**,
1144 2636–2645 (2024).

1145 2. Turley, P. *et al.* Multi-trait analysis of genome-wide association summary
1146 statistics using MTAG. *Nat Genet* **50**, 229–237 (2018).

1147 3. Tadros, R. *et al.* Large-scale genome-wide association analyses identify novel
1148 genetic loci and mechanisms in hypertrophic cardiomyopathy. *Nat Genet* **57**,
1149 530–538 (2025).

1150 4. Tadros, R. *et al.* Shared genetic pathways contribute to risk of hypertrophic and
1151 dilated cardiomyopathies with opposite directions of effect. *Nat Genet* **53**, 128–
1152 134 (2021).

1153 5. Zheng, S. L. *et al.* Evaluation of polygenic score for hypertrophic
1154 cardiomyopathy in the general population and across clinical settings. *Nat.*
1155 *Genet.* **in press**, (2025).

1156 6. Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes confounding from
1157 polygenicity in genome-wide association studies. *Nat. Genet.* **47**, 291–295
1158 (2015).

1159 7. Tadros, R. *et al.* Large scale genome-wide association analyses identify novel
1160 genetic loci and mechanisms in hypertrophic cardiomyopathy. *medRxiv* (2023)
1161 doi:10.1101/2023.01.28.23285147.

1162 8. Jurgens, S. J. *et al.* Adjusting for common variant polygenic scores improves
1163 yield in rare variant association analyses. *Nat Genet* **55**, 544–548 (2023).

1164 9. Pulit, S. L. *et al.* Meta-analysis of genome-wide association studies for body fat
1165 distribution in 694 649 individuals of European ancestry. *Hum Mol Genet* **28**,

1166 166–174 (2019).

1167 10. Peyrot, W. J. & Price, A. L. Identifying loci with different allele frequencies
1168 among cases of eight psychiatric disorders using CC-GWAS. *Nat. Genet.* **53**,
1169 445–454 (2021).

1170 11. O'Connor, L. J. *et al.* Extreme Polygenicity of Complex Traits Is Explained by
1171 Negative Selection. *Am J Hum Genet* **105**, 456–476 (2019).

1172 12. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional
1173 mapping and annotation of genetic associations with FUMA. *Nat Commun* **8**,
1174 1826 (2017).

1175 13. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized
1176 gene-set analysis of GWAS data. *PLoS Comput Biol* **11**, e1004219 (2015).

1177 14. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects
1178 across human tissues. *Science* **369**, 1318–1330 (2020).

1179 15. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to
1180 variable selection in regression, with application to genetic fine mapping. *J R
1181 Stat Soc Series B Stat Methodol* **82**, 1273–1300 (2020).

1182 16. Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary
1183 data with the ‘Sum of Single Effects’ model. *PLoS Genet* **18**, e1010299 (2022).

1184 17. Karczewski, K. J. *et al.* Pan-UK Biobank GWAS improves discovery, analysis of
1185 genetic architecture, and resolution into ancestry-enriched effects. *bioRxiv*
1186 (2024) doi:10.1101/2024.03.13.24303864.

1187 18. Schipper, M. *et al.* Prioritizing effector genes at trait-associated loci using
1188 multimodal evidence. *Nat Genet* **57**, 323–333 (2025).

1189 19. Weeks, E. M. *et al.* Leveraging polygenic enrichments of gene features to
1190 predict genes underlying complex traits and diseases. *Nat Genet* **55**, 1267–1276

1191 (2023).

1192 20. Kolberg, L. *et al.* gProfiler-interoperable web service for functional enrichment

1193 analysis and gene identifier mapping (2023 update). *Nucleic Acids Res* **51**,

1194 W207–W212 (2023).

1195 21. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and

1196 visualizes long lists of gene ontology terms. *PLoS One* **6**, e21800 (2011).

1197 22. Reichart, D. *et al.* Pathogenic variants damage cell composition and single cell

1198 transcription in cardiomyopathies. *Science* **377**, eab01984 (2022).

1199 23. Jagadeesh, K. A. *et al.* Identifying disease-critical cell types and cellular

1200 processes by integrating single-cell RNA-sequencing and human genetics. *Nat*

1201 *Genet* **54**, 1479–1492 (2022).

1202 24. Finucane, H. K. *et al.* Heritability enrichment of specifically expressed genes

1203 identifies disease-relevant tissues and cell types. *Nat Genet* **50**, 621–629

1204 (2018).

1205 25. Finucane, H. K. *et al.* Partitioning heritability by functional annotation using

1206 genome-wide association summary statistics. *Nat Genet* **47**, 1228–1235 (2015).

