

1 **A dose-escalation and safety study of gene therapy for CMT4C neuropathy**

2

3 Elena Georgiou¹, Alexia Kagiava¹, Andreas Hentschel², Irene Sargiannidou¹,
4 Rebekka Papacharalampous^{3,9}, Marina Stavrou¹, Christina Tryfonos⁴, Jan
5 Richter⁴, Andreas Roos^{5,6,7,8} and Kleopas A. Kleopa^{1,9}

6

7 ¹Neuroscience Department, The Cyprus Institute of Neurology and Genetics,
8 Nicosia, Cyprus 2371;

9 ²Leibniz-Institut für Analytischen Wissenschaften -ISAS- e.V., Dortmund,
10 Germany ³Neuropathology Laboratory, The Cyprus Institute of Neurology
11 and Genetics, Nicosia, Cyprus 2371;

12 ⁴Molecular Virology Department, The Cyprus Institute of Neurology and
13 Genetics, Nicosia, Cyprus 2371;

14 ⁵Department of Pediatric Neurology, Centre for Neuromuscular Disorders,
15 University Duisburg- Essen, Essen, Germany.

16 ⁶Department of Neurology, Medical Faculty and University Hospital
17 Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.

18 ⁷Department of Neurology, Heimer Institute for Muscle Research,
19 University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum,
20 Germany.

21 ⁸Children's Hospital of Eastern Ontario Research Institute, University of
22 Ottawa, Ottawa, Canada.

23 ⁹Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and
24 Genetics, Nicosia, Cyprus 2371

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 **DETAILED MATERIALS AND METHODS**

40 **Viral vector production**

41 The production of the mock (AAV9-*hMPZmini.EGFP*) and therapeutic (AAV9-
42 *hMPZmini.SH3TC2.SV40pA*) viral vectors was performed at Virovek CoA. Vectors
43 were produced in insect Sf9 cells by infection with rBV- inCap9-inRep-kozak-hr2
44 (V289) and either rBV-*hMPZmini.EGFP* (NRG36) for the mock, or rBV-AAV9-
45 *hMPZmini.SH3TC2.SV40pA* for the therapeutic vector. Vectors were purified
46 through 2 rounds of CsCl ultracentrifugations. The CsCl was removed through buffer
47 exchange with 2 PD-10 desalting columns. The final AAV vector product was buffer-
48 exchanged to PBS plus 0.001% pluronic F-68 buffer.

49

50 **Experimental mice**

51 The intrathecal gene delivery experiments were conducted using wild type (WT)
52 C57BL/6 or *Sh3tc2*^{-/-} mice. The generation and characterization of the *Sh3tc2*^{-/-}
53 mouse model has been described previously (16, 32). All animals were kept under
54 specific pathogen free (SPF), standard controlled conditions of temperature (21–
55 23°C), humidity, air exchange and light cycle (12/12 h light/dark) and provided with
56 standardized mouse diet and drinking water ad libitum.

57

58 **Determination of vector genome copy numbers (VGCNs)**

59 To assess vector biodistribution, genomic DNA was extracted from different PNS
60 tissues (i.e., lumbar roots, proximal and distal sciatic nerves, and femoral motor
61 nerves) of mice 6 or 8 weeks after intrathecal vector delivery using the MagPurix
62 Tissue DNA Extraction Kit (Zinexts Life Science. The extracted DNA was analyzed
63 for yield and purity using a Nanodrop 1000 spectrophotometer. 5 μ l of DNA was
64 used as template for a duplex digital droplet PCR assay targeting either the EGFP
65 or SH3TC2 gene of the transgene cassette and in parallel TFRC as a reference
66 gene. Following droplet generation on a Bio-Rad QX200 AutoDG ddPCR system
67 (Biorad, France), the emulsion was transferred to a PCR plate and cycled using
68 the following thermal cycler conditions: predenaturation at 95 °C for 5 min, 40
69 cycles at 95 °C for 30 s, 60 °C for 1 min, and 4 °C for 5 min, and a final step at 60
70 °C for 10 min. Data acquisition and analysis were performed on a QX200 Droplet
71 Reader and QuantaSoft Software (Biorad, France). The vector genome copy
72 number (VGCN) was calculated from absolute ddPCR quantification as a ratio of
73 the number of target copies to half the number of reference host genome copies.

74

75 **Tissue processing and expression analysis**

76 For immunofluorescence staining mice were anaesthetized with avertin according
77 to institutionally approved protocols, and then transcardially perfused with
78 phosphate-buffered saline (PBS) followed by fresh 4% paraformaldehyde (Merck,
79 New Jersey, USA) in 0.1M PB buffer. The lumbar spinal cord with all roots attached

