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[bookmark: _Toc181275564][bookmark: _Toc181383763][bookmark: _Toc196815509]Supplementary Note 1: Generation of optical torque through angular momentum transfer

[bookmark: MTBlankEqn]Photons carry momentum 1. The conversion of photon angular momentum is a fundamental mechanism for generating optical torque. Based on the conservation of momentum, the optical torque can be expressed as 2,3 , where τ is the torque projection of the torque along the optical axis, P denotes the power of the light, λ represents the wavelength, c is the speed of light in vacuum, and Δ(σ + l) denotes the combined changes in the photon's spin state (σ) and topological charge (l), corresponding to variations in spin angular momentum (SAM) and orbital angular momentum (OAM), respectively. 
When polarized light illuminates a waveplate, polarization conversion generates an optical torque. We demonstrate that, based on the transfer of SAM, the relationship between the optical torque and the waveplate's rotation angle θ takes the form of either a constant or a second-order sine function. Assuming the waveplate is positioned on the xoy plane, with its fast axis at an angle θ relative to the x-axis and a phase shift of ξ0, the Jones matrix of the waveplate can be expressed as: 

[bookmark: _Ref181172064][bookmark: _Ref181172087][bookmark: _Ref181172295][bookmark: _Ref181172718][bookmark: _Ref181172330][bookmark: _Ref181172474][bookmark: _Ref181172714]		
[bookmark: _Ref181172780][bookmark: _Ref181172324] (S1)


where R(θ) denotes the rotation matrix, and i is the imaginary unit. For simplicity, the Jones vector of the incident light is assumed to be Ein = [Ex1, Ey1+iEy2]T, where Ex1, Ey1, and Ey2 are arbitrary real numbers, and T denotes the transpose. Consequently, the outgoing light can be expressed as [Exout, Eyout]T = JplateEin. The SAM of the outgoing light is proportional to the energy difference between its left- and right-circularly polarized (LCP and RCP) components. According to the conservation of momentum, the optical torque generated by the outgoing light is denoted as , and can be simplified to . Here, 

[bookmark: _Ref181172179]		
 (S2)
As a result, the optical torque τout(θ) may include a constant term, a second-order sine term, and a fourth-order sine term. However, the possible fourth-order sine term can be simplified to Ex1Ey2sin2(ξ0/2), which is a constant. Since the SAM of the incident light remains constant, the resulting optical torque τ is a second-order sinusoidal function concerning θ or a constant.

Specially, when a quarter-wave plate is illuminated by a linearly polarized light, the Jones matrices for the incident and output light can be expressed as Ein = [1, 0]T and , respectively. Consequently, the change in the spin state of the light is given by Δσ = sin2θ. Based on the conservation of momentum, the optical torque exerted on the waveplate is τ = -Pλsin(2θ)/2πc. When a half-wave plate is illuminated by a circularly polarized light, the optical torque amplitude is Pλ/πc, and its sign depends on the polarization of the incident light. 
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Supplementary Note 2: Principle of freeform optical torque
[image: ]
[bookmark: _Ref181174377][bookmark: _Ref191975303][bookmark: _Ref181174393][bookmark: _Ref191976283][bookmark: _Ref181174384]Fig. S1. Schematic of the design of freeform optical torques. a, The designed freeform optical torques (the Fourier components order q ≤ 5). b, Schematic of each Fourier component of the freeform optical torques (q ≤ 5). 

An arbitrary optical torque function that depends on the object's rotation angle θ can be decomposed into a sum of sine functions using Fourier expansion:

		
[bookmark: _Ref183550091][bookmark: _Ref183550084] (S3)
where 

		
 (S4)
Figure S1 illustrates the strategy for designing freeform optical torque when q ≤ 5. The lines in Fig. S1a represent the designed optical torques as a function of the object's rotational angle θ. Here, we only take q ≤ 5 as an illustration, expanding the range of q can further enhance the complexity of the optical torque function. The core of generating such freeform optical torque lies in generating sine optical torques with arbitrary order. The lines in different colors in Fig. S1b represent the required sine optical torque components of different orders. Here, high-order sine optical torque is generated through spin-orbit interactions between nanostructures and vector optical fields, with circularly symmetric intensity vector optical fields serving as the incident light source. 







