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Supplementary information1

All pre-training and fine-tuning experiments were conducted on NVIDIA A100 (80GB), A800 (80GB),2

and A6000 (45GB) GPUs.3

From Continuous SSM to Mamba2 and Comba4

Conventions, variables, and shapes. We use column vectors to represent all vectors. Continuous5

time τ ∈ R; discrete index t ∈ N with step size ∆t > 0. State x(τ) ∈ Rn, input u(τ) ∈ Rp, output6

y(τ) ∈ Rq. Matrices At∈Rn×n, Bt∈Rn×p, Ct∈Rq×n, Dt∈Rq×p. All parameters are piecewise-constant7

on each window [t−∆t, t] (they may depend on the current token but are frozen inside the window).8

Later for selective-scan we will use a matrix memory St∈Rm×m and projections kt,vt,qt∈Rm×p so9

that10

kt := ktut ∈ Rm, vt := vtut ∈ Rm, qt := qtut ∈ Rm.

The key variables and their shapes are summarized in Table S1.11

(1) Original continuous-time SSM and the variation-of-constants formula. On [τ0, t] with12

τ0 := t−∆t and x(τ0) = xt−1:13

ẋ(τ) = At x(τ) +Bt u(τ), y(τ) = Ct x(τ) +Dt u(τ). (1)

Step 1: fundamental matrix. Let Φ(τ) := exp
(
(τ − τ0)At

)
∈ Rn×n. Then d

dτΦ(τ) = AtΦ(τ) and14

Φ(τ0) = I.15

Step 2: multiply and integrate (no skipping). Multiply the state equation on the left by Φ(t)Φ(τ)−1
16

and integrate τ from τ0 to t:17

x(t) = Φ(t)x(τ0) +

∫ t

τ0

Φ(t)Φ(ξ)−1Btu(ξ) dξ

= e∆tAtxt−1 +

∫ t

τ0

e(t−ξ)AtBtu(ξ) dξ. (2)

(Here we used Φ(t)Φ(ξ)−1 = e(t−ξ)At because At is constant inside the window.)18

Step 3: change of variables. Let s := t− ξ so s ∈ [0,∆t], ξ = t− s, dξ = −ds. Then19

x(t) = e∆tAtxt−1 +

∫ ∆t

0

e(∆t−s)AtBt u(t− s) ds. (3)

Meaning. The first term transports xt−1 over ∆t; the integral convolves the input with the matrix20

kernel e(∆t−s)At .21

(2) Zero-Order Hold (ZOH) Moir and Moir (2022) and exact one-step discretization. Assume22

ZOH on [t−∆t, t]: u(ξ) ≡ ut (constant within the window). Define xt := x(t) and yt := y(t). Then23

from Eq. (3):24

xt = e∆tAt︸ ︷︷ ︸
:=αt

xt−1 +
(∫ ∆t

0

e(∆t−s)Atds
)

︸ ︷︷ ︸
:=βt

Bt ut, yt = Ctxt +Dtut. (4)

Why we can pull ut out of the integral. Under ZOH, u(t− s) ≡ ut for all s ∈ [0,∆t], hence it is a25

constant w.r.t. s.26

Compute βt without skipping. Since e(∆t−s)At = erAt with r := ∆t − s, we have27 ∫ ∆t

0

e(∆t−s)Atds =

∫ ∆t

0

erAtdr
(⋆)
= At

−1erAt

∣∣∣r=∆t

r=0
= At

−1
(
e∆tAt − I

)
,
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where (⋆) uses the matrix antiderivative d
dr

(
At

−1erAt
)
= At

−1Ate
rAt = erAt . Therefore28

βt = At
−1
(
e∆tAt − I

)
. (5)

Euler (small-step) limit. Using e∆tAt = I +∆tAt +O(∆2
t ), we obtain29

αt ≈ I +∆tAt, βt ≈ ∆tI. (6)

So the input write is effectively gated by the step size ∆t.30

(3) Stable scaling (same map, better conditioning). To avoid numerical issues when ∆t is tiny,31

rewrite the write term step-by-step:32

βtBtut = At
−1
(
e∆tAt − I

)
Btut

= (At∆t)
−1
(
e∆tAt − I

)
(∆tBt)ut. (7)

