
 

 

Supplementary Material 

Supplementary Section 1: Compilation of the old and new δ15N datasets for EDC 

The compilation is interpolated at a fine age scale (every 100 years) and smoothed through a 5,000-year 

running average (blue line in Fig. S1). Including the data measured at the University of Bern exerts a 

small influence on the compiled δ15N record over the Marine Isotope Stage 8 (see orange line in Fig. 

S1).  

Figure S1 Compilation of the old and new δ15N datasets for EDC between 800 and 100 ka BP. The 5,000-year-

running average compilation is shown by the black curve. The grey envelope depicts 1σ error (±0.008‰; also 

depicted by a vertical bar at the bottom left-hand corner). The compilation includes published datasets 1–4 (grey 

diamonds); data published in the companion paper by Legrain et al. (submitted) (black diamonds) and data 

presented in this study shown by: (i) blue triangles (collected over 2020-2022 by Antoine Grisart and others); (ii) 

purple circles (collected in 2022 by Frédéric Prié and others); (iii) purple dots (collected in 2023 by Marie 

Bouchet and others); (iv) red dots (collected over 2023-2025 by Anna Klüssendorf et al.); and (v) red circles 

(collected over 2024-2025 by Louisa Brückner and Claire-Mathilde Stücki). For comparison, δ15N measurements 

on the EDC ice core made at the University of Bern are shown by empty orange squares 5 and filled orange squares 

(collected over 2025 by Patrice Tinner, Henrique Traeger, Jochen Schmitt and Markus Grimmer). The 5,000-

year-smoothed compilation including the Bern measurements is shown by the orange curve. 

 

 

 

 

 



 

 

 

Supplementary Section 2: Comparison of δ15N versus δD measurements 

The δD series of Landais et al.6 are interpolated so that we have series with δ15N and δD on a coherent 

timescale. The apparent positive correlation between the δ15N and δD signals is confirmed by the linear 

regression obtained between the two signals: δ15N = 0.00180 + 1.18 ± 0.02 × δD ± 0.00004 (correlation 

coefficient r2 = 0.67). 

Following the strategy of Dreyfus et al.2, the regression is repeated with a 400-year smoothed (running 

mean) δD record before running again the interpolation on the δ15N age levels. There is only a marginal 

improvement to the fit which accounts for 68% of the δ15N variability using the same linear relationship 

within the uncertainty range (Table S1). Therefore, the centennial scale variations in the δD signal do 

not help explain the full δ15N variance. 

Table S1. Linear regression between δ15N and δD. The linear fit is performed using a least square algorithm. The 

deuterium content is either directly interpolated onto δ15N ages or smoothed using a 400-year running average to 

get rid of the centennial scale variability beforehand. 

δ15N versus Linear relationship Correlation coefficient r2 

δD interpolated on δ15N ages 
δ15N = 1.18 ± 0.02 + 0.00180 ± 

0.00004 × δD 
0.67 

δD 400-year smoothed then interpolated on δ15N 

ages 

δ15N = 1.20 ± 0.02 + 0.00182 ± 

0.00004 × δD 
0.68 

 

 

Supplementary Section 3: Mismatch between measured and modeled δ15N  

The main firn densification model used in this study has been tuned to fit the δ15N profile over the last 

deglaciation by Bréant et al.3.  

Possible explanations for large mismatches observed during glacial period at high obliquity could be:  

(i) The existence of a convective zone in the upper part of the firn, where atmospheric air is mixed 

and no molecular diffusion occurs. With the existence of a convective zone, the diffusive zone 

thickness would be different from the LID. If a convective zone develops in the upper firn and 

if its thickness varies in time, as the δ15N only reflects the diffusive zone thickness, the δ15N 

would not be proportional to the firn thickness (i.e., LID) anymore. 

 



 

 

(ii) Inadequate physical parameterization of the firn model and/or inaccurate climatic scenarios used 

as input of the firn model (snow accumulation rate, temperature anomaly at the ice sheet surface, 

dust content in the firn).  

