Explicit Dynamic Cross-Strand Interactions for DNA Sequence Language
Modeling

Cheng Yangl’z’T, Yuansheng Liul’w’*7 Lei Ling®*, Fengxin Li*, Changjian Chen!, Long Wang?%5,

Feng Yu?>*®, Liang Qiao%", Xiangxiang Zeng!?, Kenli Li', Alexander Schénhuth®, Xiao Luo®*"

L College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
2 Yuelushan Laboratory, Changsha, China
3 Hunan Research Center of the Basic Discipline for Cell Signaling, Hunan University, Changsha, China
4 College of Biology, Hunan University, Changsha, China
5 State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory
of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
6 Taichu (Wuxi) Electronic Technology Co., Ltd., Wuxi, China
" Department of Computer Science and Technology, Tsinghua University, Beijing, China
8 Faculty of Technology, Bielefeld University, Bielefeld, Germany
fThese authors contributed equally to the work.
*To whom correspondence should be addressed.
Email: yuanshengliu®@hnu.edu.cn
Email: x1luo@hnu.edu.cn

yuanshengliu@hnu.edu.cn
xluo@hnu.edu.cn

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Supplementary information

All pre-training and fine-tuning experiments were conducted on NVIDIA A100 (80GB), A800 (80GB),
and A6000 (45GB) GPUs.

From Continuous SSM to Mamba2 and Comba

Conventions, variables, and shapes. We use column vectors to represent all vectors. Continuous
time 7 € R; discrete index ¢t € N with step size A; > 0. State x(7) € R", input u(r) € R?, output
y(7) € R9. Matrices A; e R"*" B, e R"*P C,eR9*" D; e R?*P. All parameters are piecewise-constant
on each window [t — Ay, t] (they may depend on the current token but are frozen inside the window).
Later for selective-scan we will use a matrix memory S; € R™*™ and projections ky, v;, q; €ER"*P so
that

k; :=ksu; € Rm, Vi = Viug € Rm, q: ‘= QiU € R™.

The key variables and their shapes are summarized in Table

(1) Original continuous-time SSM and the variation-of-constants formula. On [y,] with
T0:=t— Ay and x(719) = X4_1:

#(1) = Arx(r) + Bru(r), y(1) = Cra(r) + Diu(r). (1)

Step 1: fundamental matriz. Let (1) := exp((T — To)At) € R™*™, Then %@(T) = A;P(7) and
(I)(T()) =1.

Step 2: multiply and integrate (no skipping). Multiply the state equation on the left by ®(¢)®(7)
and integrate 7 from 7y to ¢:

-1

t

w@z¢@%@+/¢@ﬂ@*&ﬂ@%

70

t
=By [N B de (2)

0

(Here we used ®(t)® (&)t = e(t=9A+ because A, is constant inside the window.)
Step 3: change of variables. Let s :=t — & so s € [0,A4], £ =t — s, d§ = —ds. Then

Ay
a(t) = ehix g + / eAe=AB, y(t — 5) ds. (3)
0

Meaning. The first term transports x;_1 over Ay; the integral convolves the input with the matrix
kernel e(A+—s)A¢,

(2) Zero-Order Hold (ZOH) [Moir and Moir| (2022)) and exact one-step discretization. Assume
ZOH on [t — Ay, t]: u(€) = uy (constant within the window). Define x; := z(t) and y; := y(¢). Then
from Eq. :

Ay
xp = et A x, g+ (/ e(A‘_S)A‘ds) B; u;, yi = Cix; + Dyuy. (4)
~ 0
=y
=0,

Why we can pull uy out of the integral. Under ZOH, u(t — s) = u, for all s € [0, A], hence it is a
constant w.r.t. s.
Compute B, without skipping. Since e(Be=9)As — orAv with r:= Ay — s, we have

Ay Ay (*) r=A¢
/ e(Be=9) A g — / erAidr = A, em A = At_l(eAtAt — I),
0 0 r=0

28

29

30

31

32

33

34

35

36

37

38

39

40

5!