80 as well as sciatic nerves were dissected and frozen for cryosections. Sections were
81 permeabilized in cold acetone and incubated at room temperature with a blocking
82 solution of 5% bovine serum albumin (BSA) (Sigma-Aldrich, Missouri, USA)
83 containing 0.5% TritonTM 561 X (Sigma-Aldrich, Missouri, USA) for 1 h. Rabbit
84 polyclonal primary antibodies against SH3TC2 (1:100; Abcam, Cambridge, UK),
85 or EGFP (1:1000; Invitrogen, Massachusetts, USA) were incubated at 4°C
86 overnight. Slides were then washed in PBS and incubated with anti-rabbit
87 fluorescein (FITC)-conjugated (1:1000; Jackson ImmunoResearch, 111-486-003)
88 or with anti-rabbit cross-affinity purified rhodamine-conjugated (1:3000; Jackson
89 ImmunoResearch, 111-026-003) secondary antibodies. Slides were mounted with
90 fluorescent mounting medium (DAKO) and images photographed under a
91 fluorescence microscope (Nikon Eclipse Ni) with a digital camera (DS-Qi2) using
92 NIS-Elements software. Quantification of reporter gene EGFP (mock vector) or
93 SH3TC2 (full vector) expression was performed at 6 weeks post-injection in ventral
94 lumbar spinal root sections and in sciatic nerve teased fibres (n=3 mice) in images
95 taken from five different areas in each slide. The number of EGFP- or SH3TC2-
96 positive Schwann cells as well as the total number of cells in each picture was
97 counted to determine the average expression ratio.

98

99 **Hematoxylin and Eosin staining**

100 Tissue sections embedded in paraffin were stained with Harris's haematoxylin
101 (freshly filtered) for 3 minutes, followed by washing with distilled water and staining
102 with aqueous eosin for 6 minutes. Afterwards they were dehydrated in ascending
103 concentrations of alcohol and cleared in xylene (70%, 95%, 100% x 2 and xylene
104 x 3). Finally, the tissue slides were mounted with DPX.

105

106 **2.5 Motor behavioral testing**

107 *2.5.1 Rotarod analysis:* Each animal was placed daily for one week on a 3.5 cm
108 diameter rod. The initial rod speed was 4 rpm and then accelerating every 30 sec.
109 The time it took for the animal to fall off was recorded. Mice were trained by
110 performing three trials on each of three consecutive days prior to testing. Mice
111 were placed on the rod, and the speed was gradually increased from 4 to 40
112 rotations per minute (rpm). The trial lasted until the mouse fell from the rod or until
113 the mouse remained on the rod for 600 sec. Testing was performed on the fourth
114 day using two different speeds, 20 and 32 rpm. The latency to fall was calculated
115 for each speed.

116 *2.5.2 Grip strength test:* We focused only on hind limb strength based on our
117 treatment level. Mice were held by the neck's skin and lowered towards the
118 apparatus (Ugo Basile) until they grabbed a grid with both hind limbs. Mice were
119 gently pulled forward until they released their grip from the grid. Each session

120 consisted of five consecutive trials. The equipment automatically measures the
121 grams of force required to pry the mouse from the grid.

122

123 **2.6 Electrophysiological evaluation**

124 Bilateral sciatic nerves were stimulated in anaesthetized animals (n=10 per
125 treatment group) at the sciatic notch and distally at the knee via bipolar electrodes
126 with supramaximal square-wave pulses (5 V) of 0.05 ms. The latencies compound
127 muscle action potentials (CMAP) were recorded by a bipolar electrode inserted
128 between digits 2 and 3 of the hind paw and latencies were measured from the
129 stimulus artefact to the onset of the negative M-wave deflection. Motor nerve
130 conduction velocities (MNCV) were calculated by dividing the distance between
131 the stimulating and recording electrodes by the result of subtracting the distal
132 latency from the proximal latency.

133

134 **Statistical analysis**

135 The percentage of EGFP or SH3TC2-positive Schwann cells in immunostained
136 lumbar roots and sciatic nerves of WT and Sh3tc2^{-/-} mice injected with the mock or
137 full vector, respectively, were compared with Student's t-test. For proteomics data
138 statistical significance was calculated using a Student's t-test in MS Excel.
139 Behavioural testing results, electrophysiological results, and morphological
140 analysis data obtained from mock and fully treated groups were compared with the

141 Mann-Whitney *U* test (significance level for all comparisons, $P < 0.05$). Each set of
142 data is presented as the mean \pm SEM. All statistical analyses were performed
143 using Graph Pad Prism, version 6 (GraphPad Software).

