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MATERIALS AND METHODS

Device Fabrication and geometry

High-quality hBN/graphene/hBN/graphite heterostructures were prepared via mechanical exfoliation followed by a
dry transfer method. Monolayer graphene and few-layer graphite were obtained by exfoliating natural graphite (NGS
GmbH) onto pre-cleaned Si/SiO2 substrates with a 285 nm oxide layer. In a similar manner, hexagonal boron nitride
(hBN) flakes were exfoliated from bulk hBN crystals (NIMS, Japan) onto separate cleaned Si/SiO2 substrates. The
exfoliated flakes were initially characterized using optical microscopy. To assess flake uniformity and imperfections,
dark-field and differential interference contrast imaging were employed. Flakes exhibiting uniform contrast and absence
of visible cracks were selected for further inspection. These selected flakes were subsequently characterized using non-
contact mode atomic force microscopy (AFM) to verify surface quality, ensure the absence of microcracks or surface
contamination, and confirm thickness uniformity across the flake. A suitable graphite flake was selected and transferred
onto a pre-patterned p-doped Si/SiO2 substrate using a polypropylene carbonate (PC)/polydimethylsiloxane (PDMS)
stamp. The graphite flake was then patterned into two independent local bottom gates denoted as left and right gate
using electron beam lithography (EBL) followed by oxygen plasma etching. The two gate regions were separated by a
narrow constriction slit approximately 70 nm wide, as shown in Fig. S1a. Following the patterning, the graphite flake
was cleaned in hot acetone for several hours to remove resist residues, and then annealed under vacuum at 350◦C
to eliminate surface contaminants. The patterned structure was again examined using non-contact AFM to ensure
the uniformity of the flake. Next, a van der Waals heterostructure consisting of monolayer graphene encapsulated
between two hexagonal boron nitride (hBN) layers (∼37 nm thick on top and ∼60 nm at the bottom) was assembled
and aligned precisely over the pre-patterned graphite gates using the PC/PDMS stamp. The stack was then cleaned,
followed by vacuum annealing at 350◦C to remove polymer residues and improve interfacial cleanliness. The fabricated
stack was subsequently patterned using EBL and reactive ion etching (RIE) with CHF3/O2 gas to shape the graphene.
A second EBL step was performed to design one-dimensional edge contacts, followed by another CHF3/O2 RIE step
to selectively etch and expose the graphene edges. The contacts were made in a finger-like geometry to increase the
contact area and reduce the contact resistance. Cr/Au (10/70 nm) was deposited by electron beam evaporation at
an angle using a tilted stage to ensure sidewall coverage. The graphene channel was subsequently defined through an
additional EBL step and etched using the same RIE recipe. An optical image of the completed device is presented in
Fig. S1b and a schematic of the heterostructure stack is shown in Fig. S1c.

The device comprises two local graphite gates, which define a lateral junction across the graphene channel. On the
left side, the graphene contacts lie entirely within the bottom-gated region, whereas on the right side, the graphene
contacts extend beyond the local gate and partially reside on the SiO2/Si substrate (Fig. S1c). This design enables
electrostatic doping of the extended contact region via the global Si back gate, effectively reducing contact resistance on
the right side and enabling control over magnon emission. Fig. S2 shows an optical image of the device, highlighting
the constriction and gate geometry. The graphene channel and both local gates have widths of 0.6 µm, and the
separation between the left and right gates is 70 nm.

Transport Measurements

Transport measurements were conducted using an Oxford Instruments Proteox dilution refrigerator with a base
temperature of approximately 10 mK and a magnetic field of up to 14 T applied perpendicular to the sample plane.
Standard low-frequency lock-in techniques were employed to probe the electrical response of the device. An excitation
current in the range of 1–5 nA was applied using a Stanford Research Systems SR830 lock-in amplifier, with modulation
frequencies varied between 7 Hz and 217 Hz to optimise signal to noise conditions across different measurement regimes.
The output voltage signal was amplified using a low-noise, high-impedance preamplifier (input impedance ∼100 MΩ).
All electrical lines were filtered using low-pass RC filters, and were thermally anchored at multiple stages within the
cryostat to suppress spurious heating and minimise electronic noise.
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Experimental details

Quantum Hall Transport Characteristics

To assess the quality of the device and establish the robustness of the quantum Hall regime in our junction geometry,
we first characterize the Hall response as a function of magnetic field and carrier density. Figure S4a shows a Landau
fan of the transverse resistance Rxy, measured in a two-terminal configuration while sweeping the right gate voltage
between 6 and 13 T. A constant series resistance of 750 Ω—corresponding to the contact resistance of the measurement
line—has been subtracted from all traces. Well-developed quantum Hall plateaux appear at σxy = e2/3h, 2e2/3h,
e2/h, and 2e2/h. The observation of fractional plateaux demonstrates the high mobility and low disorder of the
sample. Figure S4b displays representative line cuts of Rxy at fixed magnetic fields (6, 7.75, 9.5, 11.25, and 13 T).
To further probe the stability of the integer states, we examine the breakdown of the ν = 1 quantum Hall plateau.