Define33

Āt := e∆tAt , B̄t := (At∆t)
−1
(
e∆tAt − I

)
(∆tBt), C̄t := Ct. (8)

Then Eq. (4) becomes the implementation-friendly form34

xt = Ātxt−1 + B̄t ut, yt = C̄txt +Dtut. (9)

Shapes. Āt ∈ Rn×n, B̄t ∈ Rn×p, C̄t ∈ Rq×n.35

(4) From vector SSM to selective-scan: Mamba2 (open loop). We lift the state to a matrix36

memory St ∈ Rm×m and keep the same algebraic pattern. Per step, we form key/value/query by linear37

maps on the current input:38

kt := ktut ∈ Rm, vt := vtut ∈ Rm, qt := qtut ∈ Rm.

Approximate the write as a rank-1 outer product (size m×m):39

rank-1 write: vtk
⊤
t .

Let αt := Āt and βt := (e∆tAt − I)(At∆t)
−1 (often diagonal/scalar in practice). Then the Mamba240

(open-loop) update reads41

St = αtSt−1 + βt vtk
⊤
t , ot = Stqt. (10)

Dimensions. αt,βt ∈ Rm×m, vt,kt,qt ∈ Rm, so Stqt ∈ Rm is the readout vector.42

(5) From Mamba2 to Comba: closed-loop innovation feedback. Open loop writes everything43

proposed by vt. To write only what is new given the memory, introduce a predictor44

Pt : Rm×m → Rm, typical choice: Pt(S) = αtSkt. (11)

Define the value innovation45

vnew
t := vt −Pt(St−1) ∈ Rm. (12)

Then the Comba (closed-loop) update and readout are46

St = αtSt−1 + βt v
new
t k⊤

t , ot = Stqt − dPt(St), d ∈ R. (13)

Concrete (Kalman-like) instantiation. With Pt(St−1) = αtSt−1kt, one gets47

vnew
t = vt −αtSt−1kt, (14)

so we only write the innovation; the readout correction −dPt(St) mirrors the same direction.48
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Table S1. Variables and shapes (all vectors are column vectors).

Symbol Object Space / Shape Notes

τ continuous time R
t discrete index N step size ∆t > 0

∆t step size R>0 may vary with t

x(τ) state (column vector) Rn continuous-time

u(τ) input (column vector) Rp continuous-time

y(τ) output (column vector) Rq continuous-time

ut input at step t Rp discrete sample used in projections

At state matrix Rn×n parameters are piecewise-constant on [t−
∆t, t]

Bt input matrix Rn×p same window assumption

Ct readout matrix Rq×n same window assumption

Dt skip/affine matrix Rq×p same window assumption

Selective-scan memory and projections

St memory matrix Rm×m

Kt,Vt,Qt linear projections Rm×p multiply ut∈Rp on the right

kt := Ktut key Rm

vt := Vtut value Rm

qt := Qtut query Rm

SPLR view (optional, same formula). Sometimes the state transition is written as a scalar-plus-low-rank49

correction αt − β̃tktk
⊤
t applied to St−1, with a small coefficient β̃t; this is algebraically equivalent to50

using the predictor above and is hardware-friendly.51

One-line chain. Eq. (1)⇒Eq. (3) (integral form) ⇒Eq. (4) & Eq. (5) (ZOH exact discretization)52

⇒Eq. (7)–Eq. (9) (stable scaling) ⇒Eq. (10) (Mamba2 open loop) ⇒Eq. (13) (Comba with innovation53

feedback).54

Note on Householder transforms (optional). A Householder/orthogonal parameterization for At is55

not required by the derivation above. It is only used if one wishes to constrain αt = e∆tAt to be56

near-orthogonal or contractive for long-horizon stability;57

Pre-training details of CrossDNA58

We pre-trained CrossDNA with masked language modeling on the complete human reference genome59

(Consortium et al., 2009). After excluding special symbols and padding tokens (e.g., [CLS], [SEP],60