 

 

(i) Convective zone  

Some studies suggested that wind activity could be responsible for the existence of a convective zone 

in the upper part of the firn during glacial periods, thus challenging the linearity of the relationship 

between δ15N data and firn thickness, and preventing the firn model from forecasting δ15N values 2,7. 

Previous work based on dating constraints over the last glacial period (MIS 3) have however revealed 

that the possibility of significant convective zones at Dome C is improbable 8–10.   

 

(ii) Model configuration  

We varied the physics of the densification model as well as the temperature and accumulation rate 

scenarios as input of the models based on existing studies (Table S2).  

Varying the physics in the model 

We varied the physics of the firn densification model either using the configuration described in Bréant 

et al.3, in Arnaud et al.11 or in Herron and Langway 12. We will refer to these configurations respectively 

as B, A and HL.  

Varying the forcing scenarios 

We force the firn densification model with different histories of 1) temperature, 2) accumulation and 3) 

dust flux. 

1. Air temperature anomaly with respect to present-day at the ice sheet surface 

The A and HL parameterizations of the model are tested with two temperature scenarios. The 

configuration A-T1 and HL-T1 are forced by a temperature history based on δD corrected for source 

effects using d-excess 6 (see orange line in Fig. S2) on which two different δD – temperature slopes are 

applied. The T1 scenario uses the spatial slope obtained in Masson-Delmotte et al.13 leading to a 

temperature difference between the pre-industrial period and the LGM (ΔTPI-LGM) of 9°C.  The T2 

scenario is based on the temporal relationship obtained in Buizert et al.14 with a ΔTPI-LGM of ~5°C. For 

these different scenarios, it is assumed that the evolution of surface temperature is strongly correlated 



 

 

with the evolution of the δD. 

2. Snow accumulation rate history  

The parameterization B of the model is tested with three accumulation scenarios derived from the δD 

record. In the B-5000 configuration, the snow accumulation rate scenario is inferred from δD and 

statistically adjusted to comply with AICC2023 age constraints15. In the B-A1 configuration, the 

accumulation rate is inferred from δD measurements and adjusted to respect AICC2012 chronology 10. 

In the B-A2 configuration, the history of the local snow accumulation rate is yielded by the GRISLI ice 

sheet model 16. It is therefore constrained by past histories of local air temperature inferred from ice core 

δD data and of sea surface temperature derived from marine δ18O data. 

These three alternative estimates of the accumulation rate scenarios only differ by up to 0.5 cm i.e. yr-1 

which is below the maximum uncertainty of the accumulation rate reconstruction (0.9 cm i.e. yr-1 ; 15). 

3. Dust content in the firn 

The parameterization B of the model is tested with no dust (B-dust0) as well as with the calcium ions 

record of Lambert et al.17 for configuration B-5000. 

To compare the modeled and observed δ15N, the modeled δ15N series are interpolated every 100 years 

and smoothed using a 5,000-year running average  to remove the millennial-scale variability (panel a in 

Fig. S2). Two alternative smoothing are tested for comparison: without smoothing (configuration B) 

and smoothed over a 2,500-year interval (configuration B-2500). The linear correlation coefficient r 

between the modeled scenarios and the measurements is calculated over a sliding 25-kyr interval (panel 

b in Fig. S2). A sliding interval of 10 kyr is also used for comparison for configuration B. 

Neither modification of the firn physics nor use of different available temperature, accumulation rate or 

dust input scenario can explain the δ15N model-data mismatch. 

 

 

Table S2. Parameters for the different configurations of the firn densification model. For the configuration B, the 

sliding correlation coefficient is calculated over intervals of 10 kyr and 25 kyr. The δ15N scenario is either non 

smoothed (B) or smoothed over an interval of 5000 years (B-5000). For the rest of the configurations, the interval 

of 25 kyr is kept and the smoothing over a 5,000-year interval is kept. // means that the parameter is the same from 

one test the following one. The text written in bold indicates the parameter that is changed from one test to the 

following one.  