Figure S4c shows the bias dependence of the ν = 1 state. The plateau remains quantized up to moderate bias, but
a small decrease of 2.5–8% is observed at Vds = 20 mV, signaling the onset of dissipative processes prior to full
breakdown. Representative cuts in Fig. S4d illustrate the breakdown of the ν = 1 state. The well-quantized Hall
plateaux indicate that the bulk is largely incompressible over the measured gate and field range, providing a clean
environment for magnon propagation.

Together, these results confirm that the device enters a well-developed integer quantum Hall regime with robust
plateaux, demonstrating a largely incompressible bulk that provides a clean platform for investigating magnon prop-
agation and electrically tunable scattering across the junction.

Magnon emission and detection mechanism

A schematic of the electrical pathways for magnon emission and detection is shown in Figure S3. The sample is
first tuned into the ν = 1 quantum Hall ferromagnetic state by applying appropriate voltages to the two halves of
the bottom gate at a perpendicular magnetic field of 13 T. In this regime, a single spin-polarized chiral edge channel
runs along the sample boundary. Near the metallic contacts, however, local doping raises the filling factor, creating
an additional inner edge channel of opposite spin polarization. Because these two edge modes carry opposite spins,
elastic scattering between them is forbidden unless the energy imbalance exceeds the Zeeman energy EZ = gµBB.
A voltage (Vds) is applied to a contact denoted as ’Em’. Because only spin-down angular momentum can enter and

propagate through the spin-up bulk of the quantum Hall ferromagnet, magnons are generated at the position marked
with a minus sign(⊖) when the chemical potential of the inner edge satisfies µ ≥ EZ with respect to the outer edge.
Conversely, for positive Vds, magnon creation occurs at the position marked with a plus sign. Once generated, these
magnons propagate through the insulating QH ferromagnet and can be absorbed at remote edge channels through
the reverse spin-flip process. Such magnon absorption changes the conductance of the distant edge channel, enabling
nonlocal detection of magnon transport.

Influence of the Electric Field

To examine how the in-plane electric field affects magnon propagation across the junction, we emit magnons from
three contacts (Em,1, Em,2, and Em,3) arranged as shown in Fig. S5a and detect the resulting non-local response at
NL2. For clarity the schematic depicts all emitters simultaneously, but in the experiment each dataset was obtained
independently by activating only a single emitter at a time. The strongest non-local signal is observed for the
lateral emitters Em,1 and Em,3, whose emission directions intersect the junction at oblique angles. In this geometry,
the magnons acquire a larger transverse momentum component qy, which increases the effective dipolar moment
associated with their precession and strengthens the coupling between their electric dipole p and the in-plane electric
field Ex across the junction. Because the dipole–field interaction scales as p · E, magnons with finite qy experience
a stronger field-induced torque than those approaching the junction nearly normal to it. This enhanced coupling
promotes elastic mode mixing and trajectory bending within the junction region, effectively redirecting magnons and
increasing their probability of being absorbed or detected at NL2. In addition, the field can transfer spectral weight
from long-lived propagating modes into more strongly damped modes, further reducing the transmitted magnon
population.

Additional attenuation may originate from the electrostatic disorder, where localized charge puddles create spatially
varying electric fields and modifications of the local magnetic environment. Although magnons are charge-neutral,
their dipolar nature renders them sensitive to these gradients, leading to additional scattering, deflection, or partial
absorption before they reach NL2.
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Magnon propagation and Signal Conservation at νL = 1− ε

As a complement to the measurements performed at νL = 1+ ε, which correspond to most of the data presented in
the main text, we also investigate magnon propagation slightly below the integer filling, at νL = 1− ε. To probe this
regime, we excite the central emitter Em,2 and measure the resulting non-local signals at all three detectors, NL1,
NL2, and NL3 (Fig. S6a). The measurements are performed while simultaneously recording the Hall conductivity σxy

of the right-gated region (Fig. S6b), providing a reference for the local electronic state.
The non-local signals at the three detectors show a remarkable feature: although individual detector amplitudes

vary slightly due to geometric factors and small residual disorder, the total integrated signal summed over NL1, NL2,
and NL3 remains approximately constant (Fig. S6c). This conservation implies that the magnons emitted from Em,2

propagate through the bulk without significant loss or absorption, consistent with a high-quality, incompressible bulk
state.