144

145

146

147

148

149

150

151

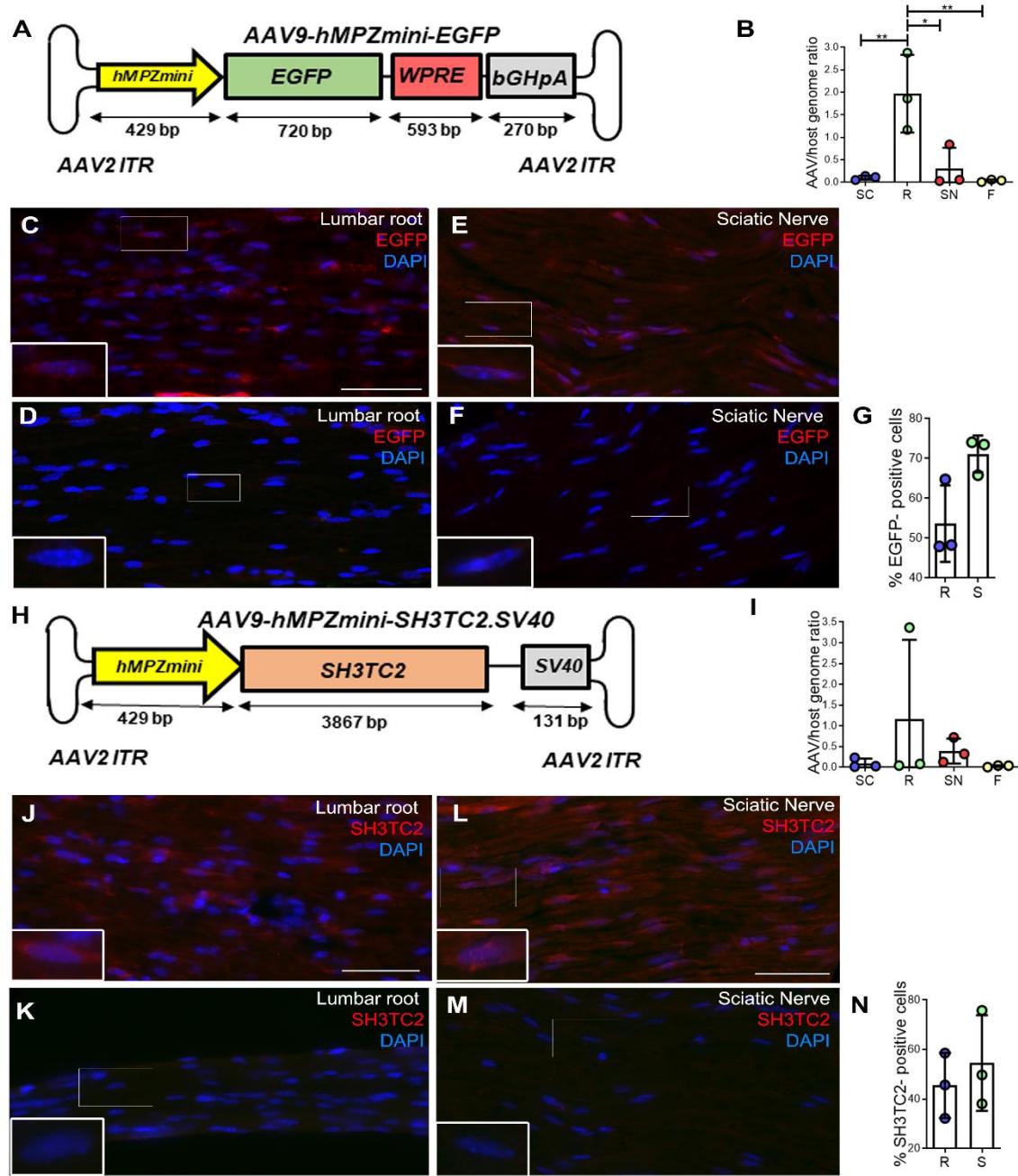
152

153

154

155

156

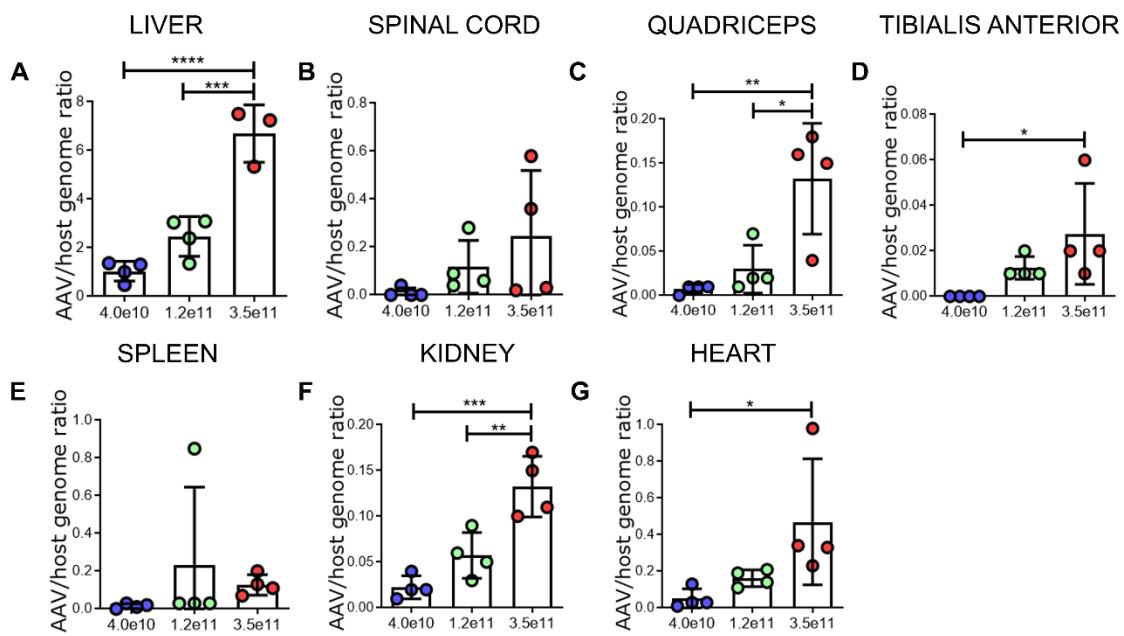

157

158

159

160 **SUPPLEMENTARY FIGURES**

161 **Fig. S1.**

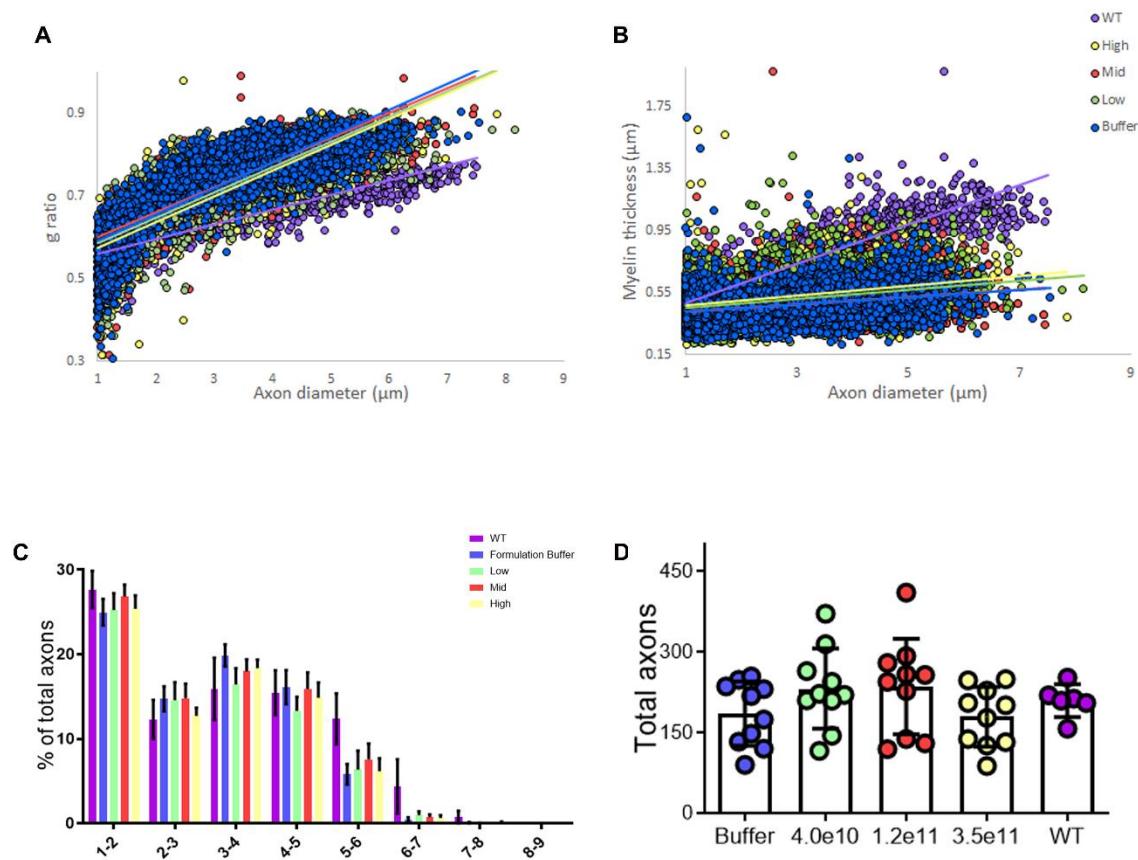

163

164 **Fig. S1: Cloning and validation of a human minimal *MPZ* promoter and cloning**
165 **and expression of the therapeutic vector AAV9-*hMPZmini.SH3TC2.SV40pA*. A:**
166 Generation of the AAV9-*hMPZmini.EGFP* vector (mock vector driving reporter gene
167 expression) through cloning of the 429 bp distal fragment of the full-length human myelin
168 protein zero (*MPZ*) promoter (*hMPZmini*) upstream of the EGFP coding sequence. **B:**
169 Biodistribution of the AAV9-*hMPZmini.EGFP* vector in spinal cord (SC) and PNS tissues
170 including lumbar spinal roots (R), sciatic nerves (S) and femoral nerves (F) of wild type
171 (WT) mice 6 weeks following lumbar intrathecal injection (vector genome copy numbers
172 represent the ratio of vector to host diploid genome in each tissue). **C-F:** Expression of
173 EGFP in Schwann cells in lumbar roots (**C**) and sciatic nerve sections (**E**) following