 

 

Configuration Physics Temperature anomaly Snow accumulation rate Dust [Ca2+] 

B-5000 Bréant et al.3 

inferred from δD and 

corrected from source 

effects 6 

inferred from δD and tuned 

to respect AICC2023 age 

constraints 15 

Lambert et al. 17 

HL-T1 

(varying model 

physics wrt B) 

Herron and 

Langway 12 
// //  

HL-T2 

(varying 

temperature 

forcing wrt HL-

T1) 

Herron and 

Langway 12 

ΔTPD-LGM divided by 2 

as per Buizert et al. 14 
//  

A-T1 

(varying model 

physics wrt B) 

Arnaud et al. 11 // 

inferred from δD and tuned 

to respect AICC2023 age 

constraints 15 

// 

A-T2 

(varying 

temperature 

forcing wrt A-T1) 

Arnaud et al. 11 
ΔTPD-LGM divided by 2 

as per Buizert et al. 14 
// // 

B-dust0 

(varying dust 

parameter wrt B) 

Bréant et al.3 

inferred from δD and 

corrected from source 

effects 6 

// No dust 

B-A1 

(varying 

accumulation 

forcing wrt B) 

// // 

inferred from δD and 

tuned to respect 

AICC2012 constraints10 

// 

B-A2 

(varying 

accumulation 

forcing wrt B) 

// // 

Inferred from the 

GRISLI ice sheet model 

(Quiquet, Dumas) 

// 

 



 

 

Figure S2 Evolution of the δ15N model-data mismatch depending on the model configuration. a) Modeled δ15N as 

per various configurations of the firn model (Table S2). For HL, only δ15Ngrav can be modeled. To yield the total 

δ15N, we added the thermal contribution (δ15Nth) calculated using B-T1 and B-T2. The effect of δ15Nth is shown for 

HL-T1 by the green color between the green dashed and plain curves (see legend). b) Correlation coefficient of 

the linear regression δ15N data versus the modeled δ15N (configuration B) using different time intervals for 

smoothing or for linear regression (see legend). The different histories of c) snow accumulation rate (A), d) site 

temperature anomaly with respect to present-day (ΔT) and e) dust content [Ca2+]17 (f) Obliquity parameter.  Red 

shaded areas indicate time intervals wider than 5,000 years where -0.5 < r < 0.5 and during which the model-

data mismatch exceeds 0.04 ‰ (1σ of the δ15N data). Green shaded areas frame deglaciations where r > 0.75.  

 

 

 

 

 

 

 



 

 

Supplementary section 4: LOVECLIM simulations  

Model set-up 

To understand the processes that could lead to a different atmospheric circulation pattern as a function 

of obliquity, numerical experiments are performed with the Earth system model LOVECLIM. 

LOVECLIM includes a free surface primitive equation ocean model with a horizontal resolution of 

3°x3° and 20 unevenly spaced vertical levels, a dynamic/thermodynamic sea-ice model, a quasi-

geostrophic T21 atmospheric model, a dynamic global vegetation model (DGVM) and a marine carbon 

cycle model. The DGVM used, VECODE (Vegetation Continuous Description model), simulates the 

vegetation structure, and associated terrestrial carbon reservoirs 18. A transient simulation of the last 140 

kyr is performed by forcing the model with time varying orbital parameters 19, atmospheric greenhouse 

gases20 and changes in continental ice sheets. The penultimate deglaciation (140-120 ka) follows the 

PMIP4 protocol21,22. Between 120 and 21 ka, changes in continental ice sheets are taken from Abe Ouchi 

et al. 23 (using the IcIES ice sheet model) and Menviel et al. 24, while from 21 ka, continental ice sheet 

changes are derived from ICE5G 25,26. The Bering strait is gradually closed at 70 ka and kept closed until 

the early Holocene.  