An arbitrary optical field can theoretically be decomposed into a superposition of RCP and LCP light: , where  are the complex amplitudes of RCP and LCP, , and . The continuous rotational symmetry of circular polarizations allows the optical torque response of the object to be independent of the in-plane rotation of the nanostructures on the object. Assuming the object is placed on the xoy plane with a light incident along the z-axis, under the illumination of RCP component, the optical force exerted on the object along the x- and y-directions can be expressed as , where IRCP = |E0+|2 denotes the intensity of the RCP component of the incident light; em and  respectively denote the efficiency and unit wave vector of the mth diffracted light under RCP incidence;  indicate the unit vectors along the x- and y-directions. Originating from the photonic spin-orbit interactions, the electromagnetic response of the object to RCP and LCP is conjugate symmetric. Consequently, the resultant optical force generated by the total light is:

		
 (S5)
The in-plane rotation of the object relies on the azimuthal optical force. Therefore, in polar coordinates, the optical torque can be expressed as: 

		
 (S6)



where r and φ indicate the radius and azimuthal angle, respectively. For simplicity, several physical parameters are defined: , indicating the Stokes S3 parameter of the incident optical field, and , representing the spin-dependent azimuthal diffraction efficiency (ADE) of the object under RCP incidence. Here,  indicates the azimuthal unit vector. Therefore, when the rotation angle of the object is θ, the optical torque exerted on the object can be expressed as: 
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[bookmark: OLE_LINK1]Due to the circularly symmetric intensity of the incident light, the Stokes S3 distribution can be decomposed as , where I = (E0+)2+(E0-)2 denotes the intensity of the incident light, and  is the normalized Stokes S3 parameter. We first consider the case where a single-region object is illuminated by a single-region vector field, i.e., both the polarization state  of the incident optical field and the ADE η of the object are independent of the radius r. In this case, equation (S7) can be simplified as:

		
 (S8)







Based on Fourier expansion,  and η can be decomposed into the sum of numerous sine functions: , where ; , , , and  represent the Fourier coefficients. Due to the orthogonality of trigonometric functions, the optical torque can be further simplified as:
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To ensure that the resultant optical torque is a sine function of θ, the value of q in equation (S9) should be unique. A straightforward design approach is to set either the  or η distribution along the azimuthal direction as a sine function, while allowing the other to be any function that includes a sine term of the same order. 


For example, If the normalized Stokes S3 distribution of a vector field follows , and the ADE η distribution of the object is , the resultant optical torque can be expressed as:
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[bookmark: _Hlk169550362]where N and M are positive integers representing the rotational symmetry order of  and η, respectively; ηmax indicates the maximum ADE; δ denotes the phase constant. When N = M = 0, the resultant optical torque is a constant. If the ADE η of the object follows a square distribution , the Fourier transform of η can be expressed as: . Illuminated by a vector optical field of  with N = (2q-1)M, the optical torque can be expressed as:

		
 (S11)


If noise affects the polarization distribution , resulting in non-unique values of q, the resultant optical torque, as a sum of sine functions of different orders, will no longer be a simple sine function of θ. Consequently, to enhance the robustness against optical field and structural noise, in the following sections, both the polarization distribution  of the vector field and the ADE η of the object are designed as sinusoidal functions of φ.



To simultaneously generate the sine optical torque components shown in Fig. S1b, our strategy is to use a hybrid vector optical field to illuminate a spatially multiplexed nanostructure object based on the methods for generating sine optical torque of arbitrary orders. Specifically, both the object and the hybrid vector optical field are partitioned into several concentric rings along the radial direction. Our approach is to match the rotational symmetry order N of the vector optical field with the rotational symmetry order M of the object, i.e., Nq = Mq = q, where the subscript q denotes the qth ring of the vector field and object. When illuminated by the vector field, the qth ring of the object generates an optical torque of ζqsin(qθ-δq). To facilitate the subsequent design of the vector optical field's intensity, the light intensity distribution is decomposed into , where  denotes the normalized light intensity, and A represents the intensity coefficient. Consequently, given a fixed normalized intensity , the amplitude ζ of the desired Fourier components can be modulated by adjusting the intensity coefficient A(ζ). 


For example, if the rotational symmetry order of the object aligns with that of the vector optical fields, an object with an ADE of  illuminated by a vector optical field with a polarization distribution of  will generate an optical torque of: 

		
[bookmark: _Ref181994449] (S12)



Here, q represents the qth region of the vector field and object;  and  correspond to the inner and outer radii of the qth region. Specially, when Nq+1 = Mq+1 =0, the (q+1)th region of the object will generate a constant optical torque with a value of . To simultaneously generate the sine optical torque functions shown in equation(S3), the parameter A(ζ) of the incident vector optical field can be set as:

		
 (S13)
As a result, reconfigurable optical torque functions can be generated by adjusting the numerically solvable parameters, δ and A(ζ), of the vector field incident on the single object.
[bookmark: _Toc181275566][bookmark: _Toc181383765][bookmark: _Toc196815511]


