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1. Experimental Methods

A Ti:sapphire laser (Spitfire, Spectra Physics, 13mJ, 37fs) operating at 1kHz was used for the
experiments, and a fraction of 9mJ of the available pulse energy was used for post-compression.
To this end, a three-stage cascaded compression scheme in a non-guided geometry was utilized,
generating 3.7 fs pulses with a pulse energy of 4.9 mJ [1]. Low single-shot pulse energy fluctuations of
0.17 % were measured over half an hour. An iris with a diameter of 12 mm resulted in an optimized
HHG signal, leading to an NIR pulse energy of 3.6 mJ behind the iris. High harmonics were
generated in a 7.5 cm-long gas cell statically filled with Xe. To this end, the NIR pulses were loosely
focused using an astigmatism-correcting telescope consisting of a convex and a concave mirror with
an effective focal length of 3.5 m. After 14 m of propagation, the NIR light was attenuated using a
100 nm-thick aluminum foil (LUXEL), which is partially transparent in the XUV range.
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Fig. S1 | XUV focus size measurements. a, Measured spatial profiles of the XUV pump (blue) and
probe (purple) beams at the focal plane using a knife-edge scan in the horizontal direction. b, Same as a in
the vertical direction. The solid lines show Gaussian fits.

A split-and-delay unit consisting of half-cut spherical XUV mirrors with a focal length of 5cm
was used to select the attosecond pump and probe pulses and to focus them. In the Xe and Kr
experiments, Sc/Si multilayer mirrors with a peak reflectivity at 27eV were used, while in the Ar
and Ne experiments, B4C single-layer mirrors with a peak reflectivity at 16 eV (Fraunhofer Institute
for Applied Optics and Precision Engineering) were used. The delay of one of the beams was varied
using a closed-loop nanopositioning stage (Smaract). A closed-loop piezo-actuated mirror mount
(Nanofaktur) was used to spatially overlap the pump and the probe pulses in the focus. The focal
spot sizes of the XUV pump and probe beams were measured via knife-edge scans using a closed-
loop three-dimensional nanopositioning stage (Smaract). The beam waist radii of the pump/probe
beams were 1.3 £0.1um / 1.1 + 0.1 pm in the vertical direction and 1.6 £ 0.1pm / 1.4 £+ 0.1 pm in
the horizontal direction, respectively (see Fig. S1). The XUV pump and probe pulse energies on
target were measured as 3.1nJ and 2.5nJ using an XUV photodiode (AXUV100G, OptoDiode).

The attosecond pulse structure was estimated from a cross-correlation measurement performed in
ions. These data were fitted using a simple model, giving a full-width at half maximum (FWHM)
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Fig. S2 | Gas jet profile and pressure. a, Measured gas jet density across the spatial dimension (black
circles) and Gaussian fit (red solid line), giving a FWHM of 46 pm. b, Static optical density (OD) measured
in Ar (black circles), which is compared with the OD obtained from photoabsorption cross section data [2]
(red solid line). Best agreement is obtained for an average pressure of 85 mbar. The resonant features below
26 eV in the experimental data can be attributed to absorption in Ar™.
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Fig. S3 | XUV spectra. The pump (bottom) and the probe (top) beams as they appear on the detector.
The gap in the middle corresponds to the gap between the half-cut mirrors in the split-and-delay unit. The
dashed lines indicate the spatial region used for the data analysis.

pulse duration of 270 as [1]. In addition, pre- and post-pulses with a relative intensity of 14 % were
obtained from the fit. Since the carrier-envelope phase (CEP) of the laser was not stabilized, these
results represent averaging over different CEP values. Taking into account the pulse energies, the
focus sizes, and the pulse structure, the estimated peak intensities of the pump and the probe pulses
were around 3 x 104 W /cm?. An effusive gas jet with a FWHM diameter of 46 pm (see Fig. S2a)
was used, which was measured by scanning the jet perpendicular to the XUV propagation direction
and monitoring the XUV transmission. From the static absorption in Ar, we estimated the average
pressure of 85 mbar (Fig. S2b).