From this measurement perspective, we do not observe any distinctive signatures of a skyrmion crystal in the
bulk: the magnon signal distribution remains smooth and conserved, without strong spatial modulation or anomalous
enhancement that might indicate a skyrmion lattice.

Dipole moment -electric field picture and non-linear sigma model: Two semiclassical limits

Dipole picture

This description first arose in the early paper by Kallin and Halperin [1] and it is based on the following Hamiltonian:

Heff(r, q) =

√
π

32

e2

ϵlB
(qlB)

2 + Vext(r +
l2B
2
z × q)− Vext(r − l2B

2
z × q) (1)

where the first term is the standard one derived in [1] for a magnon on top of a ferromagnetic background, and the
second two arise in the presence of an external electrostatic potential, induced for example by gating the 2D electron
gas. In this equation, r denotes the center of mass position of the dipole formed by a spin-carrying particle-hole pair,
and q is the conjugate wave-vector. A key insight of [1] is that the relative coordinate of the dipole s = rpart−rhole is
directly related to the momentum q according to q = l2Bz × q. Microscopically, this arises because all single particle
orbital degrees of freedom are constrained to belong to a single Landau level. Because guiding center coordinates
for a single electron behave as a pair of canonically conjugate variables, the classical phase-space associated to a
particle-hole pair is four-dimensional, and can be organized in terms of the r, q pair. The precise status of Heff(r, q)

is as the Weyl symbol of the Hamiltonian operator Ĥ acting on the subspace of electronic Fock space corresponding
to a single particle-hole pair. If Ψ(r) denotes the wave-function, then:

(ĤΨ)(r) =

∫
d2r′d2q

(2π)2
Heff(

r + r′

2
, q) eiq.(r−r′) Ψ(r′) (2)

In this work, we are not attempting to solve the associated time-dependent Schrödinger equation for such dipole
wave-functions, but limit ourselves to semi-classical equations of motion for localized wave-packets. This is valid in the
short wave-length limit 1 ≪ qdext, where dext stands for the characteristic length of the spatial variations of Vext. The
equations of motion for the phase-space location of wave-packets take the usual Hamiltonian form: ℏdr

dt = ∇qHeff ,

ℏdq
dt = −∇rHeff . These equations become much simpler in the limit when the separation s between the particle

and the hole is small compared to dext, so that we can replace Vext(rpart)− Vext(rhole) by l2B(z × q).∇Vext(r). This
requires the following upper bound on the momentum: ql2B ≪ dext. In order for this upper bound to be compatible
with the previous lower bound, we require that lB ≪ dext, which we assume to be valid throughout this work.

Non-linear sigma model picture

The dipole picture has been firmly established for magnon propagation through a ferromagnetic background. In
the presence of skyrmions, it is probably easier to start from a description based on the non-linear sigma model [2, 3].
It is based on the Lagrangian:

L = ℏ
∫

d2r

4πl2B
A(n).∂tn−H, (3)
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where ∇×A(n) = n, and the energy functional H is given by:

H =
ρs
2

∫
(∇n)2 +

e2

2ϵ

∫
d2rd2r′

Q(r)Q(r′)

|r − r′|
+

∫
d2r Vext(r)Q(r) (4)

In this expression, the stiffness ρs = e2/16
√
2πϵlB , and the topological charge density is given by:

Q(r) =
1

4π
n · (∂xn× ∂yn) . (5)

The resulting equations of motion take the usual Landau-Lifschitz form:

∂n

∂t
=

4πl2B
ℏ

z ×∇n(r)H (6)

In the case of a ferromagnetic background, the connection between the non-linear sigma model description and
the dipole picture can be understood as follows. Assuming that spins point everywhere close to the north pole,
the spin texture can be described via the small planar components nx(r), ny(r) ≪ 1. In a quantum description,
this corresponds to a local spin-1/2 wave-function (Ψ↑(r),Ψ↓(r)) ≃ (1, (nx(r) + iny(r))/2), neglecting second order
terms in nx(r) and ny(r). In this situation, the dipole wave-function Ψ(r) can be identified with Ψ↓(r), so the time
dependent Schrödinger equation for Ψ(r) translates into the linearized Landau-Lifschitz equation of motion for the in
plane spin deviations (nx(r), ny(r)). It is instructive to check this statement by considering the effect of an external
potential Vext(r). The linearized equations of motion can be obtained by considering the second order variation of H
around an equilibrium configuration. When the latter is the ferromagnetic state along the north pole, we get, setting
Ψ(r) = 2Ψ↓(r):