Supplementary Note 3: Characteristics of iso-angle helical phase

To improve the ADE of the metasurface, the diffracted LCP and RCP components need to be aligned along the azimuthal direction. It indicates that the phase gradient of the metasurface is oriented azimuthally. The iso-angle helical phase distribution  is introduced, where the symbol [*] represents rounding * to the nearest integer, k = 2π/λ is the wavenumber of light in free space, β denotes the designed 1st-order diffraction angle, and K is an integer. Figure S2a shows the local phase distribution of the iso-angle helical phase (β = π/6, K = 150, λ = 1064 nm). The integer K is significant for partitioning the phase distribution into distinct concentric regions, resulting in the topological charge of the iso-angle helical phase changing stepwise with the radius. Each concentric region spans a radial width of ΔR = K/ksinβ. By appropriately setting the value of K, ΔR can be significantly larger than λ, thereby suppressing the radial phase gradients added to the incident light. Additionally, the actual 1st-order diffraction angle β0 of the metasurface can oscillate around β, restricting the diffraction angle range. Figure S2b illustrates the variation in the topological charge and the actual 1st-order diffraction angle β0 of the iso-angle helical phase.
[image: ]
[bookmark: _Ref191976414]Fig. S2. Characteristics of iso-angle helical phase. a, The local phase distribution attached to the incident RCP by the metasurface with iso-angle helical phase. b, The first-order diffraction angles β0 and the topological charges of the metasurface with iso-angle helical phase.

Due to the 1st-order diffraction angle approximates β, when illuminated by a flat-top light, the amplitude of the optical torque generated by the metasurface with an iso-helical phase is approximated as:

		
[bookmark: _Ref181177962] (S14)




where P represents the power of the incident light, and Rmax denotes the maximum radius of the metasurface. For a metasurface with a sinusoidal ADE distribution, equation (S14) becomes . Compared to the optical torque generated by SAM transfer, the torque produced by the iso-helical phase metasurface can be several orders of magnitude higher. Under a flat-top light illumination, the optical torque generated by the iso-helical phase metasurface is  times stronger than the SAM torque. Considering a sinusoidal ADE distribution, this ratio becomes , indicating an effective topological charge of . For metasurface with a sinusoidal ADE, a radius of 3 mm, a working wavelength of 1064 nm, and a diffraction angle β of π/6, the effective topology charge |leff| is ~3800. 
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Supplementary Note 4: Accuracy of the weak-force measurement system 
[image: ]
[bookmark: _Ref191976490]Fig. S3. Schematic of data processing. a, After linear detrending, the twist angle α of the torsion pendulum is segmented according to the rotation angle of the incident vector field, and the balance position for each segment is subsequently fitted. b, A picture of a 29.0604-g object suspended by a 15-μm diameter tungsten fiber. c, The measured power spectral density of the free twist angle of the weak-force measurement system with a 5-μm diameter tungsten fiber and the thermal noise limit. 

4.1 Method for data analysis
The temperature of the torsion pendulum rose immediately upon laser illumination, which affected the accuracy of the measurement data. To ensure stable temperature conditions, we measure the optical torque functions by rotating the optical field. During the experiment, the rotation angle of the incident vector optical field is controlled programmatically. Every 200 seconds (approximately 4 periods of the torsion pendulum), the optical field rotates by an angle of 5°. The optical torque is determined by fitting the balance position of the torsion pendulum. The data processing procedure is as follows:
(1) Linear detrending: Due to the creep of the tungsten fiber and slow temperature drift, the twist angle α of the torsion pendulum exhibits a gradual linear drift. Therefore, the original data is first detrended linearly using the equation α = αexp - Ct for subsequent data processing, where t denotes time, αexp represents the originally measured twist angle of the torsion pendulum, and Ct is the linear term obtained through the fitting. 
(2) Segmentation: The data α obtained from Step 1 is segmented to calculate the balance positions corresponding to different rotation angles of the incident optical field. Each segment corresponds to a specific rotation angle of the optical field, as indicated by the white and gray backgrounds in Fig. S3a. 
(3) Data fitting: Fit the data for each segment using the following equation:

		
[bookmark: _Ref181217034] (S15)

where p is a positive integer, indicating the pth segment; ω denotes the frequency of the motion of the torsion balance; Amp,  and Bp respectively indicate the amplitude, phase constant, and balance position of the torsion pendulum's twist angle for the pth segment. The red line in Fig. S3a represents the fitted balance positions, denoted as Bp.
(4) Outlier removal: Discard outlier data points that may arise from external disturbances, such as earthquakes. After fitting, remove the balance positions associated with these outliers.
(5) Optical torque calculation: The relative optical torque is calculated as τ = kf(Bp - B1), where kf is the torsion constant of the fiber.