174 intrathecal injection of the AAV9-*hMPZmini.EGFP* vector. EGFP shows the characteristic
175 perinuclear cytoplasmic immunoreactivity in most myelinating Schwann cells, while
176 EGFP expression is absent from the corresponding tissues of non-injected control mice
177 (**D** and **F**). **G:** Quantification of expression rates (% EGFP-positive cells) in bilateral
178 sciatic nerves and lumbar spinal roots from n=3 injected mice shows. **H:** Cloning of the
179 AAV9-*hMPZmini.SH3TC2.SV40pA* vector for expression of the human *SH3TC2* gene
180 under the control of *hMPZmini* promoter with replacement of the bGHPA (270 bp) by a
181 SV40pA (131 bp) sequence to a final total size of 4771 bp from ITR to ITR. **I:**
182 Biodistribution analysis of AAV9-*hMPZmini.SH3TC2.SV40pA* in spinal cord (SC) and
183 PNS tissues including lumbar spinal roots (R), sciatic nerves (S) and femoral nerves (F)
184 of *Sh3tc2*^{-/-} mice 6 weeks following lumbar intrathecal injection. **J-M:** Analysis of
185 SH3TC2 expression in lumbar roots (**J**), sciatic nerve sections (**L**), of injected *Sh3tc2*^{-/-}