42

43

44

45

46

47

48

where (x) uses the matrix antiderivative d%(At_le’“At) = A, 'A,e"At = ™At Therefore
Br=A (MM 1), 5)
Euler (small-step) limit. Using e®tA¢ = I + Ay Ay + O(A2), we obtain
o~ T+ AAy, B, ~ A (6)
So the input write is effectively gated by the step size A;.

(3) Stable scaling (same map, better conditioning). To avoid numerical issues when A; is tiny,
rewrite the write term step-by-step:

ﬁtBtut = Atil(eAtAt - I)Btut
= (AtAt)il(eAtAt — I) (AtBt)ut. (7)

Define B B B
At = €AtAt, Bt = (AtAt)_l(eAtAt — I) (AtBt)7 Ct = Ct. (8)

Then Eq. becomes the implementation-friendly form
x; = Ayxi1 + By, yt = Cix¢ + Dyuy. 9)

Shapes. A, € R™*" B, € R**P, C, € R¥*",

(4) From vector SSM to selective-scan: Mamba2 (open loop). We lift the state to a matrix
memory S; € R™*™ and keep the same algebraic pattern. Per step, we form key/value/query by linear
maps on the current input:

kt = ktut c R"b, Vi i= Vil € R"L7 q: ‘= QiU S R™.
Approximate the write as a rank-1 outer product (size m x m):
rank-1 write: vk, .

Let oy := A; and B3, := (e®tA* — I)(A;A;) ™! (often diagonal/scalar in practice). Then the Mamba2
(open-loop) update reads
St = aSi_1 + B, vik/ oy = Siqq. (10)

Dimensions. oy, 3, € R™*™ vy ki, qr € R™, so S;q; € R™ is the readout vector.

(5) From Mamba2 to Comba: closed-loop innovation feedback. Open loop writes everything
proposed by v;. To write only what is new given the memory, introduce a predictor

P, R™*™ 5 R™, typical choice: P;(S) = a;Sk;. (11)

Define the value innovation
viV = vy — Py(Sio1) € R™. (12)

Then the Comba (closed-loop) update and readout are
S;=a;S_1+ B, vk, o,=8S,q, —dP(S;), deR. (13)
Concrete (Kalman-like) instantiation. With P;(S;—1) = a4S;—1k, one gets

A\ = Vi — atSt,lkt, (14)

so we only write the innovation; the readout correction —d P¢(S;) mirrors the same direction.

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Table S1. Variables and shapes (all vectors are column vectors).

Symbol Object Space / Shape Notes

T continuous time R

t discrete index N step size A; > 0

Ay step size R<g may vary with ¢

x(T) state (column vector) R™ continuous-time

u(7) input (column vector) — RP continuous-time

y(7) output (column vector) RY continuous-time

uy input at step ¢ RP discrete sample used in projections

A, state matrix R™*" parameters are piecewise-constant on [t —
Ay, 1]

B, input matrix R™*P same window assumption

C; readout matrix RI*™ same window assumption

D, skip/affine matrix RI*P same window assumption

Selective-scan memory and projections

S memory matrix Rm>m

K;,V;,Q; linear projections R™*P multiply u; € RP on the right
k; = Kyu; key R™

v = Viu; value R™

q: = Qiu; query R™

SPLR view (optional, same formula). Sometimes the state transition is written as a scalar-plus-low-rank

correction o — BtktktT applied to S;_1, with a small coefficient ,ét; this is algebraically equivalent to
using the predictor above and is hardware-friendly.

One-line chain. Eq. :>Eq. (integral form) =Eq. & Eq. (ZOH exact discretization)
=Eq. 7Eq. (@ (stable scaling) =Eq. (Mamba2 open loop) =Eq. (13) (Comba with innovation
feedback).

Note on Householder transforms (optional). A Householder/orthogonal parameterization for A; is
not required by the derivation above. It is only used if one wishes to constrain a; = e®tA* to be
near-orthogonal or contractive for long-horizon stability;

Pre-training details of CrossDNA

We pre-trained CrossDNA with masked language modeling on the complete human reference genome
(Consortium et al., [2009). After excluding special symbols and padding tokens (e.g., [CLS], [SEP],
[PAD]), we independently selected 15% of sequence tokens for prediction. Following the standard BERT
masking rule (Zhou et al., [2023), 80% of the selected tokens were replaced with the special [MASK]
token, 10% were substituted with a randomly sampled vocabulary token (excluding special symbols),
and the remaining 10% were left unchanged. Supervision targets were defined only at selected positions
by retaining the original tokens, while all other positions were set to an ignore index (-100). All masking
was applied in a single pass during input construction, before pretraining.