4.2 System noise
The noise of the torsion balance system primarily consists of the thermal noise and the readout noise from the autocollimator. All objects experience Brownian motion, contributing to an inherent thermal noise limit in the system. According to the fluctuation-dissipation theorem, the thermal noise of the torque in the torsion balance can be expressed as:

		
[bookmark: _Ref181214016] (S16)
where KB is the Boltzmann constant, Tem is the environment temperature, Q is the quality factor of the torsion balance, and ω is the angular frequency. The pendulum with a total mass of ~10.89 g is suspended by a tungsten fiber with a diameter of 15 μm, and a length of 19 cm. The torsion constant kf of the fiber is calculated to be 5.869×10-9 Nm/rad, using the relation kf = Jω2, where J is the moment of inertia of the torsion pendulum. Substituting this value into equation (S16) allows for the calculation of the theoretical thermal noise of the torsion balance, represented by the red line in Fig. 4e. Combining this noise with the readout noise of the autocollimator provides the system's theoretical noise profile, illustrated by the blue line in Fig. 4e. At the working frequency of ~20 mHz, the system noise is ~0.6 fNm/Hz0.5. Besides, according to the formula for the tensile strength of the tungsten torsion fiber σt = F/s, the fiber is capable of supporting objects with a maximum mass of approximately 30 g. Here, σt, F, and s represent the tensile strength, the pulling force, and the cross-section area of the fiber, respectively. Figure S3b shows a picture of the tungsten wire suspending an object weighting 29.0604 g. 

4.3 Error evaluation
In the experiment, the change in optical torque is measured by detecting the shift in the balance position of the torsion pendulum. The optical torque can be expressed as τ = kfα0, where α0 = Bp-B1 indicates the relative balance position of the torsion pendulum, kf = 4π2J/T2 indicates the torsion constant of the fiber, J is the moment of inertia of the torsion pendulum, and T is the oscillation period of the torsion pendulum. Thus, the experimental optical torque can be expressed as:

		
[bookmark: _Ref181214400] (S17)
According to equation (S17), the error of the measured optical torque can be expressed as: 

		
 (S18)
where δJ, δα0, and δT are the errors of the moment of inertia, the balance position, and the period of the pendulum. The relative error is: 

		
[bookmark: _Ref181217243] (S19)

In the following, the relative errors for J, α0, and T are calculated. The moment of inertia J can be expressed as , where mp, ρp, and Vp represent the mass, density, and volume of the pth element of the torsion pendulum, respectively, and rp is the distance from the pth element to the center of the torsion pendulum. Table S1 lists the dimensions and mass of each element of the torsion pendulum. 
Based on the measurements, the mass of the pendulum is 10.8884 g. The moment of inertia of the torsion pendulum is calculated to be J = (3.561±0.004)×10-7 kg∙m2, with a relative error of 0.12%. The balance position of the torsion balance is primarily determined by fitting the twist angle data of the torsion balance, with errors arising from the autocollimator and the fitting error of parameter B in equation (S15). The accuracy of the autocollimator is ±5 μrad, and the relative error of parameter α0 is 3.82%. The period of the torsion balance is obtained by fitting the peak values of the power spectral density of the free oscillation data. The period resolution is the reciprocal of the frequency resolution near the fitting position. Based on the free oscillation data, the period T is calculated to be (48.95±0.06) s, with a relative error of 0.13%. According to equation (S19), the relative error of the optical torque is 3.82%, primarily due to the accuracy of the autocollimator. Furthermore, the relative error of the optical torque can be reduced from 3.82% to 0.22% through replacing the autocollimator with an accuracy of 0.15 μrad.

