
Supplementary Information for:

Tabletop All-Attosecond Transient Absorption

Spectroscopy

Mikhail Volkov†, Evaldas Svirplys†, Stefanos Carlström†, Serguei Patchkovskii, Misha Yu.

Ivanov, Marc J. J. Vrakking, Bernd Schütte∗
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1. Experimental Methods

A Ti:sapphire laser (Spitfire, Spectra Physics, 13mJ, 37 fs) operating at 1 kHz was used for the

experiments, and a fraction of 9mJ of the available pulse energy was used for post-compression.

To this end, a three-stage cascaded compression scheme in a non-guided geometry was utilized,

generating 3.7 fs pulses with a pulse energy of 4.9mJ [1]. Low single-shot pulse energy fluctuations of

0.17% were measured over half an hour. An iris with a diameter of 12mm resulted in an optimized

HHG signal, leading to an NIR pulse energy of 3.6mJ behind the iris. High harmonics were

generated in a 7.5 cm-long gas cell statically filled with Xe. To this end, the NIR pulses were loosely

focused using an astigmatism-correcting telescope consisting of a convex and a concave mirror with

an effective focal length of 3.5m. After 14m of propagation, the NIR light was attenuated using a

100 nm-thick aluminum foil (LUXEL), which is partially transparent in the XUV range.
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Fig. S1 | XUV focus size measurements. a, Measured spatial profiles of the XUV pump (blue) and
probe (purple) beams at the focal plane using a knife-edge scan in the horizontal direction. b, Same as a in
the vertical direction. The solid lines show Gaussian fits.

A split-and-delay unit consisting of half-cut spherical XUV mirrors with a focal length of 5 cm

was used to select the attosecond pump and probe pulses and to focus them. In the Xe and Kr

experiments, Sc/Si multilayer mirrors with a peak reflectivity at 27 eV were used, while in the Ar

and Ne experiments, B4C single-layer mirrors with a peak reflectivity at 16 eV (Fraunhofer Institute

for Applied Optics and Precision Engineering) were used. The delay of one of the beams was varied

using a closed-loop nanopositioning stage (Smaract). A closed-loop piezo-actuated mirror mount

(Nanofaktur) was used to spatially overlap the pump and the probe pulses in the focus. The focal

spot sizes of the XUV pump and probe beams were measured via knife-edge scans using a closed-

loop three-dimensional nanopositioning stage (Smaract). The beam waist radii of the pump/probe

beams were 1.3± 0.1 µm / 1.1± 0.1 µm in the vertical direction and 1.6± 0.1 µm / 1.4± 0.1 µm in

the horizontal direction, respectively (see Fig. S1). The XUV pump and probe pulse energies on

target were measured as 3.1 nJ and 2.5 nJ using an XUV photodiode (AXUV100G, OptoDiode).

The attosecond pulse structure was estimated from a cross-correlation measurement performed in

ions. These data were fitted using a simple model, giving a full-width at half maximum (FWHM)
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Fig. S2 | Gas jet profile and pressure. a, Measured gas jet density across the spatial dimension (black
circles) and Gaussian fit (red solid line), giving a FWHM of 46 µm. b, Static optical density (OD) measured
in Ar (black circles), which is compared with the OD obtained from photoabsorption cross section data [2]
(red solid line). Best agreement is obtained for an average pressure of 85mbar. The resonant features below
26 eV in the experimental data can be attributed to absorption in Ar+.
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Fig. S3 | XUV spectra. The pump (bottom) and the probe (top) beams as they appear on the detector.
The gap in the middle corresponds to the gap between the half-cut mirrors in the split-and-delay unit. The
dashed lines indicate the spatial region used for the data analysis.

pulse duration of 270 as [1]. In addition, pre- and post-pulses with a relative intensity of 14% were

obtained from the fit. Since the carrier-envelope phase (CEP) of the laser was not stabilized, these

results represent averaging over different CEP values. Taking into account the pulse energies, the

focus sizes, and the pulse structure, the estimated peak intensities of the pump and the probe pulses

were around 3× 1014W/cm2. An effusive gas jet with a FWHM diameter of 46 µm (see Fig. S2a)

was used, which was measured by scanning the jet perpendicular to the XUV propagation direction

and monitoring the XUV transmission. From the static absorption in Ar, we estimated the average

pressure of 85mbar (Fig. S2b).
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After the gas jet, the XUV pump and probe beams were steered to an XUV spectrometer using

a B4C-coated flat turning mirror. The spectrometer consisted of a curved-groove laminar grating

(L0500-27-135, Shimadzu), which diffracted the XUV beam to a microchannel plate/phosphor

screen assembly, see Fig. 1 in the main text. The XUV pump and probe spectra were spatially

separated on the detector (Fig. S3), enabling individual analysis of either of the two beams.