H =
ρs
2

∫
|∇Ψ|2 + i

8π

∫
Vext (∂xΨ ∂yΨ̄− ∂yΨ ∂xΨ̄) (7)

This leads to:

iℏ
∂Ψ

∂t
= −

√
π

32

e2

ϵlB
(lB∇)2Ψ+

l2B
2i

z.(∇Ψ×∇Vext)(r) (8)

Setting q̂ = −i∇, and in the long wave-length limit (ql2B ≪ dext), we recover the Schrödinger equation associated to
the Hamiltonian operator (1) acting on the dipole wave-function Ψ(r).
In the presence of a slowly varying spin texture, the magnon dynamics is modified due to the presence of a spin

Berry phase induced by spatial gradients of the spin orientation. This manifests as an additional orbital magnetic field,
equal to the topological charge density 4πQ(r) acting on a magnon [4]. As usual, we take this effect into account
by substituting the covariant derivative −i∇ − A to the original −i∇ operator, where ∇ × A = 4πQ. Because
skyrmions are charged objects, they generate an additional electrostatic potential, therefore the external potential
has to be replaced in the magnon equation of motion by the local potential:

Vloc(r) = Vext(r) +
e2

ϵ

∫
d2r′

Q(r′)

|r − r′|
(9)

In the following, it will be convenient to use rescaled space-time coordinates, where the position is expressed in units
of lB and p stands for lBq. Since we are working in the geometrical optics approximation for the magnons, we describe
them by a wave-packet of the form:

Ψ(r) = θ e−
(r−rm)2

2a2 ei(p.(r−rm)+φ) (10)

where rm denotes the magnon position and p its momentum, θ is the amplitude of the spin deviation away from the
average magnetization vector, and φ a global phase. The spatial scale a is chosen to be large compared to p−1 and
small compared to the characteristic scales associated to the variations of the local potential. Inserting this Ansatz
in the above energy functional (7), adapted to the case of slowly varying texture as explained above, gives:

(θ2πa2)−1H(rm,p, θ) =
ρs
2

(
(p−A)2 − 4πQ0(r)

)
+

ẑ

8π
.((p−A)×∇Vloc)−

1

2
Vloc(r)Q0(r) (11)
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So far, the amplitude of the spin deviation θ and the size a of the wave-packet are undetermined. To lift this
indeterminacy, we notice that the total magnetization in the system is given by:

M =

∫
d2r

2π
n(r) (12)

We now impose that, when applied on a ferromagnetic background, introducing a magnon wave-packet produces the
same total magnetization as flipping one local spin into its opposite. This leads to:

2 =

∫
d2r

2π
(1−

√
1− |Ψ(r)2|) (13)

Assuming that θ is small and performing the gaussian integral gives:

θ2πa2 = 8π (14)

Inserting this value in the above expression (11) gives the following magnon Hamiltonian

Hmag =
ωint

2

((
px −Ax)

2 +
(
py −Ay)

2

)
+ (px −Ax) ∂yVloc − (py −Ay) ∂xVloc (15)

where ωint =
√
π/8 e2/(ℏϵlB). To simplify the notation, the magnon position is denoted here by r instead of rm. Note

that we have neglected the potential terms in (11) since the most interesting physical effects on magnon propagation
are due to the presence of the effective orbital magnetic field A [4] and of a dipole moment proportional to the linear
momentum and orthogonal to it [1]. The corresponding Hamiltonian equations of motion read:

dr

dt
= ∇pHmag,

dp

dt
= −∇rHmag (16)

From the above Hamiltonian, one can apply a Legendre transform to obtain the Lagrangian:

Lmag =
1

2ωint

(
(ẋ− vx)

2 + (ẏ − vy)
2
)
+Axẋ+Ay ẏ, (17)

where we have introduced the drift velocity (vx, vy) defined by vx = ∂yVloc and vy = −∂xVloc. The equations of
motion take the form:

ẍ = ωint

(
∂xA

′
y − ∂yA

′
x

)
ẏ +

1

2
∂x

(
v2x + v2y)

ÿ = −ωint

(
∂xA

′
y − ∂yA

′
x

)
ẋ+

1

2
∂y

(
v2x + v2y)

(18)

where A′
x = Ax − vx/ωint and A′

y = Ay − vy/ωint. We see that there are two Lorentz force contributions, one arising
from the twist of the spin and the corresponding Berry phase, and the other due to the drift velocity induced by the
smooth variation of the external potential. The latter also gives rise to an effective scalar potential.