Based on the Flash Linear Attention framework (Yang and Zhang) [2024), we have developed
CrossDNA. The framework includes, but is not limited to, rotary positional encoding (Su et al., 2024),
FlashAttention-2 (Daol 2024), and Mamba (Gu and Daol 2024), Mamba2 (Dao and Gul [2024), and it
also provides dedicated Triton kernel implementations and managed PyTorch builds. These choices
enable efficient sequence modeling and have supported broad adoption in the deep-learning community.

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Table S2. Training hyperparameters for CrossDNA variants. Values used during pretraining are
reported.

CrossDNA CrossDNA CrossDNA
Hyperparameter

(8.1M) (71.6M) (519M)
GPUs (A800) 1 1 8
Layers 6 6 12
Dimension 128 512 1024
Heads 8 8 8
Learning rate 0.0015 0.0001 0.0001
Training global epochs 60 100 250
Batch size 150 30 50
Time 5h16m 1d7h 2d17h
Weight decay 0.1
Dropout 0.1
Window size 512
Optimizer AdamW
Optimizer momentum B =0.9, By, =0.999
Learning-rate scheduler Cosine decay
Sequence length 1024
Gate temperature w 4
Freeze horizon s, 5000

In the 8.1M-parameter CrossDNA, each hybrid core block contains 6 Comba layers and 6 SWA layers.
Each Comba layer uses eight attention heads with head dimension 64 and runs in chunk mode. Each
SWA layer uses eight heads with head dimension 128, the swish activation, and a sliding window of 512
tokens. SWA attention is accelerated by FlashAttention-2. The output of each Comba layer feeds the
subsequent SWA layer. Together they form a nested hybrid language-model core.

For example, we pre-trained CrossDNA (8.1M) on a single NVIDIA A800 (80 GB) for 60 epochs.
Optimization used AdamW (weight decay 0.1) with a base learning rate of 1.5 x 1073. The learning
rate warmed up linearly from 1.0 x 10~% during the first 1% of total training updates, then decayed to
0.1x the base value over the remaining epochs. Training used 32-bit precision and gradient clipping at
1.0. The global batch size was the product of nodes, devices per node, and per-device batch size; in our
setting (1 node, 1 device, per-device batch size 150), it was 150.

In this study, CrossDNA (8.1M) was used for fine-tuning experiments on downstream tasks, CrossDNA
(71.6M) and CrossDNA (519M) were employed for performance comparisons under model scaling. The
details of the parameter settings for CrossDNA (8.1M), CrossDNA (71.6M) and CrossDNA (113M) are
shown in Table

Downstream tasks
Genomic benchmarks tasks

Genomic Benchmarks currently comprises 8 datasets focusing on regulatory elements (promoters,
enhancers, and open chromatin regions) from two model organisms: Homo sapiens (human) and
Mus musculus (mouse). All data were downloaded from https://github.com/ML-Bioinfo-CEITEC/
genomic_benchmarks! The detailed composition of these datasets is presented in Table [S3] The
evaluation model achieved a metric of Top-1 accuracy on the specific dataset within Genomic Benchmarks,
with the detailed calculation process as follows:

Top-1 accuracy in Genomic Benchmarks. Let the batch size be N. For the i-th sample, the

https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks

Table S3. Detailed description of the Genomic Benchmarks Tasks. Class ratio indicates the degree of
class imbalance.