After the gas jet, the XUV pump and probe beams were steered to an XUV spectrometer using
a B4C-coated flat turning mirror. The spectrometer consisted of a curved-groove laminar grating
(L0500-27-135, Shimadzu), which diffracted the XUV beam to a microchannel plate/phosphor
screen assembly, see Fig. 1 in the main text. The XUV pump and probe spectra were spatially
separated on the detector (Fig. S3), enabling individual analysis of either of the two beams.

2. Investigation of the XUV Spatial Chirp

When focusing XUV beams obtained via HHG, significant chromatic aberration has been observed
in a number of studies [3, 4]. To understand whether chromatic aberration is important under our
experimental conditions, we have measured and evaluated XUV focus sizes for different harmonics
using knife-edge scans (see Fig. S4). The results show that the dependence of both the focus size
on the harmonic order is small. This observation can be rationalized by taking into account the
reshaping of the NIR driving laser pulses in the HHG medium. This is expected to lead to a flat-top
driving laser beam profile, which is effectively used for the generation of attosecond pulses [5]. It
was recently shown in a theoretical study that this effect may lead to an elimination of chromatic
aberration [6].
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Fig. S4 | Spectrally resolved XUV focal profiles. a—b, Spectrally resolved XUV pump focal profiles in
the horizontal and vertical directions for the 11th (yellow circles), 13th (green circles), 15th (red circles) and
17th (purple circles) harmonics. c¢—d, same as a—b, but for the probe beam. The solid lines are Gaussian
fits.



3. Estimation of the NIR Intensity on the Target

While the Al filter used in the experiment attenuates the NIR pulses by several orders of magnitude,
it does not completely block it. It is therefore important to estimate the NIR intensity. To this end,
we have measured the NIR pulse energy on target, F, giving a value of 60 pJ. Furthermore, the
NIR beam waist radii in horizontal and vertical dimensions, wq, and wgy, were measured as 9.5 pm
and 21 pm via knife-edge scans. Taking into account the NIR pulse duration of 3.7 fs, the peak

intensity was calculated as 5 x 10 W /cm?

. This is several orders of magnitude smaller than the
XUV intensity. The corresponding ponderomotive potential is 0.4 meV, showing that NIR-induced

effects are negligible in our experiments.

4. Evaluation of Zero-Time Delay

An attractive feature of the presented AATAS scheme is that the assignment of the pump and probe
pulses can be reversed. When the pulse usually assigned as the probe pulse serves as the pump
pulse and vice versa, pump-induced processes are observed at negative time delays, see Fig. S5b.
When the two delay-dependent signals are normalized, the dynamics are symmetric with respect to
time zero. The crossing point of the two curves was used to determine zero-time delay. Importantly,
this does not require any information about the underlying physics. This represents an advantage
when compared to traditional ATAS experiments using XUV + NIR pulses, where determination
of time zero can be difficult.
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Fig. S5 | Evaluation of zero time delay. a, AATAS map in Ar at low photon energies. b, normalized
transient absorption signal analyzed for the pump and the probe pulse spectra in the photon energy interval
from 16.4 to 16.9eV (circles and triangles). The data were fitted by step functions (solid lines). Zero time
delay is determined from the crossing point of the two curves.



5. AATAS Results in Kr

In addition to the results presented in the main manuscript, AATAS was performed in Kr, as
shown in Fig. S6. Oscillations with a period of 6.2 £ 0.2fs are observed, which is consistent with
the spin-orbit splitting of 0.67eV in KrT.