[PAD]), we independently selected 15% of sequence tokens for prediction. Following the standard BERT61

masking rule (Zhou et al., 2023), 80% of the selected tokens were replaced with the special [MASK]62

token, 10% were substituted with a randomly sampled vocabulary token (excluding special symbols),63

and the remaining 10% were left unchanged. Supervision targets were defined only at selected positions64

by retaining the original tokens, while all other positions were set to an ignore index (-100). All masking65

was applied in a single pass during input construction, before pretraining.66

Based on the Flash Linear Attention framework (Yang and Zhang, 2024), we have developed67

CrossDNA. The framework includes, but is not limited to, rotary positional encoding (Su et al., 2024),68

FlashAttention-2 (Dao, 2024), and Mamba (Gu and Dao, 2024), Mamba2 (Dao and Gu, 2024), and it69

also provides dedicated Triton kernel implementations and managed PyTorch builds. These choices70

enable efficient sequence modeling and have supported broad adoption in the deep-learning community.71
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Table S2. Training hyperparameters for CrossDNA variants. Values used during pretraining are
reported.

Hyperparameter
CrossDNA
(8.1M)

CrossDNA
(71.6M)

CrossDNA
(519M)

GPUs (A800) 1 1 8
Layers 6 6 12
Dimension 128 512 1024
Heads 8 8 8
Learning rate 0.0015 0.0001 0.0001
Training global epochs 60 100 250
Batch size 150 30 50
Time 5h16m 1d7h 2d17h

Weight decay 0.1
Dropout 0.1
Window size 512
Optimizer AdamW
Optimizer momentum β1 = 0.9, β2 = 0.999
Learning-rate scheduler Cosine decay
Sequence length 1024
Gate temperature ω 4
Freeze horizon sg 5000

In the 8.1M-parameter CrossDNA, each hybrid core block contains 6 Comba layers and 6 SWA layers.72

Each Comba layer uses eight attention heads with head dimension 64 and runs in chunk mode. Each73

SWA layer uses eight heads with head dimension 128, the swish activation, and a sliding window of 51274

tokens. SWA attention is accelerated by FlashAttention-2. The output of each Comba layer feeds the75

subsequent SWA layer. Together they form a nested hybrid language-model core.76

For example, we pre-trained CrossDNA (8.1M) on a single NVIDIA A800 (80 GB) for 60 epochs.77

Optimization used AdamW (weight decay 0.1) with a base learning rate of 1.5× 10−3. The learning78

rate warmed up linearly from 1.0× 10−6 during the first 1% of total training updates, then decayed to79

0.1× the base value over the remaining epochs. Training used 32-bit precision and gradient clipping at80

1.0. The global batch size was the product of nodes, devices per node, and per-device batch size; in our81

setting (1 node, 1 device, per-device batch size 150), it was 150.82

In this study, CrossDNA (8.1M) was used for fine-tuning experiments on downstream tasks, CrossDNA83

(71.6M) and CrossDNA (519M) were employed for performance comparisons under model scaling. The84

details of the parameter settings for CrossDNA (8.1M), CrossDNA (71.6M) and CrossDNA (113M) are85

shown in Table S2.86

Downstream tasks87

Genomic benchmarks tasks88

Genomic Benchmarks currently comprises 8 datasets focusing on regulatory elements (promoters,89

enhancers, and open chromatin regions) from two model organisms: Homo sapiens (human) and90

Mus musculus (mouse). All data were downloaded from https://github.com/ML-Bioinfo-CEITEC/91

genomic_benchmarks. The detailed composition of these datasets is presented in Table S3. The92

evaluation model achieved a metric of Top-1 accuracy on the specific dataset within Genomic Benchmarks,93

with the detailed calculation process as follows:94

Top-1 accuracy in Genomic Benchmarks. Let the batch size be N . For the i-th sample, the95
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Table S3. Detailed description of the Genomic Benchmarks Tasks. Class ratio indicates the degree of
class imbalance.

Name Number of sequences Classes Class ratio

Mouse Enhancers 1, 210 2 1.0
Coding vs. Intergenomic 100, 000 2 1.0

Human vs. Worm 100, 000 2 1.0
Human Enhancers Cohn 27, 791 2 1.0
Human Enhancer Ensembl 154, 842 2 1.0

Human Regulatory 289, 061 3 1.2
Human OCR Ensembl 174, 756 2 1.0

Human NonTATA Promoters 36, 131 2 1.2

model outputs a logit vector zi,· over C classes, and the predicted class is96

ŷi = argmax
c

zi,c.