2. Investigation of the XUV Spatial Chirp

When focusing XUV beams obtained via HHG, significant chromatic aberration has been observed

in a number of studies [3, 4]. To understand whether chromatic aberration is important under our

experimental conditions, we have measured and evaluated XUV focus sizes for different harmonics

using knife-edge scans (see Fig. S4). The results show that the dependence of both the focus size

on the harmonic order is small. This observation can be rationalized by taking into account the

reshaping of the NIR driving laser pulses in the HHG medium. This is expected to lead to a flat-top

driving laser beam profile, which is effectively used for the generation of attosecond pulses [5]. It

was recently shown in a theoretical study that this effect may lead to an elimination of chromatic

aberration [6].
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Fig. S4 | Spectrally resolved XUV focal profiles. a–b, Spectrally resolved XUV pump focal profiles in
the horizontal and vertical directions for the 11th (yellow circles), 13th (green circles), 15th (red circles) and
17th (purple circles) harmonics. c–d, same as a–b, but for the probe beam. The solid lines are Gaussian
fits.
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3. Estimation of the NIR Intensity on the Target

While the Al filter used in the experiment attenuates the NIR pulses by several orders of magnitude,

it does not completely block it. It is therefore important to estimate the NIR intensity. To this end,

we have measured the NIR pulse energy on target, E, giving a value of 60 pJ. Furthermore, the

NIR beam waist radii in horizontal and vertical dimensions, w0h and w0v, were measured as 9.5 µm
and 21 µm via knife-edge scans. Taking into account the NIR pulse duration of 3.7 fs, the peak

intensity was calculated as 5 × 109W/cm2. This is several orders of magnitude smaller than the

XUV intensity. The corresponding ponderomotive potential is 0.4meV, showing that NIR-induced

effects are negligible in our experiments.

4. Evaluation of Zero-Time Delay

An attractive feature of the presented AATAS scheme is that the assignment of the pump and probe

pulses can be reversed. When the pulse usually assigned as the probe pulse serves as the pump

pulse and vice versa, pump-induced processes are observed at negative time delays, see Fig. S5b.

When the two delay-dependent signals are normalized, the dynamics are symmetric with respect to

time zero. The crossing point of the two curves was used to determine zero-time delay. Importantly,

this does not require any information about the underlying physics. This represents an advantage

when compared to traditional ATAS experiments using XUV + NIR pulses, where determination

of time zero can be difficult.
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Fig. S5 | Evaluation of zero time delay. a, AATAS map in Ar at low photon energies. b, normalized
transient absorption signal analyzed for the pump and the probe pulse spectra in the photon energy interval
from 16.4 to 16.9 eV (circles and triangles). The data were fitted by step functions (solid lines). Zero time
delay is determined from the crossing point of the two curves.

6



5. AATAS Results in Kr

In addition to the results presented in the main manuscript, AATAS was performed in Kr, as

shown in Fig. S6. Oscillations with a period of 6.2 ± 0.2 fs are observed, which is consistent with

the spin-orbit splitting of 0.67 eV in Kr+.
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Fig. S6 | AATAS results in Kr. a, Differential optical density in Kr as a function of the photon energy
and the time delay. b, Lineouts at three different photon energies. The solid curves show sinusoidal fits,
giving an oscillation period of 6.2± 0.2 fs, corresponding to the spin-orbit splitting of 0.67 eV in Kr+.