Name Number of sequences Classes Class ratio
Mouse Enhancers 1,210 2 1.0
Coding vs. Intergenomic 100, 000 2 1.0
Human vs. Worm 100,000 2 1.0
Human Enhancers Cohn 27,791 2 1.0
Human Enhancer Ensembl 154, 842 2 1.0
Human Regulatory 289,061 3 1.2
Human OCR Ensembl 174,756 2 1.0
Human NonTATA Promoters 36,131 2 1.2

s model outputs a logit vector z; . over C classes, and the predicted class is

U; = arg MAX Z; .

o7 Given a hard label y; € {1,...,C?}, the Top-1 accuracy is defined as

N
1 .
Top-1 Acc = N »E,l 19 = vi]-

08 Equivalently, if M denotes the confusion matrix whose entry C;;, counts samples with true class j
9 and predicted class k, then

Yy Mee

Top-1 Acc = —4 e .
Zj:l Zk:l Mk

w0 Nucleotide transformer tasks

1w For the Nucleotide Transformer Task, we pull baseline results from https://huggingface.co/spaces/
102 | InstaDeepAl/nucleotide_transformer_benchmark. Models were fine-tuned for 20 epochs. Hyper-
103 parameters for the models reported in Table 1 can be found in Table [S4 Table [S5| presents detailed
14 statistics for each dataset in the Nucleotide Transformer Tasks, including the numbers of training and
105 test DNA sequences, the maximum input sequence length to the model, the number of classification
s categories, and the evaluation metric used for each dataset.

107 Below are the specific definitions of metrics used in Nucleotide Transformer Tasks:

108 The Matthews Correlation Coefficient (MCC) is a statistically rigorous metric for evaluating classifi-
100 cation models. Its definition and generalization to multi-class problems are formally outlined below.

110 MCC in Binary Classification Case. For binary classification, let TP, TN, FP, and F'N denote
m the counts of true positives, true negatives, false positives, and false negatives, respectively. The MCC is
2 defined as:

TP-TN —-FP-FN

MCC = .
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

13 Here, TP, TN, FP, and FN correspond to entries in the confusion matrix for two classes.

114 MCC in Multi-class Classification Case. For K-class classification (K > 2), let C be the K x K
us confusion matrix, where C;; represents the number of samples from class ¢ predicted as class j. The
ue MCC generalizes to:

https://huggingface.co/spaces/InstaDeepAI/nucleotide_transformer_benchmark
https://huggingface.co/spaces/InstaDeepAI/nucleotide_transformer_benchmark
https://huggingface.co/spaces/InstaDeepAI/nucleotide_transformer_benchmark

Table S4. CrossDNA Hyperparameter Selection for Nucleotide Transformer Tasks. CrossDNA (8.1M)
fine-tuning hyperparameters chosen based on best performance averaged over 10-fold cross-validation.
LR denotes the learning rate.

CrossDNA (8.1M)

. Weight Cross-view
LR Batch Size Decay w/o Self-distillation
H3 le™ 60 0.05 True
H3kl4ac le™* 60 0.05 True
H3k36me3 le™ 40 0.05 True
H3k4mel le™ 40 0.05 True
Histone H3k4me2 le™* 40 0.05 True
markers H3k4me3 1le* 60 0.05 True
H3k79me3 le 30 0.05 True
H3K9ac le™* 30 0.05 True
H4 le™ 40 0.05 True
H4ac le* 40 0.05 True
Enhancers 2¢% 40 0.05 True
Enhancers types le™* 30 0.05 True
lzsisiz?sz Promoter all 1e™4 40 0.05 True
Promoter no tata le™* 40 0.05 True
Promoter tata 1le™* 60 0.05 True
Splice site Splice sites acceptors 1e_j1l 40 0.05 True
annotation Splice sites all le™ 80 0.05 True
Splice sites donors le™* 40 0.05 True
MCC = ZkK:I Z{il ETanl CrrCim — CriCrk

\/(Zg_l Zliil Chi ZE;:H% ka) (Zf_l Zliil Cuk Z%;i Ckm)

17 This formulation quantifies the covariance between all class pairs, ensuring robustness to imbalanced
us data distributions. The MCC ranges in [—1,1], where 1, 0, and —1 correspond to perfect prediction,
ne random guessing, and total disagreement, respectively.