So far, we have discussed magnon dynamics around a fixed texture. However, in the presence of a finite region
containing a Skyrmion crystal, we have two types of low energy excitations: unbound ones, that may be injected far
away from the Skyrmion crystal and may propagate to arbitrary distances, and internal breathing modes of the crystal.
For simplicity, we shall consider only the breathing modes. These can be parametrized by NS Skyrmion positions
R1, ...,RNS

, so that the above Hamiltonian dynamics associated to one magnon has to be extended to incorporate
these magneto-phonon degrees of freedom. Concretely, this implies that the reference spin texture should now be
regarded as a function n(r;R1, ...RNS

) of NS +1 positions. In an adiabatic picture, we can in principle minimize the
non-linear sigma model energy functional in the presence of the external potential Vext with the constraint that NS

Skyrmions are centered at R1, ...,RNS
, so that we get an energy function Vel(R1, ...,RNS

). For the sake of simplicity,
we have not attempted to compute this Skyrmion generalized elastic energy from the full non-linear sigma model.
We postulate a simple phenomenological form, which is based on the fact that each Skyrmions carries a fundamental
electric charge e, interacting with the laws of electrostatics. Typically, we set:

Vel(R1, ...,RNS ) = τ

NS∑
i=1

Vext(Ri) +
e2

2ϵlB

∑
<i,j>

1

(|Ri −Rj |2 + 1)1/2
(19)
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As above, positions are expressed in units of the magnetic length lB . Here, τ = 1 (resp. τ = −1) for negatively
(resp. positively) charged Skyrmions. The inter-Skyrmion Coulomb potential is expected to be regular at small
separation, which motivates the above modification of the bare Coulomb potential at short distances. To simplify
the numerical calculations, we will also keep only the Coulomb repulsion between nearest neighbor Skyrmions. The
magnon dynamics in the presence of NS Skyrmions is assumed to take the same form as before, but in the magnon
Hamiltonian (15), both the effective gauge field A and the local potential Vloc depend on the Skyrmion positions.
Again, we do not attempt to extract them from a full calculation, but postulate the phenomenological forms:

∇×A(r) =

NS∑
i=1

4a2

(|r −Ri|2 + a2)2
(20)

Vloc(r) = Vext(r) + τ
e2

ϵlB

NS∑
i=1

1

(|r −Ri|2 + b2)1/2
(21)

Here a and b are positive length scales of the order of the magnetic length. For a qualitative phenomenological
modelling of the electrostatic potential of the junction we shall assume that Vext comprises a hard-wall along the
y-axis potential beyond a certain junction length, and a quadratic potential along the x-axis, which flattens out to a
constant beyond the width of the junction. We present the details and results of such a phenomenological approach
in the next section.

Equations of motion for Skyrmion positions can be derived by restricting the symplectic form generating Hamilton’s
equations of motion from the infinite-dimensional family of smooth maps n(r) to the finite sub-manifold of low energy
configurations n(r;R1, ...RNS

) parametrized by the Skyrmion positions. The symplectic form Ω is defined as follows:
for two infinitesimal deformations ξ1(r), ξ2(r) around n(r) (so n(r).ξi(r) = 0, i = 1, 2),

Ω{n}(ξ1, ξ2) =

∫
d2r

4πl2B
n · (∂xξ1 × ∂yξ2) (22)

Let us now consider two infinitesimal variations δR
(1)
i and δR

(2)
i of the Skyrmion positions. This gives rise to ξ1(r)

and ξ2(r) according to:

ξ1,2(r) =

NS∑
i=1

∑
a=x,y

∂n

∂Ra
i

δR
a,(1,2)
i (23)

Substituting in the above expression for the symplectic form, we get a complicated expression, that we may approxi-
mate assuming that Skyrmions do not overlap much. As a first consequence, we can neglect off-diagonal terms of the

form δR
a,(1)
i δR

b,(2)
j with i ̸= j. While evaluating the r integral, the prefactor of the δR

x,(1)
i δR

y,(2)
i term is dominated

by the region where r is closer to Ri than to Rj for j ̸= i. In this region, we have an approximate invariance for

n(r;R1, ...RNS
) under infinitesimal translations that are acting only on r and Ri. Therefore, we can replace ∂n

∂Ra
i

by − ∂n
∂ra , so we simply get the topological charge associated to a Skyrmion. With this approximation, the reduced

symplectic form reads:

Ωred({δR(1)
i }, {δR(2)

i }) = τ

l2B

NS∑
i=1

(δX
(1)
i δY

(2)
i − δX

(2)
i δY

(1)
i ) (24)