6. Data Analysis

The transient absorption spectra were analyzed as follows. The acquired XUV spectra for each

pump-probe delay were integrated over the selected spatial region as indicated by the dashed lines

in Fig. S3. The change in the optical density (∆OD) as a function of the pump-probe delay, τ , was

calculated as

∆OD(τ) = − log10

(
S(τ)

S0

)
, (S1)

where S(τ) is the delay-dependent and spatially integrated probe spectrum, and S0 is the reference

spectrum averaged from data obtained at the first few negative time delays, meaning that the probe

pulse arrives before the pump pulse. Spectral calibration was done by measuring absorption peaks

in neutral helium and neon and identifying their known spectral resonances [7, 8]. The AATAS

data in Xe and Kr were recorded over 20 repeated temporal pump-probe delay scans, with 4,000

laser shots at each delay, while results in Ar and Ne were obtained from 200 consecutive temporal

scans with 400 laser shots at each delay. Error bars in all figures represent the standard error of

the mean, calculated by determining the standard deviation of ∆OD for each time delay across all

measurements and dividing it by the square root of the number of temporal scans recorded.
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7. Rate Equation Calculations

We have performed rate equation calculations to evaluate the optimal photon fluence in AATAS

experiments. We start by considering single-photon ionization, for which, in a perturbative regime,

the ionization rate W can be expressed as

W = σ
Φ

τ
, (S2)

where σ is the photon energy-dependent cross-section of the species under consideration, Φ is the

photon fluence of the XUV pulse, and τ describes the duration of a square-shaped pulse. Assuming

the same ionization rate for neutrals and ions, and by solving coupled rate equations, it can be

shown that the fraction of singly ionized species after the pulse is

f1 = Wτe−Wτ . (S3)

From Eq. (S3) it follows that the fraction of singly-ionized species will reach its maximum population

when the ionization rate is W0 = 1/τ . Using Eq. (S2), we can rewrite W0 in terms of the saturation

fluence, Φsat = 1/σ, providing an estimate for the optimal fluence that maximizes the ion fraction

f1. Fig. S7 shows the calculated ionic fractions for argon, assuming a photon energy of 24 eV. The

fractional population of ionized species is plotted as a function of the normalized fluence Φ/Φsat.

A maximum fraction of 37% of singly-ionized species is obtained at the saturation intensity. In

comparison, the fraction of singly-ionized species is 36% for the XUV pump fluence used in our

experiment.
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Fig. S7 | Calculated fractional populations of neutral and ionized species in AATAS as a
function of XUV fluence. Shaded regions represent the relative abundance of neutral atoms (grey area),
singly ionized (green area), and higher-order ionized species (yellow area) calculated for argon (cross section
of 34.75Mb [9]) and a photon energy of 24 eV. Vertical line indicate the normalized XUV pump fluence.
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8. Spectral Assignments
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for all investigated species—(a) Ne, (b) Ar, (c) Kr, and (d) Xe—were averaged over positive probe delays to
obtain one-dimensional absorption spectra. Spectral line positions were assigned using data from Ref. [10].
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9. Numerical Methods

9.1 Derivation of Single-Atom Response using Perturbation Theory

We derive a perturbation-theory expression for single-atom response to transient absorption, as-

suming the pump pulse has via ionization prepared a coherent superposition of the sublevels of the

ionic spin-orbit split ground state. The photoelectron leaves the system and is traced out of the

density matrix. The ionic coherence is probed by a second pulse that can excite states of the cation.

In this section, we use a variation of Einstein’s summation convention, where indices only appearing

on one side of the equality sign are automatically contracted. Additionally, we use Hartree atomic

units, where ℏ = e = me = 4πϵ = 1, and the charge of the electron is −1.

The single-atom response is computed as in Ref. [11]

S(ω, tD) = 2 Im{d̃(ω)F̃ ∗(ω)}, (S4)

where tD is the pump–probe pulse time delay. Below, we explore the impact of various initial

states.

The dipole spectrum is computed as the Fourier transform of the induced dipole moment:

d̃(ω) =
1√
2π

∫
dt eiωtd(t), (S5)

where

d(t) = ⟨d̂⟩ = ⟨Ψ(t)|d̂|Ψ(t)⟩ , (S6)

and the dipole operator for linear polarization is d̂ = −ẑ.