186 mice shows the characteristic granular perinuclear cytoplasmic immunoreactivity of
187 SH3TC2 in myelinating Schwann cells, while SH3TC2 expression is absent from the
188 corresponding tissues of non-injected littermate mice (**K** and **M**). **N:** Quantification of
189 expression rates (% SH3TC2-expressing cells) in bilateral sciatic nerves and lumbar
190 spinal roots from n=5 mice. Values represent mean \pm SEM (One-way ANOVA with
191 Tukey's multiple comparison test, *: p<0.05; **:p<0.01, ***:p<0.001). Scale bars: 20 mm.

192

193 **Fig. S2.**


194

195 **Fig.S2: Systemic vector biodistribution.** Biodistribution of AAV9-
196 hMPZmini.SH3TC2.SV40pA vector at low, mid, or high dose, as indicated, in spinal cord
197 and peripheral organs 8 weeks after lumbar intrathecal injection into *Sh3tc2*^{-/-} mice.

198 Quantification of vector genome copy number (VGCN) confirms a dose-dependent
 199 biodistribution of AAV9 in most peripheral organs including the liver (**A**), the quadriceps
 200 (**C**) and tibialis anterior muscles (**D**), the spleen (**E**), the kidney (**F**) and the heart (**G**), in
 201 addition to the spinal cord (**B**). The low dose achieves only a very low biodistribution to
 202 peripheral organs, while the high dose achieves the highest biodistribution in most tissues.
 203 Values represent mean \pm S.D. (*: p<0.05; **:p<0.01, ***:p<0.001; n=4 mice per group).

204

205 **Fig.S3**

206

207 **Fig. S3. Axonal profiles in anterior lumbar roots.** Scatterplots displaying as indicated
208 g-ratios (A) and myelin thickness (B) of individual axons versus axonal diameter in anterior
209 lumbar roots (blue points: buffer-treatment group; green points: low dose vector-treated
210 group; red points: mid dose vector-treated group; yellow points: high dose vector-treated
211 group; purple points: WT group; each point corresponds to one fibre). There is a dose-
212 dependent shift towards better myelin profiles in treatment groups compared to buffer
213 controls. C: Axon profiling with quantitative analysis of axons diameters. There is a shift
214 towards smaller diameter ($<2 \mu\text{m}$) fibers in *Sh3tc2*^{-/-} compared to WT mice with partial
215 amelioration of this shift in treated animals. D: The total number of axons does not differ
216 significantly between *Sh3tc2*^{-/-} treatment groups and WT mice. Values represent mean \pm
217 SEM. (1-way ANOVA with Tukey's multiple-comparison test).