120 The F1 score is a harmonic-mean-based metric that balances Precision and Recall.

121 F1 in Binary Classification. For binary classification, let TP, TN, FP, and F'N denote true
122 positives, true negatives, false positives, and false negatives, respectively. The formulas for Precision
123 and Recal are as follows:

Precisi TP Recall TP
recision = ———— - -
RN = T Ep T TPIFN
12 The F1 score is

2 Precision - Recall 2T P

Fl= = .
Precision + Recall 2TP+ FP+ FN

125 F1 in Multi-class Classification (Macro-F1). For K-class classification (K > 2), let N be the
1 K x K confusion matrix with entries N;; (samples from class i predicted as class j). For each class k,

TP, =Ny, FP,= ZNika FNy = ZNkj,
itk £k
12z and the per-class F1 is
2T Py,

Fl;, = .
T oTP, + FP, + FN,

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

Table S5. Detailed statistics for each dataset in the Nucleotide Transformer Tasks.
Number of Number of Number of Max

Category train test labels length
Histone MCC
H3 13,468 1,497
H3k4mel 28,509 3,168
H3k4me2 27,614 3,069
H3k4me3 33,119 3,680
H3k9ac 25,003 2,779 9 500
H3k1l4ac 29,743 3,305
H3k36me3 31,392 3,488
H3k79me3 25,953 2,884
H4 13,140 1,461
H4ac 30,685 3,410
Enhancer MccC
Enhancer 14,968 400 2 200
Types 14,968 400 3 200
Promoter F1
All 53,276 5,920
Nontata 47,767 5,299 2 300
Tata 5,509 621
Splice sites All: Ace; Acceptor/Donor: F1
All 27,000 3,000 3
Acceptor 30,000 3,000 2
Donor 30,000 3,000 2 600

The Macro-F1 aggregates the per-class scores uniformly:
1 X
Macro-F1 = Ve kz_l F1,.

Macro-F1 treats all classes equally and is therefore suitable when class supports are imbalanced. The
score ranges in [0, 1]; common practice sets undefined terms (e.g., zero denominators) to 0.

DNA long range benchmark

To assess the ability of CrossDNA to model long-range regulatory signals, we evaluate on the eQTL
task from DNALONGBENCH and compare against the expert model Enformer and the representative
foundation architecture Caduceus-PH (Hugging Face: https://huggingface.co/kuleshov-group/
caduceus-ph_seqlen-1k_d_model-256_n_layer-4_lr-8e-3). The task is formulated as binary clas-
sification with AUROC as the primary metric; the official configuration specifies input length 450,000
bp, a scalar output, and 31,282 samples. We follow the public dataset split and evaluation protocol to
avoid partition bias (Table [SG).

To accommodate the longest 140KB sequences in the eQTL set, we pretrained CrossDNA with a
maximum input length of 153,600 bp, using batch size 1 and learning rate 1 x 10~*. This configuration
ensures that the full 140KB samples can be ingested by the model and yields stable representations for
subsequent DNALONGBENCH eQTL fine-tuning. We extract final-layer hidden representations in the
long-sequence forward/feature-extraction stage, then attach a linear classification head and fine-tune

https://huggingface.co/kuleshov-group/caduceus-ph_seqlen-1k_d_model-256_n_layer-4_lr-8e-3
https://huggingface.co/kuleshov-group/caduceus-ph_seqlen-1k_d_model-256_n_layer-4_lr-8e-3
https://huggingface.co/kuleshov-group/caduceus-ph_seqlen-1k_d_model-256_n_layer-4_lr-8e-3

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

Table S6. Overview of the eQTL task in DNALONGBENCH.
Task Type Input length (bp) Output dimension Samples
eQTL Binary classification 450,000 1 31,282

Note. Performance is reported as AUROC using the official DNALONGBENCH data split and evaluation protocol.

Table S7. DNALongBench eQTL Tasks. The AUROC for expert model - Enformer, HyenaDNA,
Caduceus-PH, and CrossDNA. The best results are bolded.