At the level of first-order perturbation theory, the induced dipole moment starting from an initial

state

|Ψ(ti)⟩ = un |n⟩ , (Ĥ0 − En) |n⟩ = 0, (S7)
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is given by a sum of two diagrams

d̃(1)(ω) = − iλ1

√
2π



ω

Ĥ1(t1)⟨c|

|a⟩

|b⟩

+

ω

Ĥ1(t1)

⟨b|

⟨a|

|c⟩

︸ ︷︷ ︸
=c.c.


= −iλ1

[∫
dt

∫ t

ti

dt1 u
∗
ce

iEc(t−ti)eiωtdcbe
−iEb(t−t1)F (t1)dbae

−iEa(t1−ti)ua + c.c.

]
,

(S8)

where λ1 is the perturbation expansion parameter, and we assume that for eigenstates |b⟩ unoccu-
pied in the initial state (S7), there is a finite life-time:

Im{Eb} = −Γb

2

def
= − 1

2τb
< 0. (S9)

Furthermore, we will assume a Gaussian envelope of the probe pulse:

F (t) = F0 exp

(
− t2

2σ2

)
cos(ω0t) = F0 exp

(
−wt2

) eiω0t + e−iω0t

2
, w

def
=

1

2σ2
=

4 ln 2

t2FWHM

. (S10)

Focusing on the dynamical part, we find

d̂(ω) = − iλ1

√
2π

[
u∗cuae

−iEcatidcbdbaF0g(ω) + c.c.
]

def
= − iλ1

√
2π

[ρac(ti)dcbdbaF0g(ω) + c.c.]

def
= pabcg(ω) + c.c.,

(S11)

where

g(ω) =

∫
dt

∫ t

ti

dt1 e
iEcteiωte−iEb(t−t1)F (t1)

F0
e−iEat1

=

∫
dt

∫ t

ti

dt1 e
iEcteiωte−iEb(t−t1)e−wt21

eiω0t1 + e−iω0t1

2
e−iEat1

=

∫
dt ei(Ecb+ω)t

∫ t

ti

dt1 e
−wt21

ei(Eba+ω0)t1 + ei(Eba−ω0)t1

2

(S12)

Because of the finite life time imposed on |b⟩ [cf. (S9)], Re{iEcb} = Re{i(Ec −Eb)} = Im{Eb} < 0.

g(ω) is thus essentially the Fourier transform of an exponentially damped oscillating function (i.e.

a Lorentz profile, as expected). The inner integral mainly serves to set the initial amplitude of the

oscillations; its transient behaviour, which quickly passes, is due to the probe pulse e−wt21 cos(ω0t),

and the long-term behaviour is found by setting the upper limit to +∞. Since we are later going
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to multiply g(ω) by F̃ ∗(ω), the lower limit ti is immaterial as well, and we may set it to −∞.

Finally, employing the rotating wave approximation (RWA), inner integral amounts to the Fourier

transform of the probe pulse envelope e−wt21 evaluated at Eba − ω0.

exp
(
−αt2

)
↔ 1√

2α
exp

(
−ω2

4α

)
, (S13)

assuming symmetric normalization (2π)−1/2 of the Fourier transform.

=⇒
∫ t

ti

dt1 e
−wt21

ei(Eba+ω0)t1 + ei(Eba−ω0)t1

2
≈

1

2

√
π

w
exp

[
−(Eba − ω0)

2

4w

]
︸ ︷︷ ︸

def
=Qba

θ(t).
(S14)

=⇒ g(ω) ≈ Qba

∫
dt ei(Ecb+ω)tθ(t)

= Qba

√
2π

√
π

2

1

iπ(Ecb + ω) + 0+
= − Qba

i(Ebc − ω) + 0+

(S15)

Our final perturbation-theory expression for the single-atom response is

S(ω) = 2 Im{F ∗(ω)d̂(ω)} = 2 Im{F ∗(ω)[pabcg(ω) +��XXc.c.]}

≈ 2 Im

{
F0

2

√
π

w
exp

[
−(ω − ω0)

2

4w

] [
− pabcQba

i(Ebc − ω) + 0+

]}
def
= 2Φ(ω) Im

{
exp

[
−(Eba − ω0)

2

4w

]
ρac(ti)dcbdba

(Ebc − ω)− i0+

}
,

(S16)

where the prefactor

Φ(ω)
def
=

λ1

√
2π

F 2
0

4

π

w
exp

[
−(ω − ω0)

2

4w

]
(S17)

is a fairly smooth function that we may approximate as a constant, provided the states |a⟩, |b⟩, and
|c⟩ are within the bandwidth ∼

√
w of the carrier frequency ω0.