Given a hard label yi ∈ {1, . . . , C}, the Top-1 accuracy is defined as97

Top-1 Acc =
1

N

N∑
i=1

1 [ŷi = yi] .

Equivalently, if M denotes the confusion matrix whose entry Cjk counts samples with true class j98

and predicted class k, then99

Top-1 Acc =

∑C
c=1 Mcc∑C

j=1

∑C
k=1 Mjk

.

Nucleotide transformer tasks100

For the Nucleotide Transformer Task, we pull baseline results from https://huggingface.co/spaces/101

InstaDeepAI/nucleotide_transformer_benchmark. Models were fine-tuned for 20 epochs. Hyper-102

parameters for the models reported in Table 1 can be found in Table S4. Table S5 presents detailed103

statistics for each dataset in the Nucleotide Transformer Tasks, including the numbers of training and104

test DNA sequences, the maximum input sequence length to the model, the number of classification105

categories, and the evaluation metric used for each dataset.106

Below are the specific definitions of metrics used in Nucleotide Transformer Tasks:107

The Matthews Correlation Coefficient (MCC) is a statistically rigorous metric for evaluating classifi-108

cation models. Its definition and generalization to multi-class problems are formally outlined below.109

MCC in Binary Classification Case. For binary classification, let TP , TN , FP , and FN denote110

the counts of true positives, true negatives, false positives, and false negatives, respectively. The MCC is111

defined as:112

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

Here, TP , TN , FP , and FN correspond to entries in the confusion matrix for two classes.113

MCC in Multi-class Classification Case. For K-class classification (K ≥ 2), let C be the K×K114

confusion matrix, where Cij represents the number of samples from class i predicted as class j. The115

MCC generalizes to:116
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Table S4. CrossDNA Hyperparameter Selection for Nucleotide Transformer Tasks. CrossDNA (8.1M)
fine-tuning hyperparameters chosen based on best performance averaged over 10-fold cross-validation.
LR denotes the learning rate.

CrossDNA (8.1M)

LR Batch Size
Weight
Decay

Cross-view
w/o Self-distillation

Histone
markers

H3 1e−4 60 0.05 True
H3k14ac 1e−4 60 0.05 True
H3k36me3 1e−4 40 0.05 True
H3k4me1 1e−4 40 0.05 True
H3k4me2 1e−4 40 0.05 True
H3k4me3 1e−4 60 0.05 True
H3k79me3 1e−4 30 0.05 True
H3K9ac 1e−4 30 0.05 True

H4 1e−4 40 0.05 True
H4ac 1e−4 40 0.05 True

Regulatory
annotation

Enhancers 2e−4 40 0.05 True
Enhancers types 1e−4 30 0.05 True
Promoter all 1e−4 40 0.05 True

Promoter no tata 1e−4 40 0.05 True
Promoter tata 1e−4 60 0.05 True

Splice site
annotation

Splice sites acceptors 1e−4 40 0.05 True
Splice sites all 1e−4 80 0.05 True

Splice sites donors 1e−4 40 0.05 True

MCC =

∑K
k=1

∑K
l=1

∑K
m=1 CkkClm − CklCmk√(∑K

k=1

∑K
l=1 Ckl

∑K
m=1
m̸=k

Cmk

)(∑K
k=1

∑K
l=1 Clk

∑K
m=1
m̸=k

Ckm

) .

This formulation quantifies the covariance between all class pairs, ensuring robustness to imbalanced117

data distributions. The MCC ranges in [−1, 1], where 1, 0, and −1 correspond to perfect prediction,118

random guessing, and total disagreement, respectively.119

The F1 score is a harmonic-mean-based metric that balances Precision and Recall.120

F1 in Binary Classification. For binary classification, let TP , TN , FP , and FN denote true121

positives, true negatives, false positives, and false negatives, respectively. The formulas for Precision122

and Recal are as follows:123

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
.

The F1 score is124

F1 =
2 · Precision · Recall
Precision + Recall

=
2TP

2TP + FP + FN
.