Hamiltonian equations for motion for the skyrmions take then the familiar form

Ẋi = τ
l2B
ℏ

∂H

∂Yi
, Ẏi = −τ

l2B
ℏ

∂H

∂Xi
(25)

As for the magnon, it will be convenient to use lB as the unit length for Skyrmion positions, so that lB disappears
in these evolution equations. We emphasize the qualitative difference between the magnon and the Skyrmions from
the viewpoint of their symplectic forms. Because the magnon is a charge neutral object, its phase-space is four-
dimensional, described by the r,p coordinates. By contrast, Skyrmions carry one unit charge, so the corresponding
phase-space is two-dimensional and is identified to the physical plane for Ri.

To summarize, we have reduced the infinite-dimensional phase-space of the non-linear sigma model to a phase-space
of dimension 4 + 2NS for one magnon coupled to NS Skyrmions. The Hamiltonian generating the time-evolution of
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this system is H = Hmag + Vel, with Hmag given by Eq. (15) and Vel by Eq. (19). The corresponding equations of
motion for the magnon are given by (16) and those for Skyrmions by (25). We note that when Skyrmions are moving,
in particular as the result of their interaction with an incoming magnon, there is an induced electromotive force acting
on the magnon, since it experiences a time-dependent effective vector potential. In the numerical simulations inspired
by the present model, we have neglected these induction phenomena, on the basis that Skyrmions are slowly moving.
It is an interesting direction for future work to explore the consequences of (relaxing) this simplifying assumption.

Phenomenological model involving charged particle in a flux-tube array

In the previous section, we have presented a complete semiclassical description of the magnon-skyrmion crystal
junction problem, deriving equations of motion for both the magnons and the skyrmions. We expect such an analytical
treatment to be a starting point for several other such similar situations of magnons interacting with quantum Hall
type insulators with non-trivial topology.

In the absence of exact information about junction parameters, we have also postulated several forms of the
electrostatic potentials and effective magnetic fields based on physical arguments and approximations. Here we shall
summarize the full phenomenological setup and explain the numerical procedure for obtaining the magnon trajectories
and variance.

Based on the above sections illustrating the equivalence of different microscopic pictures and appropriate semiclas-
sical limits, here we present the details of the simplest phenomenological model which qualitatively captures the sharp
noise feature across all detectors in narrow voltage windows. We show that shaking of the skyrmion crystal by the
magnons, when the crystal softens, is the source for the linearly increasing (with voltage) variance in the non-local
magnon signal across all detectors.

The crucial ingredients of the phenomenological model are :
i) the two confining potentials along x and y which constitute Vext(r). For the former we use a quadratic potential,

Vcx = Kxx
2/(1 + (x/x0)

2) for the junction width, which smoothly saturates to a constant, Kxx
2
0, away from the

junction for x ≫ x0. For the latter, we use a flat potential Vcy = 0, along the junction region and a hard-wall,
Vcy = Ky(|y| − yJ)

4 form, beyond the junction.
ii) The electrostatic potential induced in the junction region by the skyrmion, for which we use the form presented

in the second term of eq. (21).
iii) The effective magnetic field induced by the skrymion crystal’s modulated topological charge density. We take

this to have the B(r −R) to have the form presented in eq. 20.
iv) The repulsive nearest neighbour inter-skyrmion potential, which we take to be of the form in the second term

of eq. 19. Note that the first term is the same Vext as in point (i) above, but now for the skyrmion coordinates.
These ingredients are all the inputs required to numerically solve the equations of motion for the magnon (eq. 18)

and the skyrmions (eq. 25). Let us write these down more explicitly to clearly see the different terms induced by the
different factors. First, we focus on the skyrmions, the Hamiltonian for which is given by H = Hmag + Vel. While
the second term will give us the standard potential derivatives, the dependence of the first term on the skyrmion
coordinates results in the magnon recoil induced collective dynamics. Recall that skyrmion centre coordinates are
denoted as Xi, Yi and magnon position and momenta are denoted as x, y and px, py respectively. We can write

∂Hmag

∂Yi
=

ωint

2

[
− 2(px −Ax)

∂Ax

∂Yi
− 2(py −Ay)

∂Ay

∂Yi

]
+ (px −Ax)∂Yi

∂yVloc − (∂yVloc)(
∂Ax

∂Yi
)

− (py −Ay)∂Yi
∂xVloc + (∂xVloc)(

∂Ay

∂Yi
)

∂Hmag

∂Xi
=

ωint

2

[
− 2(px −Ax)