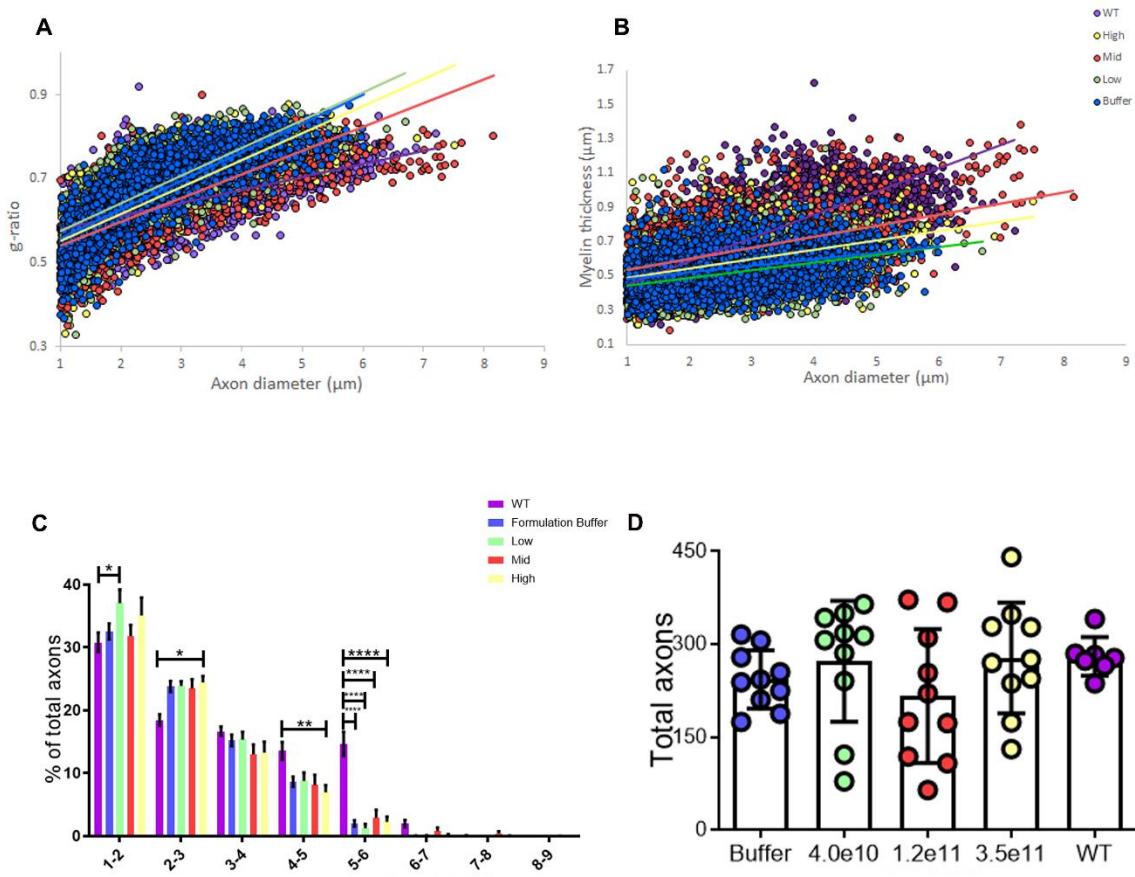
218

219

220

221

222


223

224

225

226

227 **Fig.S4**

228

229 **Fig.S4: Axonal profiles in femoral motor nerves.** Scatterplots displaying as indicated
 230 g-ratios (**A**) and myelin thickness (**B**) of individual axons versus axonal diameter in femoral
 231 motor nerves (blue points: buffer-treatment group; green points: low dose vector-treated
 232 group; red points: mid dose vector-treated group; yellow points: high dose vector-treated
 233 group; purple points: WT group; each point corresponds to one fibre). No significant
 234 change in axon profiles is observed in the treatment groups compared to the buffer
 235 controls. **C:** Axon profiling with quantitative analysis of axons diameters. There is a shift

236 towards smaller diameter ($<2 \mu\text{m}$) fibers in *Sh3tc2*^{-/-} compared to WT mice while no
237 improvement in larger diameter fibers was observed in treated mice. **D:** The total number
238 of axons does not differ significantly between *Sh3tc2*^{-/-} treatment groups and WT mice.
239 Values represent mean \pm SEM. (1-way ANOVA with Tukey's multiple-comparison test).