Models Enformer HyenaDNA Caduceus-PH CrossDNA
Activated param (252 M) (6.6 M) (7.7 M) (8.1 M)
Artery Tibial 0.741 0.622 0.690 0.801
Adipose Subcutaneous 0.736 0.732 0.759 0.766
Cells Cultured Fibroblasts 0.639 0.670 0.690 0.793
Muscle Skeletal 0.621 0.740 0.789 0.854
Nerve Tibia 0.683 0.765 0.842 0.875
Skin Not Sun Exposed Suprapubic 0.710 0.697 0.812 0.881
Skin Sun Exposed Lower Leg 0.700 0.665 0.692 0.830
Thyroid 0.612 0.710 0.703 0.761
Whole Blood 0.689 0.688 0.769 0.816

with cross-entropy loss, batch size 8, learning rate 1.6 x 1073, and 3 epochs. All runs use float32 precision
on 8 x 80 GB GPUs (one sample per GPU). For comparability, CrossDNA’s trainable head embedding
is fixed at 128 dimensions, matching the activation scale of the Caduceus-PH head; For Enformer
and HyenaDNA, we use their publicly released default prediction heads. Due to resource limits, each
sub-dataset is trained once with the same hyperparameters to preserve stability and reproducibility.

Fine-tuned DNA language models generalize and identify enhancer candidates

In the evaluation of CrossDNA’s generalization performance, we used ten high-activity enhancer sequences
designed in the DREAM study, with the sequence data obtained from the supplementary material of the
corresponding Nucleic Acids Research article (available at https://academic.oup.com/nar/article/
52/21/13447/7825962#supplementary-datal).

Benchmarking the embedding quality of DNA foundation models

In this section, we benchmark the embedding quality of DNA foundation models using the DNA Foun-
dation Benchmark dataset released by Feng et al. (available at https://huggingface.co/datasets/
hfeng3/dna_foundation_benchmark_dataset/tree/main). The 42 individual datasets drawn from
this resource and used in our analyses are listed in Table [S9

https://academic.oup.com/nar/article/52/21/13447/7825962#supplementary-data
https://academic.oup.com/nar/article/52/21/13447/7825962#supplementary-data
https://academic.oup.com/nar/article/52/21/13447/7825962#supplementary-data
https://huggingface.co/datasets/hfeng3/dna_foundation_benchmark_dataset/tree/main
https://huggingface.co/datasets/hfeng3/dna_foundation_benchmark_dataset/tree/main
https://huggingface.co/datasets/hfeng3/dna_foundation_benchmark_dataset/tree/main

Table S8. Predicted scores on 10 DREAM-optimized and experimentally validated high-activity

developmental enhancers after fine-tuning CrossDNA and baseline models on the Enhancer dataset.

Enhancer names

DNABERT-2 NTwv2

Grover HyenaDNA Caduceus-PH CrossDNA

(117 M) (500 M) (87 M) (1.6 M) (1L9M) (8.1 M)
Generation:79_individual:1 0.978221 0.141395 0.890800 0.950400 0.055350 0.999961
Generation:79_individual:2 0.978464 0.287931 0.972849 0.973400 0.451055 0.999958
Generation:90_individual:1 0.978471 0.911434 0.979405 0.992100 0.969682 0.999979
Generation:90_individual:2 0.978473 0.919781 0.991717 0.996500 0.998303 0.999966
Generation:20_individual:1 0.978473 0.923122 0.998665 0.995500 0.998894 0.999969
Generation:35_individual:554 0.978440 0.447308 0.992349 0.990900 0.996832 0.999977
Generation:60_individual:677 0.955723 0.525794 0.992597 0.997400 0.715889 0.999977
Generation:79_individual: 1426 0.005152 0.045451 0.940386 0.472600 0.453276 0.999783
Generation:95_individual:99983 0.005049 0.032300 0.912703 0.473400 0.011921 0.999967
Generation:99_individual:99988 0.005152 0.054492 0.911232 0.106300 0.052414 0.999959

Table S9. Datasets used for benchmarking the embedding quality of DNA foundation models.