9.2 Estimating Cationic Coherences

As we see in Equation (S16), we need the initial coherences ρab. We compute these using time-

dependent configuration-interaction singles calculations [12, 13], by ionizing the neutral neon atom

and tracing out the photoelectron from the density matrix. The time-dependent calculations were

performed on a finite-differences grid spanning from 0Bohr to 100Bohr covered by 577 points with

a grid spacing varying in a log-linear fashion:

rj = rj−1 + ρmin + (1− e−αrj−1)(ρmax − ρmin), r1 = ρmin/2, (S18)
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Table S1 | Initial coherences between the cationic states of neon, following ionization by a 300 as pulse
of 1W cm−2 peak intensity. The cationic states are labelled by the dominant holes relative to the neutral
ground states, and the numbers in the parentheses are the mj quantum numbers of the holes, equal to −MJ

of the cationic states. In the table, we use the following values a = 0.12276, b = 0.212508, c = 0.164693,
d = 0.063, θ = 9.2◦, ϕ = 170.8◦.

2p−1
3/2(3/2) 2p−1

3/2(1/2) 2p−1
3/2(−3/2) 2p−1

3/2(−1/2) 2p−1
1/2(−1/2) 2p−1

1/2(1/2)

2p−1
3/2(3/2) a

2p−1
3/2(1/2) b de−iθ

2p−1
3/2(−3/2) a

2p−1
3/2(−1/2) b deiϕ

2p−1
1/2(−1/2) de−iϕ c

2p−1
1/2(1/2) deiθ c

where ρmin = 0.13Bohr, ρmax = 0.18Bohr, and α = 0.1. In the spin–angular dimension, spinor-

spherical harmonics were used, with ℓ ≤ 10. The complex-absorbing potential by Ref. [14] was used

to avoid reflections from the end of the computational box. Spin–orbit interaction was accounted

for using the effective-core potential of Ref. [15]. Photoelectron spectra were computed using a

multichannel extension of the time-dependent surface-flux technique [12, 13, 16].

The ionizing pulse has a Gaussian envelope, and a photon energy centred at 1Ha ≈ 27.211 eV.

The pulse duration (FWHM) was varied from 150 as to 450 as, which only had a slight impact on

the phases of the coherences (about 5◦ per 150 as). The peak intensity was chosen as 1W cm−2,

100W cm−2, and 1000Wcm−2. After normalizing the ionic coherences to the sum of the diagonal

of the reduced density matrix (i.e. the total ionization yield), both the relative populations as well

as the relative phases proved very stable to the intensity variations, in keeping with the perturbative

nature of the process. The results presented in Table S1 were computed for 300 as duration and

1Wcm−2 peak intensity. Since the tabulated values are hole coherences, the initial state coherences

needed in Equation (S16) are obtained by changing the sign of the coherences, i.e. swapping θ ↔ ϕ.

9.3 Energy Structure of Cation

9.3.1 Dirac B-spline R-matrix Calculations

The energy structure is computed using the DBSR suite of programs by Oleg Zatsarinny [17–21].

The level of theory is the Dirac–Coulomb Hamiltonian, which we solve using Dirac–Hartree–Fock

for the reference, and then we add correlation using a multiconfigurational treatment (MCDHF).

Our Ansatz is a close-coupling expansion:

|Ψ⟩ = Â |ΦN
j ⟩ |χk⟩ , (S19)
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where |ΦN
j ⟩ is the set of target states (ionization channels), |χk⟩ the set of ”free” electrons (it is

used to represent both highly excited, but bound, Rydberg states, as well as truly free continuum

electrons), and Â is the antisymmetrization operator. As is customary in scattering calculations,

N is the number of electrons in the scattering target (atom or ion), and the scattering electron is

the ”+1”.