240

241

242

243

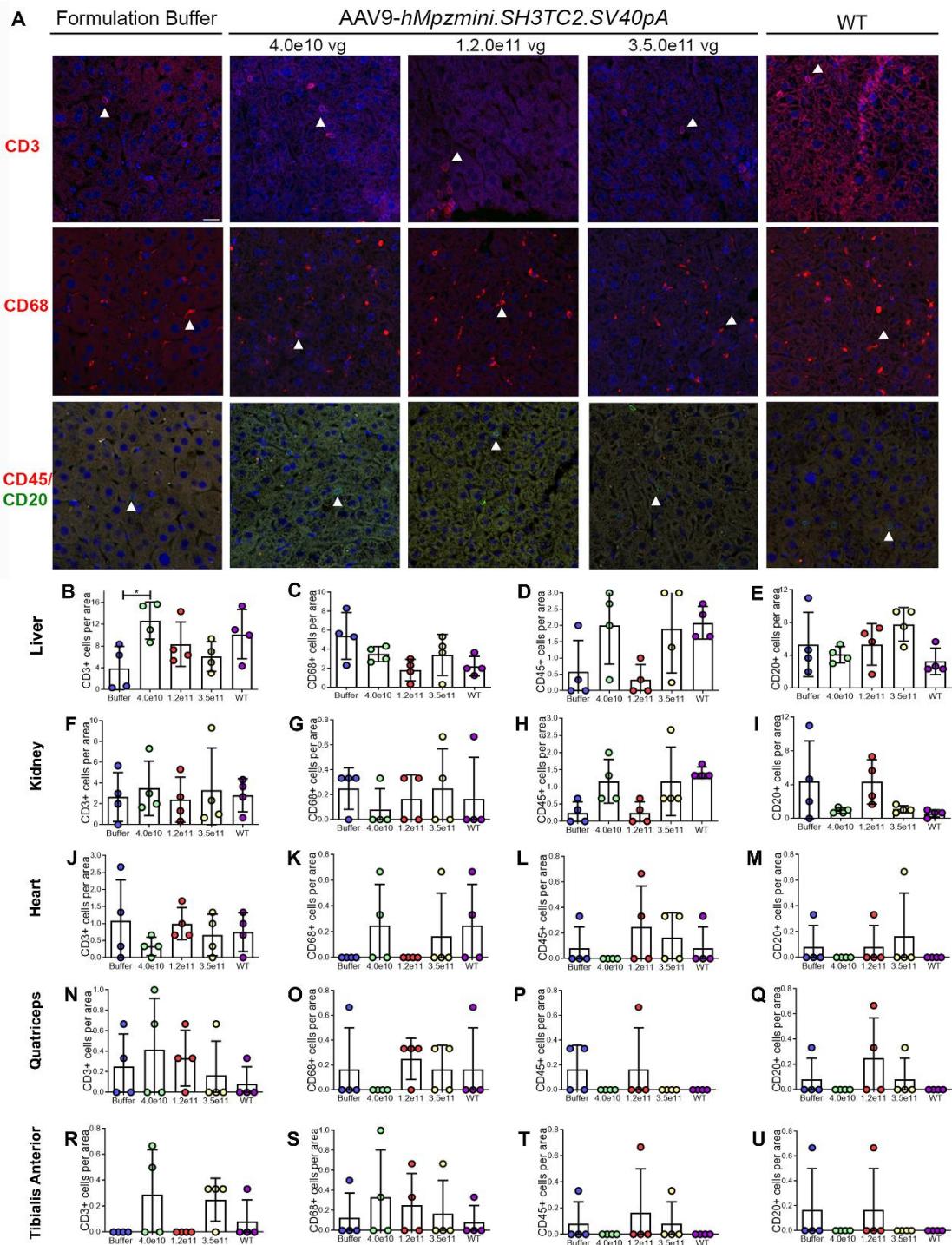
244

245

246

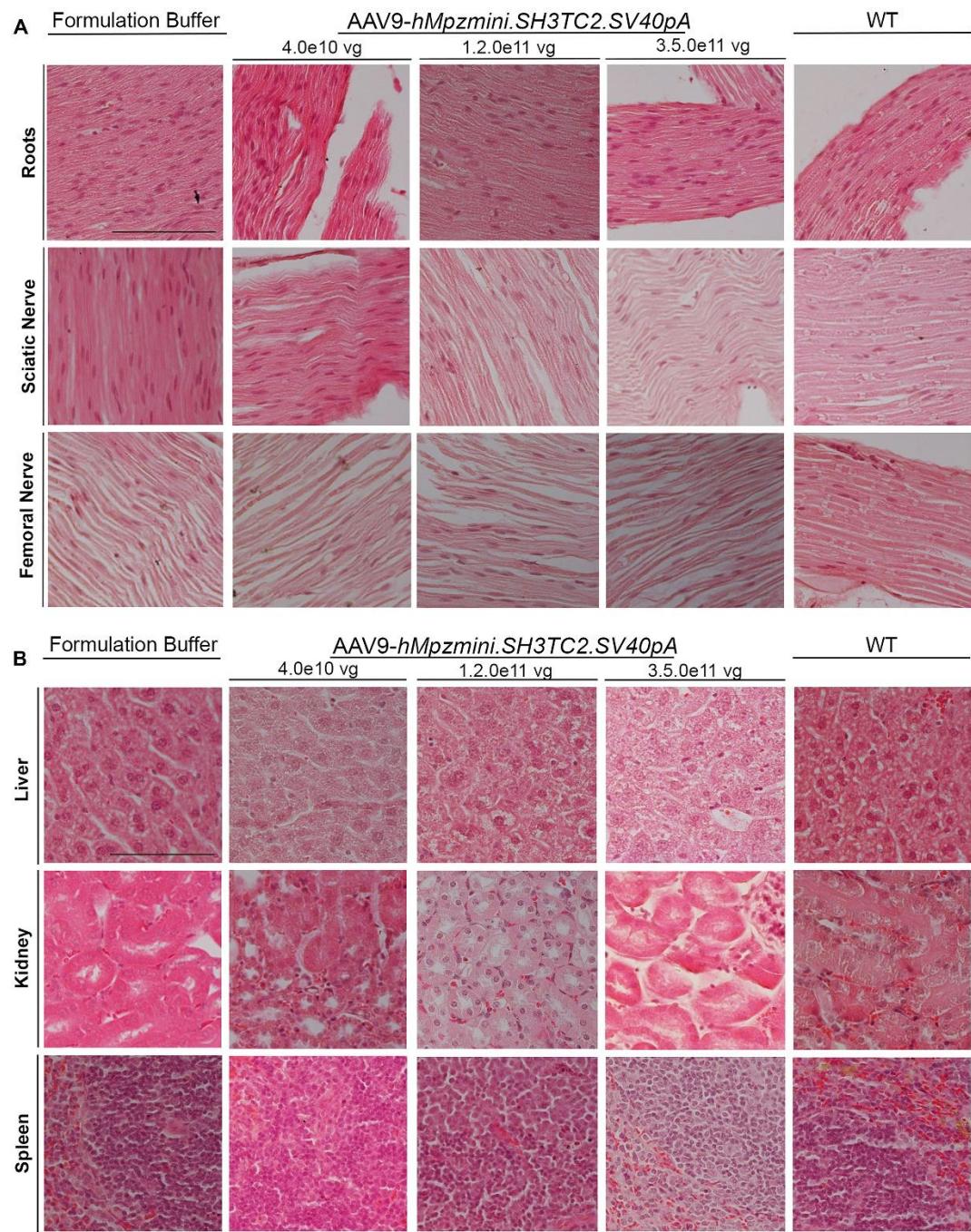
247

248


249

250

251

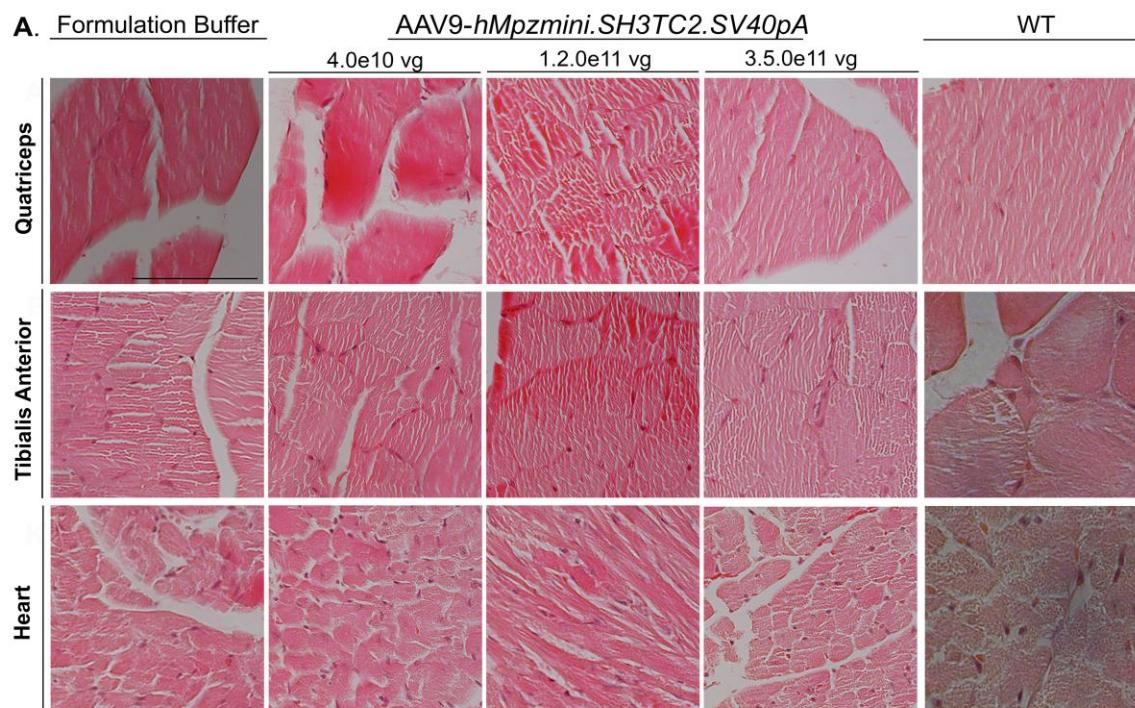

252

253

Fig. S5

256 **Fig. S5: Assessment of possible inflammation in the liver of treated *Sh3tc2*^{-/-} mice 8**
257 **weeks post injection. A:** Representative images of liver sections from *Sh3tc2*^{-/-} mice
258 treated with low, mid, or high vector doses, or with buffer, and from WT mice,
259 immunostained for CD3 (red), CD68 (red), or CD45 (red) and CD20 (green), as indicated.
260 CD+ cells are pointed by a white arrowhead. There is no apparent increase in the numbers
261 of CD+ cells in liver sections from *Sh3tc2*^{-/-} mice regardless of treatment condition,
262 including buffer, compared to WT nerves. **B-F:** Counts of different inflammatory cells per
263 area visualized in sections from different peripheral organs from all treatment groups
264 compared to buffer treated and WT mice (n=4 mice per group). Results were also
265 compared to WT mice of the same age. Diagrams show the results of CD+ cell counts as
266 indicated, in the liver, kidney, heart, quadriceps and tibialis anterior muscles, as indicated.
267 There is no significant difference across groups for CD3+, CD20+, CD45+ or CD68+ cell
268 counts in any of the organs examined (the increased CD3+ cells in the liver of low dose
269 compared to non-injected mice is not consistent in other dose groups). (One-way ANOVA
270 and Tukey's post hoc test, *: p<0.05). Scale bars: 20 μ m.

271


Fig. S6