Table S1. Dimensions and mass of each element of the torsion pendulum
	Object
	
	Measured values
	Errors

	Glass block
	Length
	15.0302 mm
	0.0001 mm

	
	Width
	15.1502 mm
	0.0001 mm

	
	Height
	15.0204 mm
	0.0001 mm

	
	Mass
	8.6020 g
	0.0042 g

	Sample
	Length
	15.0008 mm
	0.0103 mm

	
	Width
	14.9959 mm
	0.0063 mm

	
	Height
	0.484 mm
	00055 mm

	
	Mass
	0.4236 g
	0.0010 g

	Clamp
	D1
	3.9014 mm
	0.0054 mm

	
	D2
	4.3000 mm
	0.0100 mm

	
	D3
	9.9888 mm
	0.0031 mm

	
	L1
	14.0057 mm
	0.0124 mm

	
	L2
	3.0060 mm
	0.0114 mm

	
	Mass
	1.1524 g
	0.0011 g

	Sleeve
	D1
	5.9992 mm
	0.0248 mm

	
	D2
	4.0165 mm
	0.0165 mm

	
	D3
	0.3344 mm
	0.0086 mm

	
	L1
	14.0459 mm
	0.0080 mm

	
	L2
	[bookmark: _Hlk179206972]15.4912 mm
	0.0059 mm

	
	Mass
	0.7104 g
	0.0011 g



Using the torsion fiber with a diameter of 5 μm can further enhance the sensitivity of the weak-force measurement system. Figure S3c illustrates the measured power spectral density of the free twist angle for the system using a 5-μm diameter tungsten fiber. The pendulum has a mass of 3.5 g and a moment of inertia of (7.782±0.005)×10-8 kg∙m2. The free oscillation period is (470.0±0.3) s, and the torsion constant of the fiber is 1.391×10-11 Nm/rad. As shown in Fig. S3c, at the operating frequency of ~2.1 mHz, the weak-force measurement system operates near the thermal noise limit, achieving a sensitivity of ~0.22 fNm/Hz0.5. Table S2 lists the sensitivity of our home-built weak-force measurement systems and other systems with pendulum mass up to 1 g. To the best of our knowledge, our system exhibits the highest sensitivity among them. 
Note that some torque sensitivity data are estimated based on the central values of the power spectral density near the system's operating frequency4-11, and some are derived from acceleration sensitivity estimates12,13. 

Table S2. Comparison of the sensitivity of our homebuilt weak-force measurement systems and others.
	
	References
	Sensitivity (Nm/Hz0.5)
	Pendulum Mass (g)

	1
	Our (5-μm tungsten fiber)
	2.20×10-16
	3.5

	2
	Our (15-μm tungsten fiber)
	6×10-16
	10.89

	3
	Class. Quantum Gravity 26, 094017 (2009)12
	6.00×10-16
	~90

	4
	Phys. Rev. Lett. 101, 071101 (2008)5
	8.00×10-16
	~11

	5
	Class. Quantum Gravity 35, 035017 (2018)14
	1.00×10-15
	~90

	6
	Opt. Lett. 47, 4997-5000 (2022)15
	1.90×10-15
	1.4

	7
	Phys. Rev. D 75, 042001 (2007)4
	2.00×10-15
	90

	8
	Phys. Rev. Appl. 20, 054046 (2023)16
	3.00×10-15
	13

	9
	Phys. Rev. Lett. 121, 261101 (2018)9
	3.00×10-15
	64.5

	10
	Class. Quantum Gravity 39, 105008 (2022)11
	5.00×10-15
	~200

	11
	Phys. Rev. Lett. 116, 131101 (2016)8
	5.00×10-15
	59.693

	12
	Phys. Rev. Lett. 108, 081101 (2012)7
	6.00×10-15
	75.41

	13
	Phys. Rev. D 110, 102005 (2024)17
	8.00×10-15
	58.6

	14
	Adv. Space Res. 51, 2269-2276 (2013)13
	8.50×10-15
	320

	15
	Phys. Rev. Lett. 91, 151101 (2003)18
	1.00×10-14
	101.4

	16
	Rev. Sci. Instrum. 92, 054502 (2021)10
	2.00×10-14
	~45

	17
	Phys. Rev. Appl. 15, 014008 (2021)19
	2.00×10-14
	1230

	18
	Phys. Rev. D 81, 021101 (2010)6
	2.00×10-14
	~11

	19
	Phys. Rev. D 90, 122001 (2014)20
	7.00×10-14
	80

	20
	Phys. Rev. Lett. 98, 201101 (2007)21
	9.50×10-14
	79.633

	21
	Class. Quantum Gravity 27, 205016 (2010)22
	1.40×10-13
	162

	22
	Class. Quantum Gravity 41, 075005 (2024)23
	1.00×10-12
	146

	23
	Phys. Rev. Appl. 18, 044010 (2022)24
	2.00×10-12
	~200

	24
	Sensors 24, 7816 (2024)25
	1.00×10-11
	263
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Supplementary Note 5: Generation of arbitrary vector optical fields 
[image: ]
[bookmark: _Ref191976584]Fig. S4. Optical setup for generating arbitrary vector optical fields. HWP: half-wave plate; QWP: quarter-wave plate; PBS: polarizing beam splitter; PR: polarization rotator; VOF: vector optical field.