F1 in Multi-class Classification (Macro-F1). For K-class classification (K ≥ 2), let N be the125

K ×K confusion matrix with entries Nij (samples from class i predicted as class j). For each class k,126

TPk = Nkk, FPk =
∑
i̸=k

Nik, FNk =
∑
j ̸=k

Nkj ,

and the per-class F1 is127

F1k =
2TPk

2TPk + FPk + FNk
.
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Table S5. Detailed statistics for each dataset in the Nucleotide Transformer Tasks.

Category
Number of

train
Number of

test
Number of

labels
Max
length

Histone MCC

H3 13, 468 1, 497

2 500

H3k4me1 28, 509 3, 168
H3k4me2 27, 614 3, 069
H3k4me3 33, 119 3, 680
H3k9ac 25, 003 2, 779
H3k14ac 29, 743 3, 305
H3k36me3 31, 392 3, 488
H3k79me3 25, 953 2, 884

H4 13, 140 1, 461
H4ac 30, 685 3, 410

Enhancer MCC

Enhancer 14, 968 400 2 200
Types 14, 968 400 3 200

Promoter F1

All 53, 276 5, 920
2 300Nontata 47, 767 5, 299

Tata 5, 509 621

Splice sites All: Acc; Acceptor/Donor: F1

All 27, 000 3, 000 3
Acceptor 30, 000 3, 000 2

600Donor 30, 000 3, 000 2

The Macro-F1 aggregates the per-class scores uniformly:128

Macro-F1 =
1

K

K∑
k=1

F1k.

Macro-F1 treats all classes equally and is therefore suitable when class supports are imbalanced. The129

score ranges in [0, 1]; common practice sets undefined terms (e.g., zero denominators) to 0.130

DNA long range benchmark131

To assess the ability of CrossDNA to model long-range regulatory signals, we evaluate on the eQTL132

task from DNALONGBENCH and compare against the expert model Enformer and the representative133

foundation architecture Caduceus-PH (Hugging Face: https://huggingface.co/kuleshov-group/134

caduceus-ph_seqlen-1k_d_model-256_n_layer-4_lr-8e-3). The task is formulated as binary clas-135

sification with AUROC as the primary metric; the official configuration specifies input length 450,000136

bp, a scalar output, and 31,282 samples. We follow the public dataset split and evaluation protocol to137

avoid partition bias (Table S6).138

To accommodate the longest 140KB sequences in the eQTL set, we pretrained CrossDNA with a139

maximum input length of 153,600 bp, using batch size 1 and learning rate 1× 10−4. This configuration140

ensures that the full 140KB samples can be ingested by the model and yields stable representations for141

subsequent DNALONGBENCH eQTL fine-tuning. We extract final-layer hidden representations in the142

long-sequence forward/feature-extraction stage, then attach a linear classification head and fine-tune143
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Table S6. Overview of the eQTL task in DNALONGBENCH.

Task Type Input length (bp) Output dimension Samples

eQTL Binary classification 450,000 1 31,282

Note. Performance is reported as AUROC using the official DNALONGBENCH data split and evaluation protocol.

Table S7. DNALongBench eQTL Tasks. The AUROC for expert model - Enformer, HyenaDNA,
Caduceus-PH, and CrossDNA. The best results are bolded.

Models

Activated param

Enformer

(252 M)

HyenaDNA

(6.6 M)

Caduceus-PH

(7.7 M)

CrossDNA

(8.1 M)

Artery Tibial 0.741 0.622 0.690 0.801

Adipose Subcutaneous 0.736 0.732 0.759 0.766

Cells Cultured Fibroblasts 0.639 0.670 0.690 0.793

Muscle Skeletal 0.621 0.740 0.789 0.854

Nerve Tibia 0.683 0.765 0.842 0.875

Skin Not Sun Exposed Suprapubic 0.710 0.697 0.812 0.881

Skin Sun Exposed Lower Leg 0.700 0.665 0.692 0.830

Thyroid 0.612 0.710 0.703 0.761

Whole Blood 0.689 0.688 0.769 0.816

with cross-entropy loss, batch size 8, learning rate 1.6×10−3, and 3 epochs. All runs use float32 precision144

on 8× 80GB GPUs (one sample per GPU). For comparability, CrossDNA’s trainable head embedding145

is fixed at 128 dimensions, matching the activation scale of the Caduceus-PH head; For Enformer146

and HyenaDNA, we use their publicly released default prediction heads. Due to resource limits, each147

sub-dataset is trained once with the same hyperparameters to preserve stability and reproducibility.148