The only good quantum numbers in the relativistic case are the total angular momentum J of the

many-body wavefunction, and the overall parity Π. We use the notation |γJΠ⟩ for states, where

γ is the configuration and any other quantum numbers necessary to disambiguate states. To get

good agreement with experimental energies, correlation is very important, and we approximate the

states in a multiconfigurational expansion as

|γJΠ⟩ ≈ c(0) |γJΠ⟩(0) + c
(1)
i |γJΠ⟩(1)i + c

(2)
j |γJΠ⟩(2)j + ... (S20)

where |γJΠ⟩(w)
i represents a state where we have made w orbital substitutions with respect to the

reference state |γJΠ⟩(0) (typically the DHF solution). We truncate the expansion at singles and

doubles, i.e. w ≤ 2. We also do not include all possible substitutions, instead we successively add

layers of correlation orbitals until the calculation is converged; if one layer i contains correlation

orbitals that mostly look like niℓi orbitals, where ℓi < ni, the next layer will consist of orbitals

ni+1ℓi+1, where ni+1 = ni + 1, ℓi+1 < ni+1, and so on. In the self-consistent calculations, only

the newly added orbitals are optimized, where as all the expansion coefficients c are recalculated.

Typically, state-averaging is performed, where the orbitals are optimized for a specific set of cho-

sen states, but the same set of orbitals are used for all states (which have different expansion

coefficients).

The calculations include all partial waves needed to support the highest correlation orbital 3d. The

radial functions are expanded in a B-spline basis of polynomial order 8 and 9, for the large and small

components, respectively. For the target states used in the close-coupling expansion, the radial grid

extends to 20Bohr. The resulting target states are shown in Table S2. The free electron is expanded

over the same basis, but extending to 50Bohr, and the close-coupling Hamiltonian is diagonalized.

The reduced dipole matrix elements are computed from the resulting eigenstates, with the angular

factors added to form the Cartesian dipole matrix elements. Dipole matrix elements computed

using DBSR are not guaranteed to follow a consistent sign convention. We therefore fix the signs

using an auxiliary calculation using the molecular GAMESS-US code (see next subsection).

9.3.2 GAMESS-US Calculations

The dipole-coupling pattern between states of interest was calculated at the DK-SO-MCQDPT2

[22–28] + aug-cc-pCVTZ-DK [29–31] level of theory, in the basis of the ten spatial components

of the scalar-relativistic states 12Po (12B1u, 12B2u, and 12B3u in the computational D2h point

group), 12S (12Ag in D2h), 1
4P (14B1g, 1

4B2g, 1
4B3g in D2h), and 12P (12B1g, 1

2B2g, 1
2B3g in D2h
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Table S2 | Energies of select states of neutral neon (Ne I), the neon cation (Ne II), and the neon dication
(Ne III), obtained by MCDHF calculations including correlation orbitals up to 3s− d.

Stage Configuration JΠ E [eV] Exp [eV] Error [eV]

I 2s2 2p21/2 2p
4
3/2 0e 0.000 000 0.0 0.0

II 2s2 2p21/2 2p
3
3/2 (3/2)o 20.891 564 21.5645 −0.672 977

II 2s2 2p1/2 2p
4
3/2 (1/2)o 20.991 083 21.6613 −0.670 219

II 2s 2p21/2 2p
4
3/2 (1/2)e 48.362 639 48.475 −0.112 374

III 2s2 2p21/2 2p
2
3/2 2e 61.161 603 62.5275 −1.365 91

III 2s2 2p1/2 2p
3
3/2 1e 61.241 844 62.6072 −1.365 37

III 2s2 2p43/2 0e 61.268 315 62.6416 −1.373 33

III 2s2 2p1/2 2p
3
3/2 2e 64.526 969 65.7314 −1.204 38

III 2s2 2p21/2 2p
2
3/2 0e 69.518 551 69.44 0.078 590 1

III 2s 2p21/2 2p
3
3/2 2o 86.684 093 87.8562 −1.172 15

III 2s 2p1/2 2p
4
3/2 1o 86.761 450 87.9285 −1.167 03

III 2s 2p1/2 2p
4
3/2 0o 86.772 591 87.9683 −1.195 73

spanning the 7-electron space within the 2s, 2p3, 3s cation manifold [CAS(7,5)]. In the CASSCF