25 20 8
a :|' b ] 18.1 eV =——18.7 eV ——17.4 &V
. 15 6
2045 1
i - 10 ‘7
1 2
15 n F5 J
: I 5 8 °
9y 10—:'.l [0 E E H"s;
=} 2 7 ¢ I
1 __5 oY | - , W
-4 B | ¢ |
54 b } A/\/\
-10 ' & Std

T T T T T T T T T -20 -10 T T T T T T T T T T T
17 18 19 20 21 22 0 5 10 15 20 25
Photon energy (eV) Delay (fs)

Fig. S6 | AATAS results in Kr. a, Differential optical density in Kr as a function of the photon energy
and the time delay. b, Lineouts at three different photon energies. The solid curves show sinusoidal fits,
giving an oscillation period of 6.2 & 0.2 fs, corresponding to the spin-orbit splitting of 0.67eV in Kr™T.

6. Data Analysis

The transient absorption spectra were analyzed as follows. The acquired XUV spectra for each
pump-probe delay were integrated over the selected spatial region as indicated by the dashed lines
in Fig. S3. The change in the optical density (AOD) as a function of the pump-probe delay, 7, was
calculated as

AOD(7) = —logyy (iﬁ?) , (S1)

where S(7) is the delay-dependent and spatially integrated probe spectrum, and Sy is the reference
spectrum averaged from data obtained at the first few negative time delays, meaning that the probe
pulse arrives before the pump pulse. Spectral calibration was done by measuring absorption peaks
in neutral helium and neon and identifying their known spectral resonances [7, 8]. The AATAS
data in Xe and Kr were recorded over 20 repeated temporal pump-probe delay scans, with 4,000
laser shots at each delay, while results in Ar and Ne were obtained from 200 consecutive temporal
scans with 400 laser shots at each delay. Error bars in all figures represent the standard error of
the mean, calculated by determining the standard deviation of AOD for each time delay across all

measurements and dividing it by the square root of the number of temporal scans recorded.



7. Rate Equation Calculations

We have performed rate equation calculations to evaluate the optimal photon fluence in AATAS
experiments. We start by considering single-photon ionization, for which, in a perturbative regime,
the ionization rate W can be expressed as

W = U?, (S2)
T
where ¢ is the photon energy-dependent cross-section of the species under consideration, ® is the
photon fluence of the XUV pulse, and 7 describes the duration of a square-shaped pulse. Assuming
the same ionization rate for neutrals and ions, and by solving coupled rate equations, it can be
shown that the fraction of singly ionized species after the pulse is

fi=Wre V. (S3)

From Eq. (S3) it follows that the fraction of singly-ionized species will reach its maximum population
when the ionization rate is Wy = 1/7. Using Eq. (S2), we can rewrite Wy in terms of the saturation
fluence, @4, = 1/0, providing an estimate for the optimal fluence that maximizes the ion fraction
f1. Fig. S7 shows the calculated ionic fractions for argon, assuming a photon energy of 24eV. The
fractional population of ionized species is plotted as a function of the normalized fluence ® /P 4.
A maximum fraction of 37 % of singly-ionized species is obtained at the saturation intensity. In
comparison, the fraction of singly-ionized species is 36 % for the XUV pump fluence used in our

experiment.
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Fig. S7 | Calculated fractional populations of neutral and ionized species in AATAS as a
function of XUV fluence. Shaded regions represent the relative abundance of neutral atoms (grey area),
singly ionized (green area), and higher-order ionized species (yellow area) calculated for argon (cross section
of 34.75Mb [9]) and a photon energy of 24eV. Vertical line indicate the normalized XUV pump fluence.



8. Spectral Assignments
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Fig. S8 | Spectral assignments of the measured AATAS data. Time-resolved AOD maps recorded
for all investigated species—(a) Ne, (b) Ar, (¢) Kr, and (d) Xe—were averaged over positive probe delays to
obtain one-dimensional absorption spectra. Spectral line positions were assigned using data from Ref. [10].