Fine-tuned DNA language models generalize and identify enhancer candidates149

In the evaluation of CrossDNA’s generalization performance, we used ten high-activity enhancer sequences150

designed in the DREAM study, with the sequence data obtained from the supplementary material of the151

corresponding Nucleic Acids Research article (available at https://academic.oup.com/nar/article/152

52/21/13447/7825962#supplementary-data).153

Benchmarking the embedding quality of DNA foundation models154

In this section, we benchmark the embedding quality of DNA foundation models using the DNA Foun-155

dation Benchmark dataset released by Feng et al. (available at https://huggingface.co/datasets/156

hfeng3/dna_foundation_benchmark_dataset/tree/main ). The 42 individual datasets drawn from157

this resource and used in our analyses are listed in Table S9.158
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Table S8. Predicted scores on 10 DREAM-optimized and experimentally validated high-activity
developmental enhancers after fine-tuning CrossDNA and baseline models on the Enhancer dataset.

Enhancer names
DNABERT-2

(117 M)

NTv2

(500 M)

Grover

(87 M)

HyenaDNA

(1.6 M)

Caduceus-PH

(1.9 M)

CrossDNA

(8.1 M)

Generation:79 individual:1 0.978221 0.141395 0.890800 0.950400 0.055350 0.999961

Generation:79 individual:2 0.978464 0.287931 0.972849 0.973400 0.451055 0.999958

Generation:90 individual:1 0.978471 0.911434 0.979405 0.992100 0.969682 0.999979

Generation:90 individual:2 0.978473 0.919781 0.991717 0.996500 0.998303 0.999966

Generation:20 individual:1 0.978473 0.923122 0.998665 0.995500 0.998894 0.999969

Generation:35 individual:554 0.978440 0.447308 0.992349 0.990900 0.996832 0.999977

Generation:60 individual:677 0.955723 0.525794 0.992597 0.997400 0.715889 0.999977

Generation:79 individual:1426 0.005152 0.045451 0.940386 0.472600 0.453276 0.999783

Generation:95 individual:99983 0.005049 0.032300 0.912703 0.473400 0.011921 0.999967

Generation:99 individual:99988 0.005152 0.054492 0.911232 0.106300 0.052414 0.999959

Table S9. Datasets used for benchmarking the embedding quality of DNA foundation models.

Prefix (family) Dataset name

deep4mc A.thaliana 4mC

deep4mc C.elegans 4mC

deep4mc D.melanogaster 4mC

deep4mc E.coli 4mC

deep4mc G.pickerinqii 4mC

deep4mc G.subterraneus 4mC

EMP Yeast H3 1

EMP Yeast H3 2

EMP Yeast H3K4me1

EMP Yeast H3K4me2

EMP Yeast H3K4me3

EMP Yeast H3K9ac

EMP Yeast H3K14ac

EMP Yeast H3K36me3

EMP Yeast H3K79me3

EMP Yeast H4

EMP Yeast H4ac

enhancers enhancer

iDNA ABF 5mC

iDNA ABF 6mA

iPro-WAEL Promoter Arabidopsis NonTATA

iPro-WAEL Promoter Arabidopsis TATA

Prefix (family) Dataset name

iPro-WAEL Promoter B amyloliquefaciens

iPro-WAEL Promoter GM12878

iPro-WAEL Promoter Hela-S3

iPro-WAEL Promoter HUVEC

iPro-WAEL Promoter NHEK

iPro-WAEL Promoter R capsulatus

mouse mouse TFBS 1

mouse mouse TFBS 2

mouse mouse TFBS 3

mouse mouse TFBS 4

mouse mouse TFBS 5

prom promoter all 70bps

prom promoter all 300bps

prom promoter notata 70bps

prom promoter notata 300bps

prom promoter tata 70bps

prom promoter tata 300bps

tf Human TFBS 1

tf Human TFBS 2

tf Human TFBS 3

tf Human TFBS 4

tf Human TFBS 5
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