From that transient experiment, two 49ka experiments are run because the obliquity is maximum at 49 

ka (24.3°). For the standard 49ka experiment (high obliquity), the model is run for 4000 years with 

prognostic atmospheric CO2 concentration and under constant 49 ka boundary conditions. The last 1000 

years of this experiment are kept for our analysis. To assess the impact of low obliquity, another 

experiment is run under 49 ka boundary conditions but with an obliquity of 22.1°, which represents the 

minimum obliquity value of the last 500 ka. This low obliquity experiment starts from the transient state 

and is first run for 4000 years with a constant atmospheric CO2 concentration of 204 ppm, after which 

it is run with prognostic CO2 for 2000 years.  

High vs low obliquity at 49 ka 

Annual and seasonal temperatures and precipitations at high (true value at 49 ka) and low obliquity 

averaged over 65-77°S; 100-140°E  are reported in Table S3.  

The temperature weighted by the amount of seasonal precipitation is calculated as per: Tw = 

(TDJFPPDJF+TMAMPPMAM+TJJAPPJJA+TSONPPSON)/(PPDJF+PPMAM+PPJJA+PPSON) for low and high 

obliquity contexts. TDJF and PPDJF refer to the austral summer temperature and precipitation, averaged 

over the months of December, January and February. TMAM and PPMAM are averaged over March, April 

and May; TJJA and PPJJA over June, July and August; and TSON and PPSON over September, October and 

November.  

 



 

 

ΔT is the temperature difference between high and low obliquity. The ΔT value for the weighted 

temperature (Table S3) is lower (+1.7°C) compared to the ΔT value calculated with mean annual 

temperature (+2°C) due to the obliquity-induced decrease in summer snowfall.  

 

 

Table S3. Annual and seasonal temperature and precipitation amount estimated by LOVECLIM model under 49 

ka boundary conditions at high (true) and low obliquity averaged over 65-77°S ; 100-140°E. The difference in 

temperature and precipitation amounts suggested by the LOVECLIM model over an obliquity increase are 

respectively given in the lines named ΔT (high – low) and ΔA (high – low). The weighted temperature is defined 

for low and high obliquity as per Tw = (TDJFPPDJF+ TMAMPPMAM+TJJAPPJJA+TSONPPSON)/(PPDJF+ 

PPMAM+PPJJA+PPSON).  

 Temperature (°C) 

 Annual DJF MAM JJA SON Weighted Tw 

High obliquity 

(24.3°) 
-32.2 -21.35 -33.95 -39.02 -34.56 -31.06 

Low obliquity 

(22.1°) 
-34.2 -26.1 -35.4 -39.5 -35.8 -32.75 

ΔT (high–low) +2°C     +1.7°C 

 Precipitation (water + snow; in w.e. cm yr-1) 

High obliquity 

(24.3°) 
26.07 32.8 30.1 19.5 21.9 

Low obliquity 

(22.1°) 
27.2 39.9 28 17.8 23.2 

ΔA (high–low) -5% -18%    

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Transient simulation over the past 140 kyr  

 

Figure S4 Relative contribution of seasonal precipitation to the annual amount at Dome C (in the region 70-77°S; 

100-140°E) over the past 140 kyr. PPDJF/PPann (blue), PPMAM/PPann (orange), PPJJA/PPann (black), PPSON/PPann 

(red) from LOVECLIM transient simulations. Their evolution is shown with respect to the obliquity parameter 

shown in bottom panel. The obliquity maximum at 49 ka coincides with one of the local maxima in the austral 

summer contribution.  

 

 

Supplementary section 5: Obliquity influence on local climate and tracers 

Obliquity influence on δ15N via changes in temperature and snow accumulation rate  

To evaluate the possible influence of obliquity on δ15N, we ran several simulations of the firn 

densification model using new temperature and snow accumulation rate scenarios inspired by the 

LOVECLIM simulation (Supplementary section 4). We used two configurations of the firn densification 

model: A and B (Arnaud et al.11 and Bréant et al.3) to eliminate a potential bias due to the physics 

considered in the model.  