9. Numerical Methods

9.1 Derivation of Single-Atom Response using Perturbation Theory

We derive a perturbation-theory expression for single-atom response to transient absorption, as-
suming the pump pulse has via ionization prepared a coherent superposition of the sublevels of the
ionic spin-orbit split ground state. The photoelectron leaves the system and is traced out of the
density matrix. The ionic coherence is probed by a second pulse that can excite states of the cation.
In this section, we use a variation of Einstein’s summation convention, where indices only appearing
on one side of the equality sign are automatically contracted. Additionally, we use Hartree atomic
units, where h = ¢ = m, = 4we = 1, and the charge of the electron is —1.

The single-atom response is computed as in Ref. [11]
S(w,tp) = 2Im{d(w)F*(w)}, (S4)

where tp is the pump—probe pulse time delay. Below, we explore the impact of various initial

states.

The dipole spectrum is computed as the Fourier transform of the induced dipole moment:

d(w) = \/12? / dt etd(p), (S5)

where

d(t) = (d) = (U(1)[d|¥(t)) (S6)
and the dipole operator for linear polarization is d=—3.

At the level of first-order perturbation theory, the induced dipole moment starting from an initial
state

(L) = unln), (Ho— En)n) =0, (S7)
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is given by a sum of two diagrams

(S8)

=CcC.C. .

¢
= —ix! [/ dt / dty uzelEC(t*t")emdcbeﬂEb(t*tl)F(tl)dbaeflEa(t“ti)ua +c.c.|,
t; |

where A! is the perturbation expansion parameter, and we assume that for eigenstates |b) unoccu-
pied in the initial state (S7), there is a finite life-time:

Im{E,} = —— < —— <. (S9)

Furthermore, we will assume a Gaussian envelope of the probe pulse:

2

202

iwpt —iwot 1 41n?2
> cos(wot) = Fyexp (—th) %7 w 252 32 2 (S10)
o trwHM

F(t) = Fyexp <

Focusing on the dynamical part, we find

~ 1 1

dw) = -2
1

d:ef —i [pac(ti)dcbdbaFOg(w) + C.C.] (Sll)

Ver

def
= pabcg(w) +c.c,

[uzuae_iEcatidcbdbaF()g(w) + C'C']

where .
g(w) _ /dt / dt; eiEcteiwte—iEb(t—tl)F(tl)e—iEatl

t; Fo
¢ . . . g elwoll | g—iwots

_ /dt / dtl elECtelwte—lEb(t—tl)e—wt1 5 e—lEatl (812)
t;

_ / At (Bt / gy qu e ;rel(Eb“_wO)tl

t;

Because of the finite life time imposed on |b) [cf. (S9)], Re{iEw} = Re{i(E. — Ep)} = Im{E}} < 0.
g(w) is thus essentially the Fourier transform of an exponentially damped oscillating function (i.e.
a Lorentz profile, as expected). The inner integral mainly serves to set the initial amplitude of the

wt

oscillations; its transient behaviour, which quickly passes, is due to the probe pulse e~ i cos(wot),

and the long-term behaviour is found by setting the upper limit to +o00. Since we are later going
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to multiply g(w) by F*(w), the lower limit ¢; is immaterial as well, and we may set it to —oo.

Finally, employing the rotating wave approximation (RWA), inner integral amounts to the Fourier

% evaluated at Ep, — wo.

\/127& exp (-i) , (S13)

assuming symmetric normalization (27)~/2 of the Fourier transform.

transform of the probe pulse envelope e™%

exp(—atZ) &~

t B ei(Eba+w0)tl _~_ei(EbafoJQ)t1
— . dt; e wt 5 ~
1 s (Eba — w0)2 (814)
2V w P [_4w o(t).
dZEbea
— gw) ~ Quo / dt &Pt 1)
(S15)