Based on the coherent polarization beam combination method26,27, two spatial light modulators (SLMs) are utilized to independently control the LCP and RCP components of the output light to generate arbitrary vector optical fields. The optical setup is shown in Fig. S4. The HWP2 (half-wave plate) is used to modulate the polarization state of the laser. Reflected by the two prisms and passing through the 90° polarization rotator, SLM1 and SLM2 add phase shifts of ΦLCP and ΦRCP to the p-polarized and s-polarized components, respectively. These components are then converted to LCP and RCP by the QWP (quarter-wave plate). Assuming each SLM is positioned on the xoy plane with its center aligned at the origin o, the phases of each pixel on the two SLMs are set as: 

		
 (S20)
where p is any positive integer, denoting the pth point on the vector field, k is the wavenumber in vacuum, ILCP/RCP indicate the light intensity of the desired LCP and RCP components, r2p is the distance between the pth point on the vector field and the center of the SLM, and r1p represents the distance between the pth point on the vector field and each pixel on the SLM. 
[bookmark: _Toc196815515]

Supplementary Note 6: Optical characteristics of the freeform-torque metasurface
[image: ]
[bookmark: _Ref191976718]Fig. S5. Characteristics of the fabricated freeform-torque metasurface. a, The simulation efficiencies of each diffraction order for the 20 selected supercells. The magnitude of ADE is modulated by adjusting the lengths of the nanostructures on the supercell. b, The optical setup for measuring the local ADE of the fabricated metasurface. HWP: half-wave plate; QWP: quarter-wave plate. c, The experimentally measured ADE of the metasurface. d, The experimentally measured ADE of the metasurface with different radii. 

For experimental validation, a spatially multiplexed metasurface is fabricated and measured. The effective region of the metasurface is a ring with inner and outer radii of 0.3 mm and 3 mm, respectively. This effective region is divided into 5 concentric rings, with rotational symmetry orders M for the ADE η set as Mq = q, where q denotes the qth ring of the metasurface from the outermost to the innermost ring. The central ring has a width of 0.7 mm, while the other rings are each 0.5 mm wide. The ADE η of the metasurface is designed as cos(Mφ). 

The sign of the ADE is determined by the direction of the phase gradient. The phase distribution of the metasurface is set as , implemented using geometric phases. Here, the working wavelength λ is 1064 nm, β is set as π/6, and K = 150. Due to the K, the absolute value of the 1st-order diffraction angle ranges from 0.47 to 0.57 rad. The topological charge of the phase ξ changes stepwise with a span of ΔR = 50.8 μm. The amplitude of the ADE is controlled by the efficiency of the nanostructured supercells on the metasurface. Each supercell consists of four nanostructures with identical dimensions (period: 532 nm; width: 140 nm; height 200 nm) but different orientation angles (the orientation angle interval is ±π/4). The amplitude of the ADE is modulated by adjusting the length L of the nanostructures in the supercell. To achieve a sine amplitude, the ADE of the metasurface is divided into 21 orders, i.e. [20η]/20. Therefore, 20 supercells are selected (no structure is designed for the position with an ADE of 0). The relationship between the efficiencies of each diffraction order of the supercells and the length L of the nanostructures is depicted in Fig. S5a.


The local ADE of the designed metasurface is measured. Figure S5b illustrates the optical setup, where a slightly focused circularly polarized light illuminates a localized area of the metasurface to measure efficiency. The efficiencies of the ±1st and the 0th diffraction orders are measured to calculate the ADE. The experimentally measured ADE of the metasurface is shown in Fig. S5c. Here, the ADE is calculated as , where e±1 denote the ratio of the power of the ±1st diffraction order to that of the incident light. When the magnitudes of the metasurface's ADE are equal but opposite in sign, the sizes of the supercells remain the same, differing only in their arrangement directions. Therefore, only the ADE within the range of φ[-π/2M, π/2M] are measured, as shown in Fig. S5d. The observed discrepancy between the experimental ADE and simulation results may arise from deviations in the gold film thickness from the design specifications, given the metasurface's silicon structure with a gold layer. 
[bookmark: _Toc181383769][bookmark: _Toc196815516]


Supplementary Note 7: Measurement of freeform optical torques
[image: ]
[bookmark: _Ref191977144]Fig. S6. Method for calibrating the intensity distribution of the vector optical field. a,b, The Stokes S0 and S3 parameters of the vector optical field used for calibration. Scale bar: 1 mm. c, Schematic of the distribution of the Stokes S3 parameter of the optical field at different radii as a function of the azimuthal angle φ. d, Comparison of the optical torque magnitude generated by the vector optical field of different annuli interacting with the metasurface shown in Fig. S5c.