Prefix (family)

Dataset name

Prefix (family)

Dataset name

deep4mc A .thaliana_4mC
deep4dmc C.elegans_4mC
deep4mc D.melanogaster 4mC
deep4mc E.coli_ 4mC
deep4dmc G.pickeringii_-4mC
deep4mc G.subterraneus_4mC
EMP Yeast_H3_1
EMP Yeast_H3_2
EMP Yeast_H3K4mel
EMP Yeast_H3K4me2
EMP Yeast _H3K4me3
EMP Yeast_H3K9ac
EMP Yeast_H3K14ac
EMP Yeast_H3K36me3
EMP Yeast_H3K79me3
EMP Yeast_H4
EMP Yeast_H4ac
enhancers enhancer
iDNA_ABF 5mC
iDNA_ABF 6mA
iPro-WAEL Promoter_Arabidopsis_ NonTATA
iPro-WAEL Promoter_Arabidopsis_ TATA

iPro-WAEL
iPro-WAEL
iPro-WAEL
iPro-WAEL
iPro-WAEL
iPro-WAEL
mouse
mouse
mouse
mouse
mouse
prom

prom

prom

prom

prom

prom

tf

tf

tf

tf

tf

Promoter_B_amyloliquefaciens
Promoter GM12878
Promoter_Hela-S3
Promoter HUVEC
Promoter NHEK
Promoter_R _capsulatus
mouse_ TFBS_1
mouse_TFBS_2
mouse_TFBS_3
mouse_TFBS_4

mouse_ TFBS_5
promoter_all_70bps
promoter_all_300bps
promoter_notata_70bps
promoter_notata_300bps
promoter_tata_70bps
promoter_tata_300bps
Human_TFBS_1
Human_TFBS_2
Human_TFBS_3
Human_TFBS_4
Human_TFBS_5

10 10 10 10 (1opour) Aeda(IYSTOAN

wwTy dNuIeM SUTS0D wwTy dNUIeM SUTS0D wwty dNuIeM SUTS0D wwty dnuIeM 9UTS0D IoMpayds T

e—0T X T e—0T X T e 0T X T e—0T X T o1eYy Sururesr|

MUuepy MUueEpy MUuEpy MUEpy Tz d

uoyvzuydo

ONIT, ONIT, as[eq] SN, SYD0[q ®IRP SSOIO 98

Y201 Y201 il Yo0T ¥PO[q BYRp DR JO YISue]

9607 9607 9607 9607 ISua eyR(] YOOI

8 w 8 8 rvquioy) pue YAAS JO Isquunu peoH

821 8¢T 82T 82T BqUIO)) PUB YA\S JO UOISUOWI(]

¢l ¢l ¢l ¢l VMAS pue equio)) Jo Joquinn

9 9 9 9 (3101) sde1g reqorD

€ar '8 LL 191 (V) swered [e3oL,

8L '8 LA 18 (N) surered ureiy,

9 9 9 9 SIoART
(as+vms-+equop) (eSpLgUONOL+VMS+equop) (VMs-+equiod) (e8pugueyoL+ds+vVms+equio))

o3praguao], o/m YN SS0ID ds o/m VNJsso1) auoqyoeyq VN{sso1)

"9[POW UOTYR[[ISIP-J[9S 9} Sejousp (IS "sjuowtrodxe uorye[qe yN(ISS0I)) 10J uolpeinsyuod wjewrered ogwadg QTS 9[qel

11

159

160

161
162

163
164

165
166

167

168

169
170

171

References

Consortium, G.R. et al (2009). Genome reference consortium human build 37 (GRCh37). Database (GenBank or RefSeq).

Dao, T. (2024). FlashAttention-2: Faster attention with better parallelism and work partitioning. In International Conference on
Learning Representations, pages 1-14.

Dao, T. and Gu, A. (2024). Transformers are SSMs: generalized models and efficient algorithms through structured state space
duality. In International Conference on Machine Learning. PMLR.

Gu, A. and Dao, T. (2024). Mamba: Linear-time sequence modeling with selective state spaces. In The First Conference on
Language Modeling, pages 1-32.

Moir, T.J. and Moir, T.J. (2022). Rudiments of Signal Processing and Systems. Springer.
Su, J. et al (2024). Roformer: Enhanced transformer with rotary position embedding. Neurocomputing, 568, 127063.

Yang, S. and Zhang, Y. (2024). FLA: A triton-based library for hardware-efficient implementations of linear attention mechanism.
https://github.com/fla-org/flash-linear-attention. Version v0.3, accessed 2025-11-03.

Zhou, Z. et al (2023). DNABERT-2: Efficient foundation model and benchmark for multi-species genomes. In International
Conference on Learning Representations, pages 1-24.

12

https://github.com/fla-org/flash-linear-attention