/ 1 _ Qba
2 m(Ec,, +w)+ 0t i(Bp —w)+ 0t

Our final perturbation-theory expression for the single-atom response is

S(w) = 2 Im{F*(w)d(w)} = 2Im{F*(w)[pascg(w) +e-ed}

~2Im {I;O\/> p[ S ;50) } [—i(Ebf(fcf)b:mH (S16)

def Eba wo)? 1 pac(ti)depdpa
= 2<I>
{eXp [ ] (Bpe —w) — 10+ [

where the prefactor

O(w) = —=—F—ex . (S17)

Vor 4 w

is a fairly smooth function that we may approximate as a constant, provided the states |a), |b), and

def Al F() T D [_ (w —w0)2:|

|c) are within the bandwidth ~ \/w of the carrier frequency wp.

9.2 Estimating Cationic Coherences

As we see in Equation (S16), we need the initial coherences py,. We compute these using time-
dependent configuration-interaction singles calculations [12, 13], by ionizing the neutral neon atom
and tracing out the photoelectron from the density matrix. The time-dependent calculations were
performed on a finite-differences grid spanning from 0 Bohr to 100 Bohr covered by 577 points with
a grid spacing varying in a log-linear fashion:

7j =7j—1+ pmin + (1 = €777 ) (Pmax — Pmin);, 71 = Pmin/2, (S18)
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Table S1 | Initial coherences between the cationic states of neon, following ionization by a 300as pulse
of 1 W cm™2 peak intensity. The cationic states are labelled by the dominant holes relative to the neutral
ground states, and the numbers in the parentheses are the m; quantum numbers of the holes, equal to —M s
of the cationic states. In the table, we use the following values a = 0.12276, b = 0.212508, ¢ = 0.164693,
d=0.063, § = 9.2°, ¢ = 170.8°.

2p55(3/2)  2p35(1/2) 2p55(=3/2) 2py.5(=1/2) 2py5(—=1/2) 2py,(1/2)
2055(3/2) | a
2p;/12(1 /2) b de1?
25 5(—3/2) a
2p55(—1/2) b del?
zp;/g(—l /2) de™ ¢ c
2p1_/12(1 /2) del? c

where pmin = 0.13 Bohr, pmax = 0.18 Bohr, and @ = 0.1. In the spin-angular dimension, spinor-
spherical harmonics were used, with £ < 10. The complex-absorbing potential by Ref. [14] was used
to avoid reflections from the end of the computational box. Spin—orbit interaction was accounted
for using the effective-core potential of Ref. [15]. Photoelectron spectra were computed using a
multichannel extension of the time-dependent surface-flux technique [12, 13, 16].

The ionizing pulse has a Gaussian envelope, and a photon energy centred at 1Ha =~ 27.211eV.
The pulse duration (FWHM) was varied from 150 as to 450 as, which only had a slight impact on
the phases of the coherences (about 5° per 150as). The peak intensity was chosen as 1 Wem™2,
100 W em™2, and 1000 W cm 2. After normalizing the ionic coherences to the sum of the diagonal
of the reduced density matrix (i.e. the total ionization yield), both the relative populations as well
as the relative phases proved very stable to the intensity variations, in keeping with the perturbative
nature of the process. The results presented in Table S1 were computed for 300 as duration and
1 W cm ™2 peak intensity. Since the tabulated values are hole coherences, the initial state coherences

needed in Equation (S16) are obtained by changing the sign of the coherences, i.e. swapping 6 <> ¢.

9.3 Energy Structure of Cation
9.3.1 Dirac B-spline R-matrix Calculations

The energy structure is computed using the DBSR suite of programs by Oleg Zatsarinny [17-21].
The level of theory is the Dirac-Coulomb Hamiltonian, which we solve using Dirac-Hartree—Fock
for the reference, and then we add correlation using a multiconfigurational treatment (MCDHF).