1207 26. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing

1208 genomic features. *Bioinformatics* **26**, 841–842 (2010).

1209 27. Bulik-Sullivan, B. *et al.* An atlas of genetic correlations across human diseases

1210 and traits. *Nat Genet* **47**, 1236–1241 (2015).

1211 28. Park, J.-B. *et al.* Obesity and metabolic health status are determinants for the

1212 clinical expression of hypertrophic cardiomyopathy. *Eur J Prev Cardiol* **27**,

1213 1849–1857 (2020).

1214 29. Harper, A. R. *et al.* Common genetic variants and modifiable risk factors

1215 underpin hypertrophic cardiomyopathy susceptibility and expressivity. *Nat Genet*

1216 53, 135–142 (2021).

1217 30. Grotzinger, A. D. *et al.* Genomic structural equation modelling provides insights
1218 into the multivariate genetic architecture of complex traits. *Nat Hum Behav* **3**,
1219 513–525 (2019).

1220 31. Jurgens, S. J. *et al.* Analysis of rare genetic variation underlying cardiometabolic
1221 diseases and traits among 200,000 individuals in the UK Biobank. *Nat Genet* **54**,
1222 240–250 (2022).

1223 32. Aragam, K. G. *et al.* Discovery and systematic characterization of risk variants
1224 and genes for coronary artery disease in over a million participants. *Nat Genet*
1225 **54**, 1803–1815 (2022).

1226 33. Roselli, C. *et al.* Meta-analysis of genome-wide associations and polygenic risk
1227 prediction for atrial fibrillation in more than 180,000 cases. *Nat Genet* **57**, 539–
1228 547 (2025).

1229 34. Henry, A. *et al.* Genome-wide association study meta-analysis provides insights
1230 into the etiology of heart failure and its subtypes. *Nat Genet* **57**, 815–828 (2025).

1231 35. Ho, C. Y. *et al.* Genotype and Lifetime Burden of Disease in Hypertrophic
1232 Cardiomyopathy. *Circulation* (2018)
1233 doi:10.1161/CIRCULATIONAHA.117.033200.

1234 36. Buniello, A. *et al.* Open Targets Platform: facilitating therapeutic hypotheses
1235 building in drug discovery. *Nucleic Acids Res* **53**, D1467–D1475 (2025).

1236 37. Raies, A. *et al.* DrugnomeAI is an ensemble machine-learning framework for
1237 predicting druggability of candidate drug targets. *Commun Biol* **5**, 1291 (2022).

1238 38. Strumberg, D. & Schultheis, B. Regorafenib for cancer. *Expert Opin Investig*
1239 *Drugs* **21**, 879–889 (2012).

1240 39. Jiang, Y. *et al.* Afatinib for the Treatment of NSCLC with Uncommon EGFR

1241 Mutations: A Narrative Review. *Curr Oncol* **30**, 5337–5349 (2023).

1242 40. Polidovitch, N. *et al.* Phosphodiesterase type 3A (PDE3A), but not type 3B
1243 (PDE3B), contributes to the adverse cardiac remodeling induced by pressure
1244 overload. *J Mol Cell Cardiol* **132**, 60–70 (2019).

1245 41. Voors, A. A. *et al.* Adrenomedullin in heart failure: pathophysiology and
1246 therapeutic application. *Eur J Heart Fail* **21**, 163–171 (2019).

1247 42. Gaggin, H. K. & Januzzi, J. L., Jr. Biomarkers and diagnostics in heart failure.
1248 *Biochim Biophys Acta* **1832**, 2442–2450 (2013).

1249 43. Pandhi, P. *et al.* Clinical value of pre-discharge bio-adrenomedullin as a marker
1250 of residual congestion and high risk of heart failure hospital readmission. *Eur J
1251 Heart Fail* **22**, 683–691 (2020).

1252 44. Honigberg, M. C. *et al.* Polygenic prediction of preeclampsia and gestational
1253 hypertension. *Nat Med* **29**, 1540–1549 (2023).

1254 45. Schooling, C. M. & Ng, J. C. M. Reproduction and longevity: A Mendelian
1255 randomization study of gonadotropin-releasing hormone and ischemic heart
1256 disease. *SSM Popul Health* **8**, 100411 (2019).

1257 46. Li, X. *et al.* TAK1 Activation by NLRP3 Deficiency Confers Cardioprotection
1258 Against Pressure Overload-Induced Cardiomyocyte Pyroptosis and
1259 Hypertrophy. *JACC Basic Transl Sci* **8**, 1555–1573 (2023).

1260