∂Ax

∂Xi
− 2(py −Ay)

∂Ay

∂Xi

]
+ (px −Ax)∂Xi∂yVloc − (∂yVloc)(

∂Ax

∂Xi
)

− (py −Ay)∂Xi∂xVloc + (∂xVloc)(
∂Ay

∂Xi
) (26)

These set of formulae, combined with the standard potential derivatives of Vel form the equations of motion for the

skyrmions. To proceed with the calculations, we choose the Landau gauge with Ax = 0 and Ay =
∑NS

i=1(x−Xi)Br′Ri
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where Br′Ri
= 4a2/(|r′ −Ri|2 + a2)2 as in eq. (20). As a consequence we get

∂Ay

∂x
=

NS∑
i=1

Br′Ri
= B;

∂Ax

∂y
=

∂Ax

∂Xi
=

∂Ax

∂Yi
= 0

∂Ay(x, y,X,Y )

∂Xi
= −Br,Ri

∂Ay(x, y,X,Y )

∂Yi
= (x−Xi)

∂Br,Ri

∂Yi
=

16a2(x−Xi)(y − Yi)

(|r −Ri|2 + a2)3

(27)

In a similar vein we rewrite the magnon equations of motion.

ẍ = (ωintB + ∂2
xVloc + ∂2

yVloc)ẏ + (∂yVloc)(∂x∂yVloc) + (∂xVloc)(∂
2
xVloc)

ÿ = −(ωintB + ∂2
xVloc + ∂2

yVloc)ẋ+ (∂yVloc)(∂
2
yVloc) + (∂xVloc)(∂y∂xVloc)

(28)

where B is the total magnetic field generated by all the skyrmions. We clearly see that the variation of the electrostatic
potential (also modified by the skyrmions) contributes an effective Lorentz force as well as a scalar potential. The
various derivatives of the electrostatic potential felt by the magnons also act as sources of effective magnetic field and
scalar potentials as highlighted in the above sections. They are given by

∂xVloc = ∂xVcx −
NS∑
i=1

(x−Xi)

(|r −Ri|2 + b2)3/2
; ∂yVloc = ∂yVcy −

NS∑
i=1

(y − Yi)

(|r −Ri|2 + b2)3/2

∂Xi
∂xVloc =

1

(|r −Ri|2 + b2)3/2
− 3(x−Xi)

2

(|r −Ri|2 + b2)5/2
; ∂Yi

∂yVloc =
1

(|r −Ri|2 + b2)3/2
− 3(y − Yi)

2

(|r −Ri|2 + b2)5/2
;

∂Yi
∂xVloc = ∂Xi

∂yVloc =
−3(x−Xi)(y − Yi)

(|r −Ri|2 + b2)5/2

(29)

We find it quite striking that the magnon-skyrmion crystal model, when captured within this non-linear sigma
model so clearly elucidates the interplay of topology, geometry and collective dynamics. We hope that such analytical
analysis serves as a starting point for similar magnon based probes of other topological phases of matter.

We numerically solve the above equations of motion to obtain the magnon and skyrmion trajectories. We consider
the magnons to be scattered, one by one, with an initial velocity v and incidence angle θi. These equations form the
basis of our phenomenological model, which we then numerically solve using standard symplectic mid-point integration
techniques. We start with a 5 skyrmion, lined along the y-axis range in the central region around x = 0. Now we
consider charged particles starting at x = −L and at a random point in the y = [−4, 4] range. We do so to simulate
emission from the central detector at the end of the left slab, as is done for the noise data in the experiment. For Fig.
4C in the main text, we simulate a total of 10000 magnons starting from the initial conditions described above, with
dt = 0.001 time step in our midpoint Strang symplectic integration scheme and we vary the number of steps per pass
to simulate the varying magnon flux. To obtain the variance data shown in Fig. 4C, we define a suitable unit of time
and simply obtain the number of charged particles that hit each of the detectors (three different y coordinate ranges
at x = +L) in that unit of time. This is the magnon count, also illustrated in Fig 3D and E. Further, we model the
reduced stiffness by reducing the coefficient of the x-axis confining potential Kx. As shown in Fig. S8, a reduction in
stiffness drastically increases the noise in the skyrmion positions.