Our Ansatz is a close-coupling expansion:

0) = A|2) [xk) (519)

13



where |<I>§V ) is the set of target states (ionization channels), |xx) the set of "free” electrons (it is
used to represent both highly excited, but bound, Rydberg states, as well as truly free continuum
electrons), and A is the antisymmetrization operator. As is customary in scattering calculations,
N is the number of electrons in the scattering target (atom or ion), and the scattering electron is
the 7+17.

The only good quantum numbers in the relativistic case are the total angular momentum J of the
many-body wavefunction, and the overall parity II. We use the notation |yJ™) for states, where
~ is the configuration and any other quantum numbers necessary to disambiguate states. To get
good agreement with experimental energies, correlation is very important, and we approximate the

states in a multiconfigurational expansion as
[y ) & @ O 4 eV [ 4 6 [P 4 (520)

where |y.J H>Z(-w) represents a state where we have made w orbital substitutions with respect to the
reference state \'yJH)(O) (typically the DHF solution). We truncate the expansion at singles and
doubles, i.e. w < 2. We also do not include all possible substitutions, instead we successively add
layers of correlation orbitals until the calculation is converged; if one layer i contains correlation
orbitals that mostly look like n;¢; orbitals, where ¢; < n;, the next layer will consist of orbitals
ni118iy1, where njy1 = n; + 1, 441 < n;q1, and so on. In the self-consistent calculations, only
the newly added orbitals are optimized, where as all the expansion coeflicients ¢ are recalculated.
Typically, state-averaging is performed, where the orbitals are optimized for a specific set of cho-
sen states, but the same set of orbitals are used for all states (which have different expansion
coefficients).

The calculations include all partial waves needed to support the highest correlation orbital 3d. The
radial functions are expanded in a B-spline basis of polynomial order 8 and 9, for the large and small
components, respectively. For the target states used in the close-coupling expansion, the radial grid
extends to 20 Bohr. The resulting target states are shown in Table S2. The free electron is expanded
over the same basis, but extending to 50 Bohr, and the close-coupling Hamiltonian is diagonalized.
The reduced dipole matrix elements are computed from the resulting eigenstates, with the angular
factors added to form the Cartesian dipole matrix elements. Dipole matrix elements computed
using DBSR, are not guaranteed to follow a consistent sign convention. We therefore fix the signs
using an auxiliary calculation using the molecular GAMESS-US code (see next subsection).

9.3.2 GAMESS-US Calculations

The dipole-coupling pattern between states of interest was calculated at the DK-SO-MCQDPT2
[22-28] + aug-cc-pCVTZ-DK [29-31] level of theory, in the basis of the ten spatial components
of the scalar-relativistic states 12P° (12B1u, 12Bs,, and 12Bs, in the computational D point
group), 12S (12A; in Day), 1P (1B, 1*Bag, 11Bsg in Do), and 12P (12Byg, 12Byg, 12Bsg in Doy,
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Table S2 | Energies of select states of neutral neon (Ne I), the neon cation (Ne II), and the neon dication
(Ne III), obtained by MCDHF calculations including correlation orbitals up to 3s — d.

Stage Configuration — J' E [eV] Exp [eV] Error [eV]
I 2s? 2p7 , 2p3 5 0° 0.000 000 0.0 0.0

IT 28% 2p7 )y 203, (3/2)° 20.891 564 21.5645 —0.672977
II 252 2p1 /o 2p§/2 (1/2)° 20.991 083 21.6613 —0.670219
1T 2s 2p2 , 2p3 5, (1/2)° 48.362 639 48.475 —0.112 374
ITI 287 2p7 )5 2055 2° 61.161 603 62.5275 —1.36591
111 252 2p1 /9 2p5 s 1° 61.241 844 62.6072 —1.365 37
ITI 257 2p3 0° 61.268 315 62.6416 —-1.37333
11 2s% 2p1 /9 2D o 2° 64.526 969 65.7314 —1.204 38
IT1 252 2p )y 205, 0° 69.518 551 69.44 0.0785901
ITI 28 2p1 ), 2P5,y  2° 86.684 093 87.8562 —-1.17215
I 282pyp 2p5, 1° 86.761 450 87.9285 —-1.16703
I 282pyp 2p5, 0° 86.772591 87.9683 —-1.19573