[bookmark: _Hlk181283132]To design arbitrary configurable freeform optical torques, we first calculate the desired vector optical fields corresponding to the target torque functions. Due to the discrepancies between the metasurface's ADE and the designed values, the linear relationship between the intensity parameter Aq and the amplitude of the qth order sinusoidal optical torque is established experimentally, and Aq and δq are then determined via numerical solution. Initially, a hybrid vector optical field with 5 concentric rings is generated, where the designed light intensity coefficient Aq of each ring is set as 1, as shown in Fig. S6a. Here, the actual intensity of each concentric ring differs, primarily due to the incident light intensity follows a Gaussian intensity profile. The Stokes S3 parameter of each ring of the vector optical field is set as a sine function concerning φ, with orders of 1, 2, 3, 4, and 5, respectively. Figure S6b shows the experimentally measured Stokes S3 parameter of the vector field used for calibration, and Fig. S6c illustrates the Stokes S3 parameter at different radii. By extracting the vector optical field for each ring and illuminating the metasurface (Fig. S5c), the amplitude of the optical torque for different orders corresponding to unit intensity coefficient is calculated using equation (S7), as illustrated in Fig.  S6d. To generate freeform optical torque, the desired intensity coefficient Aq of each ring in the vector optical field is set as the ratio of the required Fourier component intensity (Fig. S1b) to the calibration results (Fig. S6d), while the desired phase shift δq of each ring is determined by equation (S12). 
Illuminated by the hybrid vector field, four optical torque functions generated by the metasurface are measured. The four designed optical torque functions are depicted in Fig. S1a. Figure S7a shows the experimentally measured Stokes S3 distribution of the vector fields. The blue and red lines in Fig. S7b show the ideal and experimental optical torque functions. The correlation coefficient is utilized to quantify the difference between the experimental and ideal optical torques, defined as: 

		
 (S21)


where  indicate the experimental and ideal optical torques, p represents the pth measurement, and  denote the average values of the experimental and ideal optical torque values. The correlation coefficients ρ of the four torque functions are 99.06%, 98.60%, 98.53%, and 98.82%, respectively. Figures S7c and S7d show the Fourier components of the ideal and experimental optical torques. Here, the Fourier components of order greater than 5 are ignored.

[image: ]
[bookmark: _Ref191977295]Fig. S7. Experimental measurement of freeform optical torque. a, Experimental Stokes S3 parameters of the incident vector optical field to generate different optical torque functions. Scale bar: 1 mm. b, Comparison of the ideal and experimental optical torque functions. c,d, Fourier components of the ideal and experimental optical torques (the Fourier components of order greater than 5 are ignored).



Supplementary Note 8: Torque regulation compatible with self-stabilization
By integrating the designed freeform-torque metasurface with nanostructures that enable self-stabilization, both self-stabilization and passive torque regulation can be simultaneously achieved. As a conceptual demonstration, an integrated metasurface is designed, and its motion posture is simulated following the approach described in Reference28.
Assuming that the metasurface is placed on the xoy plane with light propagating along the -z direction, the metasurface is divided into two main regions to simultaneously realize self-stabilization and torque regulation. As shown in Fig. S8a, the peripheral region (region Ⅰ) severs as the torque regulation area, which is similar to the previously described freeform-torque metasurface. This region is divided into five concentric rings, with the normalized ADE defined as η = sign(cosMφ), where M = 1, 2, 3, 4, and 5, from the outermost to the innermost ring. The central region (region Ⅱ) adopts a Bessel phase distribution to achieve lateral self-stabilization along the x- and y-axes, as well as flip self-stabilization in pitch and roll. The red arrows in Fig.S8a indicate the projections of the diffracted light directions in the xoy plane within region Ⅱ under RCP illumination. The metasurface operates in transmission mode, with its phase distribution modulated by the geometric phase. Specifically, under normal incidence of RCP, the diffracted angle of the effective region of the metasurface is set as β = 30°. The diffracted azimuth angle in region Ⅰ is defined as βxoy = φ + π·sign(η)/2, whereas in region Ⅱ it is βxoy = φ – π. For LCP illumination, owning to spin-orbit coupling, the diffraction angle of the effective region remains β = 30°, while the diffraction azimuth angle shift π. Figures S8b and c illustrate the definition of β and βxoy.
[image: ]
Fig. 
[bookmark: _Ref213685681]S8. a, Schematic of the partitioned metasurface. b, c, Schematic illustrations of the diffraction angle (b) and diffraction azimuth angle (c). 

The posture of the metasurface is described by its centroid coordinates R = [x0, y0, z0] and rotation angles around the x-, y-, and z-axes, α = [θx, θy, θz]. For clarity, here, the yaw angle is denoted by the subscript z, i.e., θz = θ. Taking RCP incidence as an example, and assuming the light propagates along the -z axis, the incident wave vector can be expressed as Ki = k[0, 0, -1]. The diffraction angle βmeta and diffraction azimuth angle βmeta-xoy of the metasurface with posture R and α can be expressed as: 

		
[bookmark: _Ref213423797](S22)
where [kxin, kyin, kzin] denotes the wavevector of the incident light in the metasurface coordinate frame, and (kxout-m, kyout-m) represents the in-plane components of the wavevector corresponding to the mth diffracted order in the same coordinates frame. H is the rotation matrix, and is given by:

		(S23)
Since the LCP and RCP components serve as the orthogonal basis, the continuous circular symmetry of circularly polarized light renders it insensitive to the in-plane orientation of the nanostructures29. When the metasurface undergoes small tilts about the x- and y-axes, the polarization states of the incident LCP and RCP components can be considered approximately preserved. Consequently, for a metasurface with rotation angle α, the optical force and torque acting in an infinitesimal area dS = dx·dy under RCP illumination can be expressed as: 

		(S24)
where βlight and βlight-xoy denote the incident angle and azimuthal angle of the incident light relative to the metasurface, and cosθxcosθy accounts for the projected area. Imeta, F, and τ represent the light intensity distribution, optical force, and optical torque in the coordinate frame of the metasurface, respectively. By integrating the force and torque, the total optical force and torque can be calculated. For LCP illumination, the calculation follows the same procedure as for RCP illumination, except that the diffraction azimuth angle βxoy is modified. 
To achieve passive optical torque regulation, the incident light in region Ⅰ is designed as a vector field, with its polarization state and intensity distribution determined by the desired torque function. The vector field is first defined at R = [0, 0, 0] and α = [0, 0, 0]. In region Ⅰ (corresponding to 1 ≤ q ≤ 5), the intensities of RCP and LCP are respectively designed as:

		(S25)

where the subscript q denotes the ring number from the outermost to the innermost ring. Aq and δq respectively represent the intensity and phase factor of the qth ring, and are determined according to the calibration procedure described in Supplementary Note 7. The function rect(*) denotes the rectangular function, used to confine the intensity distribution within each specific annular region, and w represents the beam waist radius. To enable self-stabilization, region Ⅱ (corresponding to q = 6) is illuminated with an RCP Gaussian beam, with an intensity distribution of . Here r = (x2 + y2)1/2 and φ = tan-1(y/x) denotes the coordinates in the body frame, with the beam frame transverse coordinates given by:

		(S26)
Consequenly, for a metasurface with centroid coordinates R = [x0, y0, z0] and rotation angles α = [θx, θy, θz], the light intensity on the metasurface can be expressed as: 

		
[bookmark: _Ref213423800](S27)
Based on Equations (S22) to (S27), the optical force and torque acting on the metasurface during its motion can be determined. 
Assuming that the moment of inertia tensor is diagonal, with Ix, Iy, and Iz denoting the principal moments of inertia, the acceleration induced by optical force and torque in the beam coordinate frame can be expressed as: 

		(S28)
where Mmeta is the mass of the metasurface. The angular velocity can be expressed as: 

		(S29)
[image: ]
Fig. 
[bookmark: _Ref213687143]S9. Torque regulation during the self-stabilization process. a. Temporal evolution of the motion of the metasurface, demonstrating its self-stabilization behavior. b. Dependence of the optical torque component τz on the metasurface's rotation angle θz, illustrating the torque regulation capability. c. Correlation coefficients between the simulated optical torque τz and the ideal values during the metasurface rotation. 

Based on the theoretical framework described above, the motion of the metasurface is simulated. The function of the metasurface is to realize the torque profile shown in Fig. S1a(iv) during the self-stabilization process. In the simulation, the metasurface is assumed to be fabricated on a silicon substrate with dimensions of 10 mm × 10 mm × 0.5 mm and a mass of Mmeta = 0.116 mg. The principal moments of inertia are approximated as Ix = MmetaD2meta/12, Iy = MmetaD2meta/12, and Iz = MmetaD2meta/6, where Dmeta = 10 mm denotes the dimension of the metasurface. The power ratio of the incident light between region Ⅱ and region Ⅰ is set to 10, with a total power of approximately 2 W. The simulation iteratively updates the metasurface's motion with a time step of Δt = 0.2 s for a total of 105 iterations. The initial posture of the metasurface is defined as R = [0.1 mm, 0 ,0] and α = [tan-1(0.3), 0, 0]. Using the metasurface dimension (10 mm) as the normalization reference, the initial displacements in the x- and y-directions are [1%, 0]. To verify the metasurface's torque regulation capability, the metasurface's initial angular velocity ωz(0) is set to 0.02 rad/s. Figure S9 illustrates the motion of the metasurface. Figure S9a shows the self-stabilization process over 2000 s, during which both the centroid positions (x0, y0) and the tilt angles (θx, θy) remain confined within limited ranges. Figure S9b presents the relationship between θz and the torque components τz during self-stabilization. The metasurface rotates approximately four turns about the z-axis, and for each rotation, the correlation coefficient between the simulation torque component τz and the ideal torque exceeds 95%, as shown in Fig. S9c.
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