(i) Temperature 

The model of Bréant et al.3 indicates a decrease of 0.03 ‰ in δ15N scenario due to an increase of 2°C in 

mean annual temperature when applied to MIS 6. For the same forcing, the models of Arnaud et al.11 

and of Herron and Langway12 predict a decrease by 0.04 ‰ and 0.07 ‰ respectively in δ15N (orange 

frame in Fig. S5). Thus, regardless of the physics involved in the model, a +2°C increase in temperature 

at Dome C could be responsible for a decrease in δ15N between 0.03 and 0.07 ‰. We report this estimate 

in the panel b of Fig. 2 in the main text.  



 

 

Figure S5 Predicted δ15N value as per the Arnaud et al.11 model in function of site temperature and snow 

accumulation rate. The orange arrow depicts a 2°C-increase in temperature from -60°C to -58°C (on x-axis) and 

the orange rectangle frames the corresponding decrease in the δ15N for a snow accumulation rate value between 

1.6 and 1.2 cm w.e. per year. The purple arrow depicts the 5% decrease in snow accumulation rate from 1.4 to 

1.33 cm w.e. yr-1 and associated decrease in δ15N for a site temperature comprised between -58 and -60°C.  

 

(ii) Snow accumulation rate  

 

The decrease in modeled δ15N caused by a high-obliquity-driven 5%-decrease in mean annual snowfall 

is about 0.01 ‰ when applied to MIS 6 as per the Arnaud et al.11 and the Bréant et al.3 models. It is 

about 0.02 ‰ as per the model of Herron and Langway12. This order of magnitude for the δ15N decrease 

(from 0.01 to 0.02 ‰) is reported in the panel b of Fig. 2 in the main text.  

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Section 6: Reduction of the δ15N model-data mismatch using the obliquity-modulated 

climatic scenarios  

Table S4. Maximum relative reduction in the δ15N data-model mismatch values for glacial periods (MIS 6, 8, 10, 

12, 14, 16 and 18) at obliquity maxima. The reduction is estimated using the two indexes i’ and i’’. Only the largest 

value is reported in the table. *The value obtained when considering also δ15N data measured at the University of 

Bern for the global curve. 

Maximum relative reduction in 

the model-data mismatch 

MIS 6 MIS 8 MIS 10 MIS 12 MIS 14 MIS 16 MIS 18 Average 

~170  

ka BP 

~295  

ka BP 

~370 

ka BP 

~455  

ka BP 

~535  

ka BP 

~660  

ka BP 

~745  

ka BP 
 

-85% 
-65% 

-85%* 
-100% -90% -100% -60% -95% 

-85% 

-88%* 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S7 Reconciling modeled δ15N with data between 800 and 100 ka using an obliquity index to modulate past 

reconstructions of snow accumulation rate and temperature. a) δ15N data (light blue) and smoothed over 5,000 

years (cyan). Over MIS 8, δ15N (light orange) and smoothed (orange) data measured at the University of Bern is 

shown.  The modeled δ15N is obtained using (1) temperature of Landais et al.6 and snow accumulation rate of 

Bouchet et al.15 (black); (2) temperature of Landais et al.6 and snow accumulation rate modulated by obliquity 

with index i’ (purple); (3) temperature modulated by obliquity with index i’ and snow accumulation rate of Bouchet 

et al.15 (red); (4) temperature and snow accumulation modulated by obliquity with index i’ (dark blue); and (5) 

with index i’’ (dark blue dots). b) δ15N raw data (light blue) and smoothed over 5,000 years (cyan). The modeled 

gravitational component of δ15N is shown for simulations (1) to (5). c) Temperature anomaly of Landais et al.6 

(ΔT; black) and modulated by obliquity (ΔT + 4𝑖′; red plain line) and (ΔT + 4𝑖′′ ; red dotted line). d) Snow 



 

 

accumulation rate of Bouchet et al.15 (A; black) and modulated by obliquity (A – 0.35𝑖′; purple plain line) and (A 