spanning the 7-electron space within the 2s,2p?,3s cation manifold [CAS(7,5)]. In the CASSCF
orbital optimization, each of the spatial components of the ground 12P° state was included with
the weight of %, while the excited states were weighted with % each. The Mj; components of
the spin-orbit states were additionally split for the transition-dipole classification, by applying a
perturbation Hgy = Bz(f/z + S’Z), with the pseudo-magnetic field B = 107° atomic units. The
final energies of the states are summarized in Table S3. All quantum-chemistry calculations were

performed using GAMESS-US [32, 33].

Table S3 | Calculated and experimental energies of the electronic states, in Hartree. The calculated energies
are relative to the total energy of the 2P9,, state (—128.225840 Ha).

3/2

State Excitation Experiment [34]
°P§ 0.0 0.0

2po /2 0.003 344 0.003 556
2S1/2 0.990 503 0.988 942
P50 0.989 928 0.998 433
P30 0.992217 1.000 792
1Py s 0.993 909 1.002 154
Py /o 1.014915 1.021016
Py g 1.017695 1.023 805
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Table S4 | Essential states used in the perturbation-theory calculation. For states 7-26, the imaginary part
of the energy is Im{ E} = —I'/2, where the decay rate is chosen as I' = 9.676 x 104 Ha ~ /25 fs.

States | Configuration J level M ; sublevels Re{E} [Ha]
1-4 252 2p° 2P° 3/2 -3/2,-1/2,1/2,3/2 0

5-6 1/2 —1/2,1/2 0.003 555 873
7-8 2s 2pb 28 1/2 -1/2,1/2 0.988 941 62
9-14 | 2s22p*3siP 52 —5/2,-3/2,-1/2,1/2,3/2,5/2  0.998433211
15-18 3/2 —3/2,-1/2,1/2,3/2 1.000 791 861
19-20 1/2 —1/2,1/2 1.002 154 299
21-24 | 252 2p* 3s 2P 3/2 -3/2,-1/2,1/2,3/2 1.021 015 54
25-26 1/2 —1/2,1/2 1.023 805 212

9.3.3 Essential States Model, Energies & Dipole Moments

In the essential states model, we include 26 states, whose designations and experimental energies [34]
are given in Table S4. Due to an abundance symmetry present in the problem, many of the dipole
matrix elements between the essentials states are of equal magnitude. Here, we only give the
non-zero matrix elements appearing above the diagonal. The ones below the diagonal are trivially

recovered since the matrix representation of Z is Hermitian.

o 2110 = 2413 = —0.002713072
o —2115 = 2415 = 0.004461 812
o —2191 = +2404 = 0.289085735
o 297 = 235 = 0.301 304860

o 2311 = 2312 = —0.003322821
o —2p16 = 2317 = 0.001 487271
o 2319 = 2390 = —0.017 628 096
o —2y0y = 233 = 0.096 361 912
o 295 = 2396 = —0.132520 663
o 257 = —2g8 = 0.204296 894
o 2516 = 2617 = 0.003 697 899

o 2519 = —26.20 = 0.012549 756
o 2590 = 23 = —0.141 135324

o 2595 = —26.26 = 0.196911 678
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9.4 Hole Density motion in Ne™

6 (rad)

0 /2 T 3m/2 27
Po o=, ¢:¢0+7T/2
P p=¢y+m ¢:¢0+37"/2

Fig. S9 | Time-dependent hole density in the m; = 1/2 channel of neon, for a few different
values of the phase ¢ = AFy,t. ¢y was chosen to maximize the visual overlap with pg. This happens at
oo = —0.3rad, corresponding to about —2fs for the spin—orbit splitting of Ne.
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