274 **Fig. S6: Preserved neural and peripheral organ tissue integrity in treated mice.**

275 Representative images of haematoxylin- and eosin-stained neural tissue sections (A) or
276 peripheral organ sections (B) from Sh3tc2-/-mice, 8 weeks post injection either with the
277 therapeutic vector at the low, mid or high dose, or with buffer alone, and from WT control
278 mice, as indicated. Anterior lumbar spinal roots, sciatic nerves and femoral nerves show
279 no apparent findings of impaired tissue integrity, axon pathology, or inflammation.
280 Likewise, there are no apparent findings of impaired tissue integrity in the liver, kidney or
281 spleen. Scale bars: 50 μ m.

282

283 **Fig. S7**

284

285

286 **Fig. S7: Lack of tissue toxicity after treatment.** Representative images of haematoxylin-
287 and eosin-stained peripheral organ tissue sections including the quadriceps muscle,
288 tibialis anterior muscle, and the heart from *Sh3tc2*^{-/-} mice, 8 weeks post injection with the
289 therapeutic vector at the low, mid or high dose, or with buffer alone, as indicated. There
290 are no apparent findings of impaired tissue integrity or inflammation. Scale bars: 50 μ m.

291 **Fig.S8**

292 **Fig. S8:** Heatmaps of all proteins identified in TA muscle across the different condition. See the
293 photos of the heatmaps at: [https://cingacccy-
294 my.sharepoint.com/:f/g/personal/elenag_cing_ac_cy/EjkTqs5_k8ZCvpGiih0DTEkBoASTF3KzepChA2tgQW3SVw?e=DvWliM](https://cingacccy-my.sharepoint.com/:f/g/personal/elenag_cing_ac_cy/EjkTqs5_k8ZCvpGiih0DTEkBoASTF3KzepChA2tgQW3SVw?e=DvWliM)