Our results lend qualitative support to the picture that, dynamics of the skyrmion crystal induced by the impinging
magnons is the cause for the sharp noise observed in the experiment at periodic voltages corresponding to the discrete
process of adding an extra skyrmion. Within our simple model this can be illustrated clearly, as in Fig. S8, by
explicitly looking at the trajectories of the flux tubes and their deflection when a charged particle passes by.
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SiO2 (285nm)
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RIGHT
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FIG. S1. (a) Optical image of the hBN/graphene/hBN/graphite stack (top to bottom). The bottom graphite was pre-
patterned into two gates shown in dashed red (left gate) and blue (right gate), respectively. Scale bar is 5 µm. The separation
between left and right gates is ∼70 nm. (b) Optical image of the final device. Scale bar is 5 µm. (c) Cross-sectional schematic
of the device. right-gate voltage (Vright) and left-gate voltage (Vleft) were applied to the two graphite gates as shown. These
two gates are separated by ∼70 nm.

Si GATE
Vleft VSi

70nm

0.6μm

LEFT
GATE

RIGHT
GATE

Vright

FIG. S2. Optical image of the device showing the details of the constriction and the gate configuration. The width of the
graphene channel and the gates is 0.6 µm, and the distance between left and right gates is 70 nm.
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E

FIG. S3. Top panel: Schematic of the measurement setup used in this experiment. Bottom panel: Edge-state illustration
of magnon emission and absorption processes. The symbols ⊖ and ⊕ denote the locations where magnons are emitted for
negative and positive Vds, respectively.
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FIG. S4. (a) Landau fan of the two-terminal Hall resistance Rxy measured from 6 to 13 T while sweeping the right gate voltage.
A contact resistance of 750 Ω, corresponding to the series resistance of the device contacts, has been subtracted. Well-quantized
plateaux are observed at σ = e2/h, 2e2/h, 1/3, e2/h, and 2/3, e2/h, demonstrating the high sample quality and the presence of
robust integer and fractional quantum Hall states. (b) Line cuts of Rxy at fixed magnetic fields (6, 7.75, 9.5, 11.25, and 13 T),
illustrating the persistence and sharpness of both integer and fractional plateaux across the full field range. (c) Breakdown
of the ν = 1 quantum Hall state as a function of source–drain bias. A small reduction of 2.5–8% at Vds = 20 mV signals the
onset of dissipative processes, preceding the full collapse of the plateau at higher bias. (d) Representative bias-dependent cuts
illustrating the full breakdown of the ν = 1 plateau.
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Em3Em2Em1

A

B

FIG. S5. (a) Schematic of the experimental geometry showing the three magnon emitters, Em,1, Em,2, and Em,3, positioned
at different lateral angles with respect to the gated junction region. Magnons emitted from these contacts propagate toward the
junction, where they interact with the in-plane electric field and experience momentum-dependent scattering before reaching
the nonlocal detector NL2. (b) Nonlocal magnon signals dVNL/dI measured at NL2 for each of the three emitters. The lateral
emitters produce a substantially stronger response due to their larger transverse momentum components, which enhance the
coupling between the magnon electric dipole and the in-plane electric field, leading to increased scattering and redirection
toward NL2. In contrast, magnons injected from the central emitter Em,2 predominantly follow near-normal trajectories across
the junction and couple more weakly to the electric field, resulting in a comparatively smaller nonlocal signal.
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A

B C

FIG. S6. (a) Non-local magnon signals measured at detectors NL1, NL2, and NL3 while exciting the central emitter Em,2.
Each trace corresponds to a single detector, showing the distribution of the magnon signal across the device. (b) Simultaneously
measured Hall conductivity σxy in the right-gated region. (c) Total integrated magnon signal summed over all three detectors.
The signal remains approximately constant across the range of carrier densities studied, demonstrating conservation of the
magnon flux through the bulk despite small variations in individual detector amplitudes. No distinctive skyrmion-crystal
signatures are observed from this measurement perspective.
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FIG. S7. Magnon trajectories in the absence of any skyrmions in the junction (blue box). As mentioned in the text, the
electrostatic confining potential profile in the junction generates an effective Lorentz force and a scalar potential due to the
drift velocity. As a consequence, even in the absence of skyrmions the magnon trajectories are deflected. More importantly,
magnons impinging at a greater angle are deflected more towards the central detector as compared to those emitted from the
central emitter (bold red). See text for the form of the electrostatic potential. This explains the observations of the experiment
in Fig. S5 and validates the relation of our modelling with the dipole moment picture. Also note that this clearly demonstrates
that the drastic reduction of a magnon signal at a central detector cannot be considered as evidence of any skyrmions or
inelastic processes, as such a reduction can be purely due to electric field effects in the central region.

FIG. S8. Skyrmion centre positions for high (a) and low (b) stiffness altered through shaking by magnons. We see that for
different values of Kx, the degree to which the impinging magnons alters the collective motion of the crystal varies drastically.
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