– 0.35𝑖′′; purple dotted line). e) d-excess on reversed y-axis (gray line; right-hand side); obliquity index 𝑖′ varying 

between 0 (obliquity lower than its mid-value of 23.3°) and 1 (obliquity maximum = 24.5°) (blue dashed line; left-

hand side); obliquity index 𝑖′′ varying between 0 (obliquity minimum = 22.1°) and 1 (obliquity maximum = 24.5°) 

(blue dotted line; left-hand side) and obliquity (black line; right-hand side). f) δ15N model-data mismatch for 

configurations (i) (gray envelop); (ii) (purple); (iii) (red); (iv) (dark blue) and (v) (dark blue dots). δ15N model-

data mismatch including Bern measurements for configurations (iv) (orange) and (v) (orange dots).  

 

 

Supplementary Section 7: Seasonal bias in the EDC δ15N data 

Severinghaus et al. 27 suggested that thermally driven convection in the firn could lead to anomalous 

thermal diffusion during winter creating bias in the classical way variations of δ15N and δ40Ar are 

interpreted through the gravitational and thermal fractionation. This idea was later revisited by Morgan 

et al. 28. Both studies relied on measurements of δ15N and δ40Ar at South Pole either in the open firn 

porosity27 or in the ice core28. While the first study could not provide direct evidence of a rectifier effect, 

the combination of δ15N and δ40Ar in the δ 15N-excess (= δ15N – δ40Ar/4) suggests that a rectifier effect 

can be at play at some periods since the reconstructed T evolution is far from the one expected from a 

surface temperature evolution based on D profile and heat diffusion in the firn. 

In the wake of these earlier studies, it may be argued that a seasonal bias would explain the deviation of 

the measured δ15N compared to the modeled signal. Combined measurements of δ15N and δ40Ar and 

noble gas isotopic ratios were provided over deglaciations in Grimmer et al.5. The results are quite 

scattered with differences in the reconstructions performed by different isotopic combinations. Over the 

last 4 terminations, they found a relatively strong negative T (-4°C) which gives support for the 

existence of a seasonal rectifier effect, much stronger than what was suggested at South Pole or Dome 

Fuji28. 

Data over MIS6 shows top–bottom firn temperature differences of about -5°C with maximum variations 

of 2°C. Variations of 2°C would lead to δ15N variations of about 30 permeg, which is a third of the 

decline observed in the EDC record over glacial periods at high obliquity. Moreover, even if we are 

missing δ40Ar data over the whole MIS 6, the variability in the reconstructed ∆T over MIS 6 does not 

appear to follow that of δ15N between 140 and 160 ka (Figure S8). Based on these observations, we 

conclude that the thermal rectifier effect is probably not explaining the strong negative δ15N excursion 

observed at high obliquity during glacial period.  

 



 

 

but can be interpreted as top–bottom firn temperature differences of about -4°C with maximum 

variations of 2°C. Variations of 2°C would lead to δ15N variations of about 30 permeg, which is a third 

of the decline observed in the EDC record over glacial periods at high obliquity. Moreover, even if we 

are missing δ40Ar data over the whole MIS 6, the variability in the reconstructed ∆T over MIS 6 does 

not appear to follow that of δ15N between 140 and 160 ka (Figure S8). Based on these observations, we 

conclude that the thermal rectifier effect is probably not explaining the strong negative δ15N excursion 

observed at high obliquity during glacial period.  

Fig. S8 Evolution of the top-bottom firn temperature difference determined using EDC ice core measurements of 

δ15N and δ40Ar from the University of Bern. a) Firn temperature difference between top and bottom of the diffusive 

column. It can be calculated from the data as per ∆T = (δ15N - δ40Ar/4) / (Ω15/14 – Ω40/36/4) where Ωa/b is the 

empirically measured thermal diffusion sensitivity of the isotope pair a and b, and a kinetic fractionation 

correction calculated from Xe and Kr data from Grimmer et al. (2025) (purple triangles). The firn temperature 

difference can also be calculated from the firn model (test B) (grey line). b) δ15N and δ40Ar/4 data from the 

University of Bern (respectively grey diamonds and purple squares5).  
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