orbital optimization, each of the spatial components of the ground 12Po state was included with

the weight of 3
16 , while the excited states were weighted with 1

16 each. The MJ components of

the spin-orbit states were additionally split for the transition-dipole classification, by applying a

perturbation ĤBJ = Bz(L̂z + Ŝz), with the pseudo-magnetic field B = 10−5 atomic units. The

final energies of the states are summarized in Table S3. All quantum-chemistry calculations were

performed using GAMESS-US [32, 33].

Table S3 | Calculated and experimental energies of the electronic states, in Hartree. The calculated energies
are relative to the total energy of the 2Po

3/2 state (−128.225 840Ha).

State Excitation Experiment [34]
2Po

3/2 0.0 0.0
2Po

1/2 0.003 344 0.003 556

2S1/2 0.990 503 0.988 942

4P5/2 0.989 928 0.998 433
4P3/2 0.992 217 1.000 792
4P1/2 0.993 909 1.002 154

2P3/2 1.014 915 1.021 016
2P1/2 1.017 695 1.023 805
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Table S4 | Essential states used in the perturbation-theory calculation. For states 7–26, the imaginary part
of the energy is Im{E} = −Γ/2, where the decay rate is chosen as Γ = 9.676× 10−4 Ha ∼ ℏ/25 fs.

States Configuration J level MJ sublevels Re{E} [Ha]

1–4 2s2 2p5 2Po 3/2 −3/2,−1/2, 1/2, 3/2 0
5–6 1/2 −1/2, 1/2 0.003 555 873

7–8 2s 2p6 2S 1/2 −1/2, 1/2 0.988 941 62

9–14 2s2 2p4 3s 4P 5/2 −5/2,−3/2,−1/2, 1/2, 3/2, 5/2 0.998 433 211
15–18 3/2 −3/2,−1/2, 1/2, 3/2 1.000 791 861
19–20 1/2 −1/2, 1/2 1.002 154 299

21–24 2s2 2p4 3s 2P 3/2 −3/2,−1/2, 1/2, 3/2 1.021 015 54
25–26 1/2 −1/2, 1/2 1.023 805 212

9.3.3 Essential States Model, Energies & Dipole Moments

In the essential states model, we include 26 states, whose designations and experimental energies [34]

are given in Table S4. Due to an abundance symmetry present in the problem, many of the dipole

matrix elements between the essentials states are of equal magnitude. Here, we only give the

non-zero matrix elements appearing above the diagonal. The ones below the diagonal are trivially

recovered since the matrix representation of ẑ is Hermitian.

• z1,10 = z4,13 = −0.002 713 072

• −z1,15 = z4,18 = 0.004 461 812

• −z1,21 = +z4,24 = 0.289 085 735

• z2,7 = z3,8 = 0.301 304 860

• z2,11 = z3,12 = −0.003 322 821

• −z2,16 = z3,17 = 0.001 487 271

• z2,19 = z3,20 = −0.017 628 096

• −z2,22 = z3,23 = 0.096 361 912

• z2,25 = z3,26 = −0.132 520 663

• z5,7 = −z6,8 = 0.204 296 894

• z5,16 = z6,17 = 0.003 697 899

• z5,19 = −z6,20 = 0.012 549 756

• z5,22 = z6,23 = −0.141 135 324

• z5,25 = −z6,26 = 0.196 911 678
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9.4 Hole Density motion in Ne+

p0

p1

𝜙 = 𝜙0 𝜙 = 𝜙0 + 𝜋/2

𝜙 = 𝜙0 + 𝜋 𝜙 = 𝜙0 + 3𝜋/2

𝜙 (rad)
0 𝜋/2 𝜋 3𝜋/2 2𝜋

Fig. S9 | Time-dependent hole density in the mj = 1/2 channel of neon, for a few different
values of the phase ϕ = ∆Esot. ϕ0 was chosen to maximize the visual overlap with p0. This happens at
ϕ0 = −0.3 rad, corresponding to about −2 fs for the spin–orbit splitting